Principled approaches from polymer physics are important to make sense of
the complexity of experimental data on chromosome 3D architecture and to
explain their underlying molecular mechanisms. I discuss first the current
picture of the spatial organisation of our DNA across genomic scales at
the single cell level, as emerging from technologies such as microscopy,
Hi-C, SPRITE or GAM [1]. Next, I discuss how different models of polymer
physics can help understanding the origin of the patterns in the data and
the underlying folding mechanisms [2,3,4]. Finally, I show that polymer
physics can be used to predict the impact of large mutations (Structural
Variants) on chromosome structure, in particular on how the network of
contacts between genes and regulators is rewired, hence enabling the
identification of their pathogenic potential [5,6].
[1] R.A. Beagrie, A. Scialdone, M. Schueler, D.C.A. Kraemer, M. Chotalia,
S.Q. Xie, M. Barbieri, I. de Santiago, L.-M. Lavitas, M.R. Branco, J.
Fraser, J. Dostie, L. Game, N. Dillon, P.A.W. Edwards, M. Nicodemi*, A.
Pombo*, Complex multi-enhancer contacts captured by Genome Architecture
Mapping (GAM), a novel ligation-free approach. Nature 543, 519 (2017).
[2] A.M. Chiariello, S. Bianco, C. Annunziatella, A. Esposito, M.
Nicodemi, Polymer physics of chromosome large-scale 3D organisation,
Scientific Reports 6, 29775 (2016).
[3] M. Barbieri, S.Q. Xie, E. Torlai Triglia, A.M. Chiariello, S. Bianco,
I. de Santiago, M.R. Branco, D. Rueda, M. Nicodemi*, A. Pombo*, Active and
poised promoter states drive folding of the extended HoxB locus in mouse
embryonic stem cells. Nature Struct. Mol. Bio, 24, 515 (2017).
[4] C.A. Brackley, J. Johnson, D. Michieletto, A. N. Morozov, M.
Nicodemi*, P. R. Cook*, and D. Marenduzzo*, Nonequilibrium Chromosome
Looping via Molecular Slip Links, Phys. Rev. Lett. 108, 158103 (2017)
[5] S. Bianco, D.G. Lupiáñez, A.M. Chiariello, C. Annunziatella, K. Kraft,
R. Schöpflin, L. Wittler, G. Andrey, M. Vingron, A. Pombo, S. Mundlos*, M.
Nicodemi*, Polymer physics predicts the effects of structural variants on
chromatin architecture, Nature Genetics 50, 662 (2018).
[6] B.K. Kragesteen, M. Spielmann, C. Paliou, V. Heinrich, R. Schoepflin,
A. Esposito, C. Annunziatella, S. Bianco, A.M. Chiariello, I.
Jerković, I. Harabula, P. Guckelberger, M. Pechstein, L. Wittler,
W.-L. Chan, M. Franke, D.G. Lupiáñez, K. Kraft, B. Timmermann, M. Vingron,
A. Visel, M. Nicodemi*, S. Mundlos* and G. Andrey*, Dynamic 3D Chromatin
Architecture Determines Enhancer Specificity and Morphogenetic Identity in
Limb Development, Nature Genetics 50, 1463 (2018).