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Let G be a connected reductive group over a p-adic field F of characteristic zero
(Qp or finite extension of Qp), and let R(G ) be the category of complex
representations (π;V ) such that {g ∈ G : π(g)v = v} is open in G for all v ∈ V .

Example
G = GLn, G = SO2n+1, Sp2n , G = G2
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Definition (Parabolically induced representation)
P = M n U, (σ,V ) a smooth representation of M.

IndGP (σ) := {f : G → V , f (pg) = (δ
1/2
P σ)(p)f (g), p ∈ P, g ∈ G}

G acts on these functions by right-translation: (R(g)f )(x) = f (xg), g , x ∈ G
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Distinguished representations

Let G be a reductive group over a p-adic field F , and H a closed subgroup of G .
Take a smooth complex-valued representation π.
Question: What are the representations π of G and characters χ of H such that
HomH(π|H , χ) 6= 0?

When does there exist ` such that
`(π(h)v) = χ(h)`(v) ∀v ∈ π, h ∈ H?
Example: χ = 1H .

Case of interest: θ an involution G , H = G θ.
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Motivations

Why bother?:

Local motivation:

L2(H\G ) =

∫ ⊕
Ĝ

πµ(π)

This is a unitary representation of G , and the Plancherel measure µ is supported
on the class of H-distinguished representations.
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Motivations

Why bother?:

Global motivation:

Let φ be an automorphic form on G (AF ), with F a number field. Then we are
interested in understanding if∫

ZH(F )\H(AF )

φ(h)χ(h)dh 6= 0

Relative Trace formula
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Baby case: GL2 = GL2(F ), and its torus T = T (F )

B =

(
a b

0 d

)
=

(
a 0
0 d

)
n

(
1 x

0 1

)
a, d ∈ F×, b ∈ F

IndGB (χ) := {f : GL2 → V , f (bg) = (δ
1/2
B χ)(b)f (g), b ∈ B, g ∈ GL2}

Question: For which χ is IndGL2
B (χ) a T -distinguished representation?

Let Z ⊂ T be the center of GL2. Let us look at: R(z).f (g) =
f (gz) = (δ

1/2
B χ)(z)f (g)

Take ` ∈ HomT (Ind
GL2
B (χ), 1). Then `(R(z).f ) = `(χ(z).f ) = χ(z)`(f ) = `(f ), so we

need
χ|Z = 1

Necessary condition: The representation IndGL2
B (χ) has a trivial central character.
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Sufficient condition

We need to look at the double coset B\GL2/T . Using Bruhat decomposition, we find:

GL2 = B t B

(
0 1
1 0

)
t B

(
0 1
1 1

)
T

B\GL2/T = {B = {g21 = 0} ;Bw = {g22 = 0} ;BηT = {g21g22 6= 0}}

Since BηT is open, we can look at the T -invariant space

V =
{
f ∈ IndGL2

B (χ)|Supp(f ) ∈ BηT
}

We then get the filtration: 0 ⊆ V ⊆ IndGL2
B (χ)|T . If ` ∈ HomT (Ind

GL2
B (χ), 1) then

either `|V 6= 0 (in which case, HomT (V , 1) 6= 0) or ` is a non-zero element of
HomT (Ind

GL2
B (χ)/V , 1).
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Method: The Geometric Lemma

Remark: This method only allows to study π ∼= IndG
P (σ)

Theorem, Helminck-Wang: The double cosets P\G/H is finite (also true
over the reals).

Lemma, Bernstein-Zelevinsky There exists an order {PηiH}Ni=1 on the double

cosets P\G/H such that Oi = ∪ij=1PηjH , is open for any i = 1, . . . ,N

Vi =
{
f ∈ IndG

P (σ) : Supp(f ) ⊆ Oi

}
then 0 ⊆ V0 ⊆ V1 ⊆ . . . ⊆ VN = IndG

P (σ)|H
is a filtration of IndG

P (σ)|H

If IndG
P (σ) is H-distinguished, then there exists i such that

HomH(Vi/Vi−1;1) 6= 0. Indeed, if ` ∈ HomH(IndG
P (σ); 1) 6= 0 then there exists i

minimal such that `|Vi
6= 0 defines a non-zero element of HomH(Vi/Vi−1;1).
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Lemma

HomH(Vi/Vi−1; 1) = HomPi
(δ−1

Pi
δ
1/2
P σ,1)

where Pi = ηiHη
−1
i ∩ P .

Set xi = ηiθ(ηi)
−1, θx(g) = xθ(g)x−1 and Mx = (M ∩ θx(M))θx .

Proposition (Closed orbit, Offen, 2017)
Let P = M o U be a standard parabolic subgroup of G and σ a
smooth representation of M . Suppose that x is M-admissible, and
θx(P) = P . If σ is (Mx , δPx

δ
−1/2
P χη

−1
)-distinguished then IndG

P (σ) is
(H , χ)-distinguished.
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What is G2?

k ,K,B, C Hurwitz algebras of dimension 1,2,4,8 (quaternions, octonions over k).
G2 is the group of automorphisms of the Cayley algebra. We embed G2 into GL8 using
the action of the root subgroups/the torus of G2 on the octonions.
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The case of (G2, SO4)

In this talk, we will denote G2 = G2(F ), SO4 = SO4(F )...etc
Our goal is to determine for which σ, and χSO4 , HomSO4(IG2

P (σ), χSO4) 6= 0.

Lemma The quotient G2/SO4 is a symmetric space
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Proposition (Closed orbit, Offen, 2017)
Let P = M o U be a standard parabolic subgroup of G and σ a smooth
representation of M . Suppose that x is M-admissible, and θx(P) = P . If σ is
(Mx , δPxδ

−1/2
P χη

−1
)-distinguished then IndG

P (σ) is (H , χ)-distinguished.
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Our main results are the following:

Theorem (Closed orbit, D, 2022)
Let χ be a character of SO4(F ). It is a quadratic character of F×. It can be seen
as a character of GL2 (those are given by χ ◦ det for a quasi-character χ of F×).
Let Pβ (resp. Pα) denote the maximal parabolic corresponding to the root β
(resp. α). The parabolic induced representations of G2 which are
(SO4, χ)-distinguished include the following representations:

• The induction from Pβ to G2 of the reducible principal series
I (χδ

1/2
Pβ
|.|−1/2 ⊗ |.|) of GL2.

• The induction from Pα to G2 of the reducible principal series
I (χδ

1/2
Pα
|.|1/2 ⊗ χδ1/2

Pα
|.|−1/2)of GL2.

• The induced representation IG2
Pβ

((χ ◦ det)δ
1/2
Pβ

)

• The induced representation IG2
Pα

((χ ◦ det)δ
1/2
Pα

).
13



A more structural approach

Joint work with Nadir Matringe.

Definition
A quaternion algebra D = Dα,β over a field F is a 4-dimensional vector space
over F , with basis {1, i , j , k}, given the structure of an algebra with the
multiplication rules

i2 = α, j2 = β

and ij = −ji = k for some α and β in F×.

Fact 1: A split quaternion algebra ∼= M2(F ). We use the Cayley-Dickson
construction of the split octonions: Op = M2(F )⊕M2(F ), equipped with the
norm nOp((x , y)) = det(x)− det(y). SO4 is the subgroup of automorphisms of
the octonions that fix a split quaternionic subalgebra!
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SO4-orbits of the nil-subalgebras of G2

Our question today: describe structurally Pβ\G2/SO4 and Pα\G2/SO4

Definition (Nil-subalgebra)
A nil-subalgebra is a subspace of Op consisting of trace zero elements with
trivial multiplication (the product of any two elements is zero).

The quotient Pβ\G2 (resp. Pα\G2) correspond to the set of nil-subalgebras of
dimension 1 (resp. dim 2) of the split octonions Op.

Fact 2: SO4 is the centralizer of the involution ε in Op: ε(a, b) = (a,−b).

Fact 3: SO4 = SL2,s × SL2,l/∆µ2 = PGL2× SL2 and acts on M2(F )⊕M2(F ) by
(g , h)(x , y) = (gxg−1, hgyg−1).

15



SO4-orbits of the nil-subalgebras of G2

Our question today: describe structurally Pβ\G2/SO4 and Pα\G2/SO4

Definition (Nil-subalgebra)
A nil-subalgebra is a subspace of Op consisting of trace zero elements with
trivial multiplication (the product of any two elements is zero).

The quotient Pβ\G2 (resp. Pα\G2) correspond to the set of nil-subalgebras of
dimension 1 (resp. dim 2) of the split octonions Op.

Fact 2: SO4 is the centralizer of the involution ε in Op: ε(a, b) = (a,−b).

Fact 3: SO4 = SL2,s × SL2,l/∆µ2 = PGL2× SL2 and acts on M2(F )⊕M2(F ) by
(g , h)(x , y) = (gxg−1, hgyg−1).

15



SO4-orbits of the nil-subalgebras of G2

Our question today: describe structurally Pβ\G2/SO4 and Pα\G2/SO4

Definition (Nil-subalgebra)
A nil-subalgebra is a subspace of Op consisting of trace zero elements with
trivial multiplication (the product of any two elements is zero).

The quotient Pβ\G2 (resp. Pα\G2) correspond to the set of nil-subalgebras of
dimension 1 (resp. dim 2) of the split octonions Op.

Fact 2: SO4 is the centralizer of the involution ε in Op: ε(a, b) = (a,−b).

Fact 3: SO4 = SL2,s × SL2,l/∆µ2 = PGL2× SL2 and acts on M2(F )⊕M2(F ) by
(g , h)(x , y) = (gxg−1, hgyg−1).

15



Nil-subalgebras of the split octonions

Lemma

Any element in a nil-subalgebra of the split octonions has the form: γ(M0,M) for
γ in F , with M2

0 = − det(M)I2 and Tr(M0)M = 0.

Proof.
Just an application of the 2-nilpotency of such element and using the
multiplication law of the octonions

(a + `b)(c + `d) = (ac + λd̄b) + `(da + bc̄)
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Lemma
There are |F×/(F×)2|+ 4 orbits for the action of SO4 on Pβ\G2.

Proof:
Using the description of the nil-subalgebras of dimension 1 above, let us
distinguish three cases where the nil-subalgebra is generated by: (M0,M) with
M = 0 (1), (M0,M) with M0 = 0 (2), and (M0,M) with both M0 and M

non-zeros (3).

(1) Since M = 0, we have only the condition M2
0 = 0 (i.e Tr(M0) is not

necessarily 0). Remembering that the PGL2-conjugacy classes of M2(F ) are
parametrized by Jordan types, and using the fact that M0 also needs to be

2-nilpotent, there is only one element: M0 =

(
0 1
0 0

)
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(2) We get the equation, det(M) = 0, we have two Jordan types, but as we let
SL2 acts by translation on the left, they are in the same orbit, so once more we
are left with the nilpotent conjugacy classes in the set M2(F ) under the action of
SL2. The nil-lines (1), and (2) constitute the two closed parabolic orbits.

(3) Finally, let us assume both M0 and M are non-zero.
First, we notice that k(M0,M) with k ∈ F with both matrices of rank 1, and
k ′(M ′0,M

′), k ′ ∈ F with M ′0 and M ′ of rank 2 can not be in the same SO4-orbit.
Actually the first case gives us already two additional orbits 3a).

Let us consider now the second case 3b). We the equation
M2

0 = − det(M)I2.
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The minimal polynomial for M0 is P(x) = x2 + det(M)I , and it is also the
characteristic polynomial, since det(M) = det(M0). As the characteristic and the
minimal polynomials are equal, there is only one conjugacy class of matrices M0

verifying P(M0) = 0.

In particular, multiplying such a matrix by a scalar t would give us the equation
t2(M0)2 = −λI2, so the square classes in F (they are four of them) parametrize
this set.

Because the four orbits are characterized by the equations
det(M) 6= 0, det(M0) 6= 0, these parabolic orbits are open.
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List of the orbits of nil-lines



(
0,

(
0 1
0 0

))
and

((0 1
0 0

)
, 0
)

closed orbits

((0 1
0 0

)
,

(
0 1
0 0

))
and

((0 1
0 0

)
,

(
1 0
0 0

))
rank one orbits

((0 t

1 0

)
,

(
1 0
0 −t

))
open orbits
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Lemma (Tentative lemma)
There are |F×/(F×)2|+ 2 orbits for the action of SO4 on Pα\G2.

Proof:
We look for pairs of nil-lines (N1,N2) so that N1.N2 = 0, and let SO4 acts diagonally
on such pairs. Further, we need to consider the nil-subalgebras, i.e Vect(N1,N2). Let

N be such a 2-dimensional nil-subalgebra, if
(
0,

(
0 1
0 0

))
belongs to N , then using

the nilpotency equations, and some simplification using the SO4-action, we get

N := F .
(
0,

(
0 1
0 0

))
⊕ F .

(
0,

(
0 1
0 0

))
.
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If
((0 t

1 0

)
,

(
1 0
0 −t

))
belongs to N , let N2 :=

(
u =

(
a b

c d

)
, v =

(
α β

γ δ

))
.

Using the nilpotency equation, we get

(u, v) =
((a b

0 a

)
,

(
b/t a

a 0

))
Then deal with the case a = 0 and a 6= 0 separately. In the first, get one orbit, and in
the second, get again |F×/(F×)2| of them (open).
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Thank you for your attention!

23


