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1 Overview
Bootstrap percolation has its origins in the work of Chalupa, Leath and Reich [?] on disordered
magnets. As the concentration of an impurity in a magnetic substance increases, more electrons
are unable to interact with their neighbors. At a critical concentration, the strength of the magnet
decreases dramatically, and a sharp phase transition is observed.

In fact, bootstrap percolation processes are related to cellular automata, which were defined and
studied much earlier, by Ulam [?] and von Neumann [?]. In such processes, sites update their status
depending on the behavior of their local neighborhood. Bootstrap percolation is a simple, monotone
example: each site is either inactive or active, and once sites become active they stay active forever.
Bootstrap percolation is also related to weak saturation in graphs, as introduced by Bollobás [?].

For a detailed survey, see Morris [?]. In what follows, we focus on the topics that received the
most attention during this workshop.

1.1 Metastability
The first results in the field studied bootstrap percolation on trees and lattices, but the process can
be defined on any (potentially infinite or random) graph G = (V,E). In the most basic setting, called
r-neighbor bootstrap percolation, each vertex is initially active with probability p. Subsequently,
vertices are activated once (if ever) at least some threshold r of its neighbors become infected. The
process percolates if eventually all vertices in V become infected. Results by van Enter [?] and
Schonmann [?] showed that on Zd the critical density pc is trivial, either 0 or 1.

One way to obtain a non-trivial phase transition is to study [n]d. In this context, we want to
know how pc → 0 as n → ∞. The first results in this direction are contained in the landmark work
of Aizenman and Lebowitz [?], who showed that on [n]d with r = 2, we have pc = Θ(1/ logd−1 n).

Several ideas in this article have been influential. One such idea is the observation that the
dynamics of many bootstrap percolation processes evolve by nucleation, in which case percolating
graphs have, roughly speaking, percolating subgraphs of all orders. In the case of [n]d with r = 2, in
each time step the size of the largest percolating subgraph can at most (essentially) double. This is
very useful when proving lower bounds on pc, as it can suffice to show, in the subcritical regime of the
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model, that there are no percolating structures in some well-chosen interval (typically of logarithmic
size).

Another such idea is that of a critical droplet, that is, the emergence of a percolating subgraph
in the supercritical regime that becomes essentially unstoppable, leading to full percolation. In the
case [n]2 with r = 2, such a droplet corresponds to a percolating rectangle of a critical, logarithmic
size. The emergence of such a critical droplet is referred to as metastable behavior.

Cerf and Cirillo [?] and Cerf and Manzo [?] extended the results in [?] to all r ≤ d. In breakthrough
work, Holroyd [?] showed that, when r = d = 2, we have that pc ∼ (π2/18)/ log n. Balogh, Bollobás,
Duminil-Copin and Morris [?] later found the sharp threshold for all r ≤ d.

1.2 Locality
The bootstrap percolation paradox refers to the fact that numerical estimates for pc, when d = r = 2,
have been far from the truth. For instance, estimates for the constant A in pc ∼ A/ log n, prior
to Holroyd’s proof that A = π2/18, were off by about a factor of 2. The reason for this, roughly
speaking, is that the second order term in the expansion for pc does not become of lower order
influence until n is well outside computational range for a straightforward Monte Carlo algorithm.
More details about the history and reasons for such discrepencies are given in the recent work of
Hartarsky and Teixeira [?, ?].

In [?, ?], the authors resolve the paradox, by showing that 2-neighbor bootstrap percolation on
the plane is local, in the following certain sense. Let τ be the first time (possibly τ = ∞) that the
origin is active. Likewise, let τloc be the first time the origin is active in the local model, where,
roughly speaking, the activation spreads locally starting for some initially active vertex. In [?], it is
shown that

lim
p→0

Pp

(
1 ≤ τloc/τ ≤ exp

[
logC(1/p)

])
= 1.

This result is very useful, since the local model is simpler to analyze. Using this, it is shown
that, with probability tending to 1 as p → 0, we have that
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where λ is an explicit constant. This work offers a new perspective on bootstrap percolation (avoid-
ing, in particular, the hierarchy arguments in [?]), and improves on several important works in the
field by Aizenman and Lebowitz [?], Holroyd [?], Gravner and Holroyd [?], Gravner, Holroyd and
Morris [?], Morris and Hartarsky [?], and others.

1.3 Polluted Models
Another way to obtain a non-trivial phase transition for r-neighbor bootstrap percolation on Zd is
to add pollution. In this setting, vertices are initially active with probability p and polluted/deleted
with probability q. Polluted vertices can never become active, thereby creating a set of obstacles,
so to speak, for the spread of activation. Gravner and McDonald [?] initiated the study of such
processes. When Z2 and r = 2, the critical scaling is q/p2. Specifically, when q < cp2 the origin is
activated eventually with probability tending to 1 as p → 0. On the other hand, when q > Cp2, this
probability tends to 0 as p → 0. Gravner and Holroyd [?] and Gravner, Holroyd and Sivakoff [?]
have made recent progress in higher dimensions.

1.4 Weak Saturation
The study of critical droplets can lead to challenging combinatorial questions. Such structures tend
to be extremal, so as to percolate efficiently (e.g., with the minimal number of edges). The emergence
of a critical droplet is a rare event when p is close to pc.

Bollobás [?] introduced concepts in combinatorics related to bootstrap percolation. In this set-
ting, we consider the spread of activation on edges rather than vertices. The update rule is governed
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by some fixed graph H. Initially, all edges in some subgraph G of the complete graph Kn are
present. We then iteratively add edges if they complete a copy of H. If we eventually add in all
missing edges, and obtain Kn, we say that the process percolates, or that G is weakly H-saturated.

Bollobás found (by an edge-switching argument) the minimal number of edges in a weakly Kr-
saturated graph, for small values of r. This was later proved for general r by Lovász [?], Frankl [?],
Kalai [?, ?] and Alon [?]. These works have sparked many subsequent works in extremal combina-
torics, and it remains an active field of research today.

To obtain a random process, Balogh, Bollobás and Morris [?] introduced a variant of bootstrap
percolation, called graph bootstrap percolation. In this process, we study the weak H-saturation
dynamics, initialized by the Erdős–Rényi graph G(n, p). The classical r-neighbor bootstrap perco-
lation dynamics on G(n, p) were also studied around the same time, by Janson and Łuczak, Turova
and Vallier [?].

2 Mini-Course Lectures
Three mini-course lectures were given early in the week, which aimed to be accessible to all par-
ticipants. The first introductory lecture by Rob Morris gave a broad overview of the current state
of the field, and discussed a number of open problems. The next two lectures by Ivailo Hartarsky
discussed in more detail the state-of-the-art in the specific case of 2-neighbor boostrap percolation
in d = 2 dimensions.

2.1 Rob Morris (recorded)
Title: Bootstrap percolation and other automata
Summary: Morris began with the standard r-neighbor model. We then turned to the more general
U -bootstrap processes introduced by Bollobás, Smith and Uzzell [?]. In this setting, there is a finite
collection U (called the update family) of finite subsets of Z2. A site x becomes infected if x + U
is infected for some U ∈ U . There are three classes (defined in terms of stable directions) of such
processes: supercritical, critical and subcritical.

In [?], it is shown that supercritical processes have polynomial thresholds pc = n−Θ(1) and that
critical processes have poly-logarithmic thresholds pc = (log n)−Θ(1). They conjectured, and Balister,
Bollobás, Przykucki and Smith [?] proved, that subcritical families have thresholds pc > 0, bounded
away from 0. More detailed results by Bollobás, Duminil-Copin, Morris and Smith [?] were discussed
for critical models. When U is balanced, in a certain sense, we have that pc = (log n)−1/α. When
U is unbalanced there is an extra poly-loglog term. Questions remain about when this threshold is
sharp; see the recent work by Duminil-Copin and Hartarsky [?].

In a series of works, Balister, Bollobás, Morris and Smith [?, ?, ?] (cf. Hartarsky and Szabó [?]
in the subcritical case) investigate U -bootstrap percolation in general d dimensions. As before,
there are three classes of families U . There are, however, d − 1 types of critical families: for some
2 ≤ r(U) ≤ d, we have that pc = (log(r−1) n)

−Θ(1). Balister, Bollobás, Morris and Smith will show,
in forthcoming work [?], that the exponent Θ(1) is uncomputable in general when r < d. When
r = d, they conjecture that the exponent is computable, which remains a major open problem.

Morris concluded with a number of open problems and remarks, including the following:

• Balogh, Bollobás and Morris [?] found pc for the hypercube Qd with r = 2. The cases r ≥ 3
remain completely open.

• Consider zero temperature Glauber dynamics for the Ising model on Zd, with all sites initially
positive +, independently with probability p. Using ideas from bootstrap percolation, Morris
[?] showed that the critical threshold for fixation is pc → 1/2 as d → ∞. The conjecture that
pc = 1/2, for all d ≥ 2, is a longstanding open problem. It also remains open to show that
pc < 1 for U -Ising Glauber dynamics; see Blanquicett [?] for partial results.

• Consider the polluted bootstrap model introduced by Gravner and McDonald [?]. They showed
that, when d = r = 2 and as q → 0, the critical threshold, at which point an infinite component
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of infected sites becomes likely, is pc = Θ(
√
q). Morris conjectured [?] that, for d > r ≥ 1,

there is some q0(d, r) > 0 such that pc = 0 for all 0 < q < q0. That is, for sufficiently small q,
arbitrarily small p will be enough to infect an infinite component. In the case that d = 3 and
r = 2, this has been proved by Gravner and Holroyd [?].

• Kinetically constrained spin models were also discussed, which can be thought of as biased
random walks on the set of U -bootstrap percolating configurations. See, e.g., the recent works
by Martinelli, Morris and Toninelli [?], Hartarsky, Marêché and Toninelli [?], Hartarsky, Mar-
tinelli and Toninelli [?], Hartarsky and Marêché [?], and Hartarsky [?].

• Morris says that, given our original motivation from statistical physics, a next frontier worth
exploring is that of bootstrap percolation in random geometric settings. Polluted bootstrap
percolation is a step in this direction, but there is more to explore. He suggests, for instance,
studying bootstrap percolation on random Voronoi tilings.

2.2 Ivailo Hartarsky (recorded)
Title: 2-neighbor bootstrap percolation on the plane
Summary: The study of bootstrap percolation started out with the idea that the 2-neighbor model on
the square grid with product Bernoulli initial condition would exhibit a nontrivial phase transition,
as it does on a regular tree. While this is not the case, the model is far from being trivial. In
this mini-course, we will cover the evolution of our quantitative understanding of this trivial phase
transition over the years. This will lead us to discuss various techniques, establishing increasingly
precise results, many of which have been subsequently adapted to other models and settings. We
will revisit the classical works of Aizenman and Lebowitz, and Holroyd, gradually building towards
recent and upcoming results in that direction, which still call for generalization.

The first lecture focuses on upper bounds on the infection time (or critical parameter) for a
simplified variant of the two-neighbor model. We start by proving Holroyd’s sharp threshold bound.
We then move on to more precise results and their connection to the bootstrap percolation paradox.

The second lecture is dedicated to lower bounds. We start with the rectangles process and the
resulting Aizenman–Lebowitz bound. We then aim to cover the scheme of Holroyd’s proof.
References: https://www.normalesup.org/ hartarsky/files/research/talks/2n-biblio.pdf

3 Seminar Talks
The following participants were invited to give seminar talks:

3.1 Paul Balister (recorded)
Title: Uncomputability in bootstrap percolation
Summary: It is well known that even very simple cellular automata, such as Conway’s ‘Game of
Life’ can express extremely complex behaviour, including the ability to emulate a universal Turing
Machine. Hence certain aspects of the evolution can be uncomputable, as they can in some cases be
equivalent to the Halting problem. Surprisingly, this also holds for generalized bootstrap percolation
models in all dimensions d ≥ 2, despite the fact that such models are highly restricted by being
required to be monotone. In particular, we show that when the initial set is given by a random i.i.d.
infection with probability p = p(n) in (Z/nZ)d, even the exponents in the threshold value of p for
which percolation occurs can be uncomputable in general.
Joint work with: Béla Bollobás, Robert Morris and Paul Smith [?].

3.2 Zsolt Bartha
Title: Critical thresholds in graph bootstrap percolation
Summary: Graph bootstrap percolation is a process introduced by Bollobás in 1968. Fixing a graph
H, we start from an initial graph G0 and iteratively add edges to it that complete copies of H.

https://www.normalesup.org/~hartarsky/files/research/talks/2n-biblio.pdf
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When G0 is the Erdős–Rényi random graph G(n, p), there is a critical threshold pc above which this
process will be likely to reach the complete graph Kn. We obtain a general asymptotic lower bound
for pc, which is sharp in some cases, and matches the upper bound given by Balogh, Bollobás and
Morris up to poly-logarithmic factors for so-called balanced graphs H. We show that this class of
graphs contains G(k, 1/2) with high probability, thus identifying pc for uniformly random H.
Joint work with: Brett Kolesnik and Gal Kronenberg [?, ?].

3.3 Alexander Holroyd (recorded)
Title: Polluted bootstrap percolation
Summary: In polluted bootstrap percolation, sites are initially infected with probability p or pol-
luted/removed with probability q. Gravner and McDonald [?] initiated the study of such processes,
showing that on Z2 with threshold r = 2, the critical scaling is q/p2. In [?], Gravner and Holroyd
show that, on Zd with d ≥ 3 and r = 2, the density of eventually occupied sites converges to 1
for any p, q → 0. In [?], Gravner, Holroyd and Sivakoff study Z3 with r = 3. In this case, the
density of eventually occupied sites converges to 1 if q ≪ p3/ log3(1/p). On the other hand, the
density converges to 0 if q > Cp3 (modified rule) or q > Cp2 (standard rule). The proof involves
complicated blocking structures, called “stegosauruses.”
Joint work with: Janko Gravner and David Sivakoff [?, ?].

3.4 Mihyun Kang
Title: Majority bootstrap percolation on high-dimensional geometric graphs
Summary: Majority bootstrap percolation is a monotone cellular automata that can be thought of
as a model of infection spreading in networks. Starting with an initially infected set, new vertices
become infected once more than half their neighbours are infected. The average case behaviour
of this process was studied on the n-dimensional hypercube by Balogh, Bollobás and Morris, who
showed that there is a phase transition as the typical density of the initially infected set increases, for
small enough densities the spread of infection is typically local, whereas for large enough densities
typically the whole graph eventually becomes infected. They showed that the critical window in
which this phase transition occurs is bounded away from 1/2, and they gave good bounds on its
width.

In this talk we consider the majority bootstrap percolation process on a class of high-dimensional
geometric graphs which includes many of the graphs families on which percolation processes are
typically considered, such as grids, tori and Hamming graphs, as well as other well-studied families
of graphs such as (bipartite) Kneser graphs, including the odd graph and the middle layer graph,
and the permutahedron. We show similar quantitative behaviour in terms of the location and width
of the critical window for the majority bootstrap percolation process for this class of graphs.
Joint work with: Maurício Collares, Joshua Erde and Anna Geisler [?].

3.5 Gal Kronenberg
Title: Independent sets in random subgraphs of the hypercube
Summary: Independent sets in bipartite regular graphs have been studied extensively in combi-
natorics, probability, computer science and more. The problem of counting independent sets is
particularly interesting in the d-dimensional hypercube {0, 1}d, motivated by the lattice gas hard-
core model from statistical physics. Independent sets also turn out to be very interesting in the
context of random graphs.

The number of independent sets in the hypercube {0, 1}d was estimated precisely by Korshunov
and Sapozhenko in the 1980s and recently refined by Jenssen and Perkins.

In this talk, we will discuss some results on the number of independent sets in a random sub-
graph of the hypercube. The results extend to the hardcore model and rely on an analysis of the
antiferromagnetic Ising model on the hypercube.
Joint work with: Yinon Spinka [?].
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3.6 Gábor Pete (recorded)
Title: Volatility in dynamical bootstrap percolation on regular trees
Summary: Consider 2-neighbour bootstrap percolation on the 4-regular infinite tree. The critical
density of initial occupation is 1/9, at which point there are already vacant 3-regular subtrees a.s.,
stopping the bootstrap process from completely occupying the tree. Now let the initial status of
every site be resampled according to an independent Poisson process, keeping the density critical.
Are there exceptional times in this dynamics when all the vacant 3-regular subtrees get destroyed,
hence the entire tree gets bootstrap-occupied?

By a Baire category argument, the existence of exceptional times is equivalent to the set of
times at which the root is bootstrap-occupied being everywhere dense a.s. We don’t know this, but
show semi-volatility: in any time interval [0, ϵ), starting from the root being bootstrap-vacant, the
bootstrapped status of the root changes infinitely many times with probability at least c

√
ϵ.

Joint work with: Marek Biskup and Àbel Farkas (forthcoming).

3.7 David Sivakoff (recorded)
Title: Supercritical neighborhood growth with one-dimensional nucleation
Summary: Supercritical neighborhood growth (or U -bootstrap percolation) rules in two dimensions
are classified by the existence of finite configurations that lead to unbounded growth. Bollobás,
Smith and Uzzell proved that when the initially occupied set is random with density p, the first
occupation time of the origin is p−Θ(1) as p → 0. We take a closer look at supercritical growth
rules with +-shaped neighborhoods. These rules exhibit one-dimensional nucleation in the sense
that lines begin to grow before forming two-dimensional nuclei. In many cases, we show that the
first occupation time is p−γ+o(1) for an explicit constant γ depending on the rule. In one case, we
establish a logarithmic correction to the polynomial passage time due to a growth trajectory that
resembles a branching process, while in other cases the first occupation time is of pure polynomial
order p−γ .
Joint work with: Daniel Blanquicett, Janko Gravner and Luke Wilson [?].

3.8 Réka Szabó (recorded)
Title: Stability results for random monotone cellular automata
Summary: In a monotone cellular automaton, each site in the d-dimensional integer lattice can at
each integer time take the values zero or one. The value of a site at a given time is a monotone
function of the values of the site and finitely many of its neighbours at the previous time. Toom’s
stability theorem gives necessary and sufficient conditions for the all one state to be stable under
small random perturbations. We review Toom’s Peierls argument and extend it to random cellular
automata, in which the functions that determine the value at a given space-time point are random
and i.i.d. We are especially interested in the case where with positive probability, the identity map
is applied, that just copies the value of a site at the previous time. We derive sufficient conditions
for the stability of such random cellular automata.
Joint work with: Cristina Toninelli and Jan Swart [?].

3.9 Tibor Szabó
Title: Slow subgraph bootstrap percolation
Summary: We study subgraph bootstrap percolation, introduced by Bollobás, where the process
is governed by copies of a fixed graph H in the complete graph. We are interesed in the extremal
question of the maximum running time, over all possible choices of a starting graph on n vertices.
We initiate a systematic study of this parameter, denoted MH(n), and its dependence on properties
of the graph H. In a series of works we determine the precise maximum running time for several
graph classes. In general, we study necessary and sufficient conditions on H for fast, i.e. sublinear,
or linear H-bootstrap percolation, and in particular explore the relationship between running time
and minimum vertex degree and connectivity. Furthermore we investigate the superlinear regime,
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obtain the maximum running time of the process for typical H and discover several graphs exhibiting
surprising behaviour.
Joint work with: David Fabian and Patrick Morris [?, ?].

3.10 Augusto Teixeira (recorded)
Title: Two-neighbor bootstrap percolation is local
Summary: Metastability thresholds lie at the heart of bootstrap percolation theory. Yet proving
precise lower bounds for these quantities is notoriously hard. In this talk we show that for two
of the most classical models (two-neighbour and Froböse), the same methodology that is typically
used to prove upper bounds can be used to provide lower bounds as well. This is done by linking
the models to their local counterparts. As a consequence, we are able to establish the second order
term for the infection time of these two models. We will also see how this locality viewpoint can
be used to resolve the so-called bootstrap percolation paradox. More precisely, we will present an
exact (deterministic) algorithm which exponentially outperforms previous Monte Carlo approaches.
We expect this methodology to be applicable to a wider range of models and we finish our talk with
a number of open problems.
Joint work with: Ivailo Hartarsky [?].

4 Open Problems Sessions
Two open problems sessions were held, on Monday and Tuesday.

Many thanks to Quentin Dubroff, Bob Krueger and Sam Spiro for transcribing the following
summary.

4.1 Omer Angel
The goal is to understand if certain models of bootstrap percolation are local.

Suppose you are given some sequence of functions fn : {0, 1}V → {0, 1}, where each function
determines an update rule for a process on a vertex transitive graph. The vague question is when do
we have pc(fn) → pc(f∞), where f∞ is some suitably defined limit object. One might require that
the sequence fn is increasing. Perhaps the answer depends on whether the models are subcritical,
critical or supercritical.

Question: More concretely, suppose a sequence of graphs Gn tends to a graph G∞ in the
Benjamini–Schramm sense, and pick your favorite bootstrap percolation rule. Is it true that
pc(Gn) → pc(G∞)?

4.2 Janko Gravner
Consider bootstrap percolation on the Hamming graph of dimension 2, say on Z2

+. The process is
parametrized by a Young diagram Z, called the zero set. For a given point p, count the number
of occupied sites in p’s column and the number of occupied sites in p’s row. If this ordered pair is
outside the Z then we occupy p. Let γ(Z) be the size of the smallest set that leads to percolation.

When Z is a rectangle, then γ(Z) = |Z| is the area of the rectangle.
It is known that |Z|/4 ≤ γ(Z) = |Z|.
Question: Is there an algorithm that computes γ(Z) efficiently? Can we approximate γ(Z)? We

suspect that γ(Z) ≥ |Z|/2.
See Gravner, Sivakoff and Slivken [?].

4.3 Ivailo Hartarsky
Conjecture: For any subcritical U -bootstrap percolation process (i.e., one with pc > 0) we have, for
all p > pc, that there exits c > 0 such that Pp(τ ≥ n) ≤ e−cn.
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This is known to hold if U is “oriented,” in the sense that there exists a half space H through
the origin containing all the rules U ∈ U .

One open case is directed triangle bootstrap percolation.
See Hartarsky [?].

4.4 Bob Krueger
The firefighting (single-player) game on a (infinite) graph G is the following: A fire breaks out
at a vertex v. You may protect (with a “firefighter”) k non-burning vertices of G each turn as
“unburnable” for the rest of the game (protecting a vertex is equivalent to deleting it from the graph).
Between your turns, the fire spreads along the edges of the graph, and a vertex which catches fire
burns forever. What is the minimum k needed so that the fire eventually stops spreading?

On Z2, it is an easy exercise to show that 1 firefighter per turn is not enough, but 2 is.
Conjecture: For the infinite triangular grid, 2 firefighters per turn is not enough (but 3 clearly

is).
Conjecture: For the infinite hexagonal grid, 1 firefighter per turn is not enough.
It is known that if you are allowed 1 firefighter per turn, but at on some turn you are given

an extra firefighter, then it is possible to contain the fire on the hexagonal grid. There is some
relationship between strategies on the triangular grid and strategies on the hexagonal grid.

It is somewhat constraining to allow the same number of firefighters on every turn. You could
instead have a (deterministic or random) sequence that tells you how many firefighters you can use.
There are many natural variations.

See Finbow and MacGillivray [?].

4.5 James Martin
Close sites on Zd independently with probability p. Consider a two-player game on this site-
percolated board, where players alternate moving the location of a token in some specified set of
directions D (to a site that is not closed), never repeating a location. A player loses when they can
no longer make a move. If a play goes on forever, then the game is a draw. What is the probability
of a draw?

When p is so large that there are no infinite components, the game is forced to end, so there is
no draw. When p is sufficiently small, is there some positive probability of a draw?

Consider the case D = {e1, . . . , ed}, the standard basis (in the positive directions). For d = 2,
it is known that the probability of a draw is 0 for all p. Label each site with respect to whether
the first or second player wins when the token starts at that site. If we know the labels of the
diagonal x+ y = c, then we can determine the labels of the diagonal x+ y = c− 1. This looks like
a 1-dimensional cellular automata, which has a stationary distribution.

Conjecture: For d ≥ 3 and D = {e1, . . . , ed}, there is a positive probability of a draw, for
sufficiently small p.

We can prove it for D = {e1 ± ei : i ≥ 2} and d ≥ 3. In this case, the game in dimension d is
related to a hard-core model (and the uniqueness of the stationary measure) in dimension d− 1.

Conjecture: For D = {±ei : i ∈ [d]}, the probability of a draw is 0 for d = 2, but there is a
positive probability of a draw for d = 3 and sufficiently small p.

The problem is somewhat related to bootstrap percolation (the Froböse model) because enough
closed sites “force” other sites to be closed, as a player would never move to the site if it is a losing
position.

How much advantage does one player have over the other? The probability of the first player
(in dimension 2) is related to a Markov chain computation on a hard-core model. How does closing
only even sites on Zd shift the advantage?

Consider playing this game on finite graphs (without the site percolation, but, as before, the
token may never repeat a site). It is an exercise that the first player wins if and only if the token
starts at a vertex which is contained in every maximal matching. To transfer this to infinite volume,
we ask: Are the vertices in every maximal matching sensitive to boundary conditions?
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See Basu, Holroyd, Martin, and Wästlund [?].

4.6 Gábor Pete
Consider bootstrap percolation on Cayley graphs.

A group is amenable if there exists (equivalently, for all) Cayley graph with F1 ⊆ F2 ⊆ · · · ⊆ V (G)
such that

∪∞
n=1 Fn = V (G), |Fn| < ∞ for all n ≥ 1, and |∂Fn|/|Fn| → 0, where ∂Fn is the set of

vertices in Fn with a neighbor outside of Fn.
For example, Zd is amenable. The Diestel–Leader graph DL(2, 2), a Cayley graph of the lamp-

lighter group, is also amenable.
Question: Prove or disprove: A group is amenable if and only if for every generating set S and

for every k-rule bootstrap percolation, pc(Cay(Γ, S), k) ∈ {0, 1}.
For Zd (amenable) and any group containing a free group with two generators (very non-

amenable), the result holds. But for DL(2, 2), it is unknown. The Heisenberg group may also
be good to consider.

See Balogh, Peres and Pete [?].

4.7 Sam Spiro
The zero forcing process for a graph G starts with some initial set of activated vertices B0. Iteratively,
if there exists v ∈ Bi such that there exists a unique neighbor u ∈ N(v) which is not in Bi, then u
gets added to Bi+1 together with all previous vertices of Bi. We write B0 ∈ ZFS(G) if B∞ = V (G).
Note that this property is monotone in that if B ∈ ZFS(G) then so is any superset of B.

There is a lot of literature studying deterministic B0, but the case when we start with a p-random
set Bp has only be studied very recently. There are many questions to explore, the main one being
the following.

Conjecture: If G is an n-vertex graph and p ∈ [0, 1], then P[Bp ∈ ZFS(G)] ≤ P[Bp ∈ ZFS(Pn)].
That is, the path is the easiest graph to completely activate with a p-random set of vertices.

This is known to hold if G has a Hamiltonian path, via a simple coupling argument (which fails for
general graphs), and is also known to hold for trees of sufficiently large order.

See Curtis, Gan, Haddock, Lawrence and Spiro [?].

4.8 Tibor Szabó
Given two graph H and G0, the H-bootstrap percolation process starting with G0 involves iteratively
setting Gi to consist of Gi−1 together with any edges that produce a copy of H. We let ⟨G0⟩ be the
graph obtained at the end of the process. We define MH(n) to be the maximum time it takes for
the H-bootstrap percolation process on some n-vertex graph G0 with ⟨G0⟩ = Kn to terminate.

Question: Is MK5(n) = o(n2)?
Note that we have a lower bound n2−o(1) and it is known that for larger cliques MKr (n) = Θ(n2).
Question: Is MT (n) ≤ e(T )? for all n sufficiently large.
This would be tight for the star. Currently the best known bound is O(e(T )2). It is theoretically

possible that one might be able to prove a bound of the form O(∆(T )).
Conjecture: If MH(n) = o(n) then MH(n) = Θ(log n) or MH(n) = O(1).
Note that cycles and trees show that either of these behaviors can happen.
Conjecture: H having tree-width 2 implies MH(n) = O(n).
Question: Are there H1 and H2 such that MH1∪H2(N) = ω(MH1(n) +MH2(n))?
See Matzke [?], Bollobás, Przykucki, Riordan and Sahasrabudhe [?] and Balogh, Kronenberg,

Pokrovskiy and Szabó [?].

4.9 Maksim Zhukovskii
Consider graph bootstrap percolation. The weak saturation number wsat(G,F ) is the minimum
number of edges in a spanning subgraph H of G which percolates to G. Recall that, in this process,
we start with the edges of H. Other edges are added iteratively if they complete a copy of F .
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For example, wsat(Kn,Ks) =
(
n
2

)
−

(
n−s+2

2

)
. The upper bound is constructive: Take an (s −

2)-clique in Kn and all edges incident to the clique. There are other constructions. In general,
wsat(Kn, F ) is linear in n. That is, wsat(Kn, F ) = (cF + o(1))n.

Conjecture: For all F and constant p, wsat(G(n, p), F ) = wsat(Kn, F ) with high probability.
We know some F for which this is true, but we do not know wsat(Kn, F ). In particular, for

unbalanced complete bipartite graphs, though it is known up to an additive constant by Kalinicheko
and Zhukovskii [?].

There exists some ps such that if p ≫ ps then wsat(G(n, p), F ) = wsat(Kn,Ks) with high
probability, and if p ≪ ps then they are not equal. See Bidgoli, Mohammadian, Tayfeh-Rezaie and
Zhukovskii [?].

Question: Find ps.
For this question, we know that n−g(s) < ps < n−f(s). For triangles, Peled and Zhukovskii

(unpublished) have shown that p3 = n−1/3+o(1).

5 Simulations and Applications
A session on computer simulations and applications was held on Thursday, after lunch. A number
of people presented simulations and discussed related open problems. Some highlights include:

• Joan Adler presented on applications and kindly provided simulations to post on the external
workshop webpage (https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/kolesnik/birs_bp/sims)
and a link to AViz software (https://github.com/simphony/AViz).
See Adler [?], Adler and Lev [?] and Adler, Elfenbaum and Sharir [?].

Figure 1: Simulation by Joan Adler and Uri Lev, showing bootstrap percolation on the square grid.

• Not much work has been done on bootstrap rules which are not monotone. As an encour-
agement to the participants to venture into this new territory, Janko Gravner presented a
simulation of a cellular automaton in which the neighborhood of a point is a cross of radius
2 and each unoccupied point requires exactly 2 horizontal or exactly 2 vertical neighbors to
become permanently occupied. Started from an initial configuration of low density p of occu-
pied points, the dynamics creates a maze of occupied lines, through which the dynamics tries
to occupy more territory. The conjecture is that, as p → 0, the final configuration occupies a
limiting portion of space strictly between 0 and 1.

• David Sivakoff presented simulations of the cyclic cellular automaton model on infinite trees,
studied in joint work with Janko Gravner and Hanbaek Lyu [?]. In this model, each vertex
has a state in {0, , κ− 1}. A vertex in state k switches to state k + 1 mod κ if it has at least
one neighbor in state k + 1 mod κ.

https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/kolesnik/birs_bp/sims
https://github.com/simphony/AViz
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Figure 2: Simulation by Janko Gravner of the exactly 2 dynamics started from a small p, shown at
an intermediate time.

A conjecture about this model is that for trees with sufficient growth (branching number > 1,
say), if the initial configuration is a uniform product measure on {0, , κ − 1}, then, for any
κ > 2, with probability 1 the root changes state infinitely often.

Figure 3: Simulation by David Sivakoff, showing the cyclic cellular automaton model random mini-
mal spanning tree of an N ×N torus with κ = 8.

6 Lightning Talks
On Friday, before checkout, we held a series of three 20-minute lightning talks. The speakers were
chosen through an open call to all (in-person and online) participants, with priority given to early
career researchers.

6.1 Sahar Diskin (online)
Sahar Diskin presented joint work with Ilay Hoshen and Maksim Zhukovskii [?] on the weak and
strong saturation numbers of the random graph. In particular, the following conjecture was stated,
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regarding a possible “jump” in the saturation number: Fix p ∈ (0, 1). Then sat(G(n, p), F ) =
Θ(n log n) if every edge of F belongs to a triangle in F , and sat(G(n, p), F ) = O(n) otherwise.

6.2 Bob Krueger
Bob Krueger discussed joint work Igor Araujo, Bryce Frederickson, Bernard Lidický, Tyrrell McAl-
lister, Florian Pfender, Sam Spiro and Eric Stucky [?] on a certain triangle percolation process on
the grid, with connections to bootstrap percolation. In this process, we start with some subset X of
points in Z2. Points are iteratively added to X as follows: If there is a triangle with vertices in Z2

that contains exactly three points in X and exactly four points in Z2 then we add this additional
point to X.

6.3 Maksim Zhukovskii
Maksim Zhukovskii discussed joint work with Nikolai Terekhov [?] on the limitations of Kalai’s linear
algebraic method for bounding weak saturation numbers wsat(G,F ). Specifically, rkwsat(G,F ) ≤
wsat(G,F ), the latter of which being the maximum rank of a matroid on E(G) that is, in a certain
sense, weakly F -saturated. In many examples, wsat(G,F ) = rkwsat(G,F ). However, in this work,
it is shown that rkwsat(Kn, F ) < (1− ϵ)wsat(Kn, F ) for infinitely many connected graphs F . Alon
proved that wsat(Kn, F ) = cFn+ o(n). Tuza conjectured wsat(Kn, F ) = cFn+O(1). In this work,
it is shown that rkwsat(Kn, F ) = cFn+O(1).

7 Panel Discussion
Karen Gunderson organized and moderated a group activity on Thursday, after dinner. The goal of
this event was to give useful advice to early career researchers, and those who advise them, about
job hunting in the areas represented by this workshop.

The following workshop participants acted as panelists, answering questions and giving advice
during the discussion: Omer Angel, Mihyun Kang, Gal Kronenberg, Bernard Lidický and James
Martin. Many thanks to Ayush Kumar, who also joined the event virtually as a panelist, specifically
to discuss EDI-related topics. Ayush Kumar is Associate Dean and Equity, Diversity, and Inclusion
Lead for the Faculty of Science at the University of Manitoba.

We had a number of topics and questions planned in advance, such as: What are the postdoc
opportunities in your department/network? How do they work? What are some of the relevant
trends in faculty positions? How best to strengthen research statements? Which additional initia-
tives or activities are most valued on a CV? How best to give meaningful EDI (or DEI) statements?
Advice on recruiting a diverse pool of trainees/applicants? How to avoid biased language or themes
in reference letters?

The event was well attended. A productive group conversation unfolded at the event, which con-
tributed significantly to a good sense of community throughout the workshop. Participants brought
up a wide variety of topics, and the panelists were together able to give careful and meaningful
answers.

A document with postdoc and job resources has been posted at the external workshop webpage:
https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/kolesnik/birs_bp/birs_bp_resources.pdf.

8 Hikes
On Monday, with good weather, many participants hiked up along Tunnel Mountain Trail after lunch,
before the afternoon seminars. On Wednesday, a group bus trip to Lake Louise was organized. Many
participants hiked across frozen Lake Louise and beyond. Others went elsewhere on self-organized
excursions.

https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/kolesnik/birs_bp/birs_bp_resources.pdf
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9 Scientific Progress
Progress was made on several fronts. Some highlights include:

• Ivailo Hartarsky and Augusto Teixeira [?] posted their preprint on the locality of bootstrap
percolation (resolving the bootstrap percolation paradox) on the arXiv just a few days before
the start of the workshop. This created considerable buzz, and was a great way to start the
workshop.

• Janko Gravner, Ander Holroyd and David Sivakoff made progress on a project related to
polluted bootstrap percolation in two dimensions.

• Janko Gravner, Ivailo Hartarsky, Ander Holroyd, David Sivakoff and Réka Szabó began a
collaboration related to polluted bootstrap percolation in dimensions 3 and higher, making
progress on open problems discussed in the talks by Ander Holroyd and Rob Morris. This
workshop was successful in connecting these two groups of frequent collaborators, being the
first time that Ivailo Hartarsky and Réka Szabó had met in-person with Ander Holroyd and
David Sivakoff.

• Mihyun Kang reports that this workshop inspired her to work intensely on several projects,
along with various collaborators:

– with Christoph Koch and Tamás Makai [?], studying bootstrap percolation on the bino-
mial random k-uniform hypergraph;

– with Michael Missethan, and Dominik Schmid [?], studying bootstrap percolation on the
high-dimensional Hamming graph;

– with Maurício Collares, Joshua Erde and Anna Geisler [?], studying majority bootstrap
percolation on high-dimensional geometric graphs.

• Mihyun Kang also reports that she will begin working this fall with a new graduate student
on a project related to bootstrap percolation in high-dimensional product graphs, with the
support of the Austrian Science Fund (FWF).

• Inspired by Gal Kronenberg’s seminar on her joint work with Yinon Spinka [?], Shirshendu
Ganguly began working on, and recently completed, a project with his students Mriganka
Chowdhury and Vilas Winstein [?] on independent sets in random subgraphs of the hypercube.
This work focuses on the cases p ∈ [2/3, 1). Specifically, it is shown that the (centered and
scaled) partition function is asymptotically Normal for all p > 2/3, and the sum of two inde-
pendent log-normals at p = 2/3. The point 2/3 is a transition point in a certain non-uniform
birthday problem.
The case p < 2/3 will be analyzed in forthcoming work.

• Daniel Ahlberg and Christopher Hoffman made progress on questions related to the coalescence
of geodesics in first-passage percolation.

• Omer Angel, Janko Gravner and Brett Kolesnik discussed ideas for a future project related to
bootstrap percolation in certain random planar geometries.

10 Participants
10.1 In-Person
There were 42 in-person participants: Daniel Ahlberg, Caio Alves, Omer Angel, Igor Araujo, Paul
Balister, József Balogh, Zsolt Bartha, Marcelo Campos, Daniel De La Riva Massaad, Dingding
Dong, Quentin Dubroff, Shirshendu Ganguly, Ramón Iván García Alvarez, Janko Gravner, Karen
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Gunderson, Ivailo Hartarsky, Jaka Hedžet, Christopher Hoffman, Alexander Holroyd, Mihyun Kang,
Brett Kolesnik, Gal Kronenberg, Bob Krueger, Imre Leader, Bernard Lidický, James Martin, Letícia
Mattos, Yago Moreno, Yuval Peled, Gábor Pete, Leonardo Rolla, Mihalis Sarantis, David Sivakoff,
Erik Slivken, Sam Spiro, Réka Szabó, Tibor Szabó, Augusto Teixeira, Mark Walters, Alexandra
Wesolek, Michael Wigal and Maksim Zhukovskii.

10.2 Online
There were 51 online participants: Joan Adler, Michael Aizenman, Yago Moreno Alonso, Daniel
Blanquicett, Elisabetta Candellero, Altar Çiçeksiz, Sahar Diskin, Damiano De Gaspari, Nils De-
tering, Alberto Espuny Díaz, Joshua Erde, Nikolaos Fountoulakis, Anna Geisler, Benjamin Gunby-
Mann, Lianna Hambardzumyan, Annika Heckel, Cecilia Holmgren, Nina Kamčev, Michael Kriv-
elevich, Emilio Leonardi, Lyuben Lichev, Anita Liebenau, Tomasz Łuczak, Tamas Makai, Laure
Marêché, Carlos Martinez, Christian Maura, Marcus Michelen, Dieter Mitsche, Adva Mond, Patrick
Morris, Rob Morris, Richard Mycroft, Bhargav Narayanan, Sam Olesker-Taylor, Alexey Pokrovskiy,
Daniel Reichman, Dominik Schmid, Roberto Schonmann, Nir Schreiber, Alex Scott, Alexander Scru-
ton, Victor Souza, Alexandre Stauffer, Cristina Toninelli, Fabio Toninelli, Giovanni Luca Torrisi,
Andrew Treglown, Daniel Valesin and Aernout van Enter.
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