Tuesday, June 6 |
07:00 - 08:30 |
Breakfast (Vistas Dining Room) |
08:30 - 09:15 |
Anne Condon: Overview talk - An introduction to molecular programming with Stochastic CRNs ↓ Stochastic Chemical Reaction Networks (CRNs) can be viewed as programs whose instructions are reactions; these instructions execute asynchronously and in parallel to produce a number of output molecules that is a function of the initial counts of molecular species in a well-mixed solution.
For example, the simple program "X + Y --> Z + Z", executing in a solution that initially contains copies of two molecular species X and Y, eventually produces a number of copies of molecule Z that is exactly twice the minimum of the initial counts of X and Y, thereby computing 2min{#X,#Y}.
How fast does this program run, as a function of the initial species counts (assuming fixed conditions such as volume)? Are there faster programs that produce the same output? More generally, what can and cannot be computed by CRN programs? These questions are attracting much attention in light of significant success in "compiling" CRN programs into real molecular controllers that can sense and respond to conditions in a chemical environment.
A beautiful emerging theory of computing with CRNs is providing sharp answers to such questions. The theory and underlying computing models have their roots partly in distributed computing, where population protocols and Petri nets - essentially CRNs in disguise - shed light on the computing power of massively parallel systems of distributed computing agents, interacting asynchronously. In this talk I'll introduce some stochastic CRN computing models, as well as results on their computational power that are due to Angluin, Aspnes, Doty, Soloveichik and others, along with open questions and directions for future work. (TCPL 201) |
09:15 - 10:00 |
Erik Winfree: Overview talk (TCPL 201) |
10:00 - 10:30 |
Coffee Break (TCPL Foyer) |
10:30 - 11:15 |
Yiannis Kaznessis: Overview talk - Closure Scheme for Chemical Master Equations ↓ Stochasticity is a defining feature of biochemical reaction networks, with molecular fluctuations influencing cell physiology. In principle, master probability equations completely govern the dynamic and steady state behavior of stochastic reaction networks. In practice, a solution had been elusive for decades, when there are second or higher order reactions. A large community of scientists has then reverted to merely sampling the probability distribution of biological networks with stochastic simulation algorithms. Consequently, master equations, for all their promise, have not inspired biological discovery.
We will present a closure scheme that solves chemical master equations of nonlinear reaction networks [1]. The zero-information closure (ZI-closure) scheme is founded on the observation that although higher order probability moments are not numerically negligible, they contain little information to reconstruct the master probability [2]. Higher order moments are then related to lower order ones by maximizing the information entropy of the network. Using several examples, we show that moment-closure techniques may afford the quick and accurate calculation of steady-state distributions of arbitrary reaction networks.
With the ZI-closure scheme, the stability of the systems around steady states can be quantitatively assessed computing eigenvalues of the moment Jacobian [3]. This is analogous to Lyapunov’s stability analysis of deterministic dynamics and it paves the way for a stability theory and the design of controllers of stochastic reacting systems [4, 5]. In this seminar, we will present the ZI-closure scheme, the calculation of steady state probability distributions, and discuss the stability of stochastic systems, including oscillatory ones.
1. Smadbeck P, Kaznessis YN. A closure scheme for chemical master equations. Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14261-5.
2. Smadbeck P, Kaznessis YN. Efficient moment matrix generation for arbitrary chemical networks, Chem Eng Sci, 2012, 84, 612-618,
3. Smadbeck P, Kaznessis YN. On a theory of stability for nonlinear stochastic chemical reaction networks. J Chem Phys. 2015 May 14;142(18):184101. doi: 10.1063/1.4919834.
4. Smadbeck P, Kaznessis YN. Solution of chemical master equations for nonlinear stochastic reaction networks. Curr Opin Chem Eng. 2014 Aug 1;5:90-95.
5. Constantino P, Vlysidis M, Smadbeck P, Kaznessis YN. Modeling stochasticity in biochemical reaction networks. Journal of Physics D: Applied Physics, 2016, 49 (9), 093001 (TCPL 201) |
11:15 - 12:00 |
Eduardo Sontag: Overview talk - Dynamic response phenotypes in systems biology: Scale-invariance and monotone I/O systems ↓ Among the central questions in systems biology are those of understanding the roles of, and interactions among, signal transduction pathways and feedback loops. This talk focuses on “dynamic phenotypes” characterized by input/output responses to external inputs in addressing such issues, using fold-change detection and monotone architectures as case studies.
An ubiquitous property of sensory systems is "adaptation": a step increase in stimulus triggers an initial change in a biochemical or physiological response, followed by a more gradual relaxation toward a basal, pre-stimulus level. Adaptation helps maintain essential variables within acceptable bounds and allows organisms to readjust themselves to an optimum and non-saturating sensitivity range when faced with a prolonged change in their environment. It has been recently observed that some adapting systems, ranging from bacterial chemotaxis pathways to signal transduction mechanisms in eukaryotes, enjoy a remarkable additional feature: scale invariance or "fold change detection" meaning that the initial, transient behavior remains approximately the same even when the background signal level is scaled. This talk will review the biological phenomenon, and formulate a theoretical framework leading to a general theorem characterizing scale invariant behavior by equivariant actions on sets of vector fields that satisfy appropriate Lie-algebraic nondegeneracy conditions. The theorem allows one to make experimentally testable predictions, and the presentation will discuss the validation of these predictions using genetically engineered bacteria and microfluidic devices, as well their use as a "dynamical phenotype" for model invalidation. The talk will also include some speculative remarks about the role of the shape of transient responses in immune system self/other recognition and in cancer immunotherapy, as well as a brief discussion of how control-theoretic structures such as differential positivity (monotonicity) have been experimentally employed together with experimental data in order to elucidating mechanisms for stress responses and chemosensing. (TCPL 201) |
12:00 - 13:30 |
Lunch (Vistas Dining Room) |
13:30 - 14:30 |
Breakout session (TCPL 201) |
14:30 - 15:00 |
Coffee Break (TCPL Foyer) |
15:00 - 16:00 |
Breakout session (TCPL 201) |
16:00 - 16:30 |
Robert Brijder: Sufficient Conditions for the Eventual Dying of Reactions in Discrete Chemical Reaction Networks ↓ We consider chemical reaction networks operating on discrete state spaces, i.e., where we keep track of molecule counts. We give a sufficient syntactic condition on chemical reaction networks for the impossibility of certain reactions to take place in the long term. This result is a statement about the reachability relation and is therefore independent of stochastics. As such, it can equivalently be formulated in terms of Petri nets, which is a well-studied model of concurrency. (TCPL 201) |
16:30 - 17:00 |
Robert Johnson: Formal Verification of Chemical Reaction Network Equivalence: A Bisimulation Approach ↓ The Chemical Reaction Network (CRN) model is a language designed to describe the behavior of chemical or biological molecules. Determining whether, in a given semantics, two CRNs have the same behavior is an interesting problem both in itself and for its uses in practice. Such practical uses that have been demonstrated include understanding biological systems by comparison to simple, well-understood CRNs, and verifying that physical implementations of abstract CRNs correctly implement their intended specifications. We defined a concept of CRN equivalence based on bisimulation as explored in concurrent systems, and explored its implications for CRNs in the low-copy-number semantics. We then explored algorithms to check whether two CRNs satisfy this concept of equivalence, and the computational complexity of that task. I will present this definition and our results, and place them in context with other concepts and methods to check CRN equivalence. I will also touch on the uses of this area of theory in practical molecular programming. (TCPL 201) |
17:00 - 17:30 |
Nicolette Meshkat: Using algebraic matroids and avoiding differential algebra in identifiability, observability, and indistinguishability ↓ Algebraic matroids can be used to determine all the algebraic dependency relationships among a set of polynomials, without actually calculating those corresponding polynomial relationships. I'll discuss the application of algebraic matroids in three areas of model analysis: identifiability, observability, and indistinguishability. We'll see that algebraic matroids can be particularly useful in the areas of observability and indistinguishability, especially for large nonlinear models. (TCPL 201) |
17:30 - 19:30 |
Dinner (Vistas Dining Room) |
19:30 - 20:30 |
Open problem session (TCPL 201) |