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CoCO2, prototype system for a CO2 monitoring service

Our aim: 
Focus on CO

2
emissions from 

point sources:

❏ large magnitude 
❏ urban scale    

 based on the spaceborne imagery of the CO
2
 atmospheric plumes from these sources.

Our work = part of the 
Copernicus CoCO2 project, 
prototype of a CO

2 
monitoring service which 
aims, in particular, to 
improve the estimation of 
CO

2
 emissions from new 

satellites launched from 
2025 onwards.
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Estimating CO2 emissions from a satellite image

Segmentation: 
-> find map of probabilities
(pixel values between 0 and 1) 
describing potential positions 
of the plume

Inversion:
From a given satellite image: 
estimate emission rates from 
a point source 

Emissions and 
“consequences” of the 
emissions: the plume,
are directly related
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Where is the plume ?

Signal of CO2 plumes induced by cities emissions is 
intrinsically difficult to detect

➢ Rarely exceeds values of a few ppm 
➢ Perturbed by variable regional CO2 background signals 

and satellite noise

Many plumes concealed
under the background
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➢ Signal-to-noise ratio:
○ “Background” noise: 

■ Variability of the 
background

■ Instrument noise

○ Plume “definition” (signal):
■ Meteorological conditions, 

which determine dilution 
and dispersion

■ Intensity of the source 
emission

➢ Image integrity: 
■ Clouds
■ Number of satellite 

overpasses

Detectability factors1

1

1. Detectability of CO2 emission plumes of cities and power 
plants with the Copernicus Anthropogenic CO2 
Monitoring (CO2M) mission. Kuhlman et al.

Simulate satellite 
observations (OSSE)
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I. In the framework of CoCO2: creation of a synthetic 
dataset, i.e., of pairs of XCO2 field/plume or 
emission

II. Segmentation

III. Inversion

Outline

To segment and inverse plumes in images with low SNR ratio: need of techniques
that can learn specific characteristics of plumes, other than high signal, such as 
spatial patterns
-> deep learning methods
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Creation of an XCO2 field/plume pair
Simulated atmospheric 
dispersion of the plume 
only

Addition of the 
simulated 
background 

Addition of the 
satellite noise 
(0.7ppm)

July, afternoon, 
emissions from Paris
= 17.3 Mt.yr-1 
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Get the widest possible diversity of plumes
1-year simulation (~2km, 1hr) of the XCO2 fields in the 

❖ Paris (LSCE/Suez-Origins) with CHIMERE model
❖ Berlin, and ~15 power plants (EMPA) with COSMO-GHG model

areas, tracing the anthropogenic plume and other bio and 
anthropogenic components.

Dataset must be as diverse as 
possible:
➢ use of data 

augmentation 
techniques to artifically 
“create” more plumes

Variety of point sources, 
geographical areas, 
plume types, plumes 
number …
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Segmentation: Supervised learning

Statistical model

The model learns the relation between pairs of a provided input 
(simulated satellite image) and an output (here, segmented 
plume)
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Segmentation: But what *exactly* is a plume ?
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Segmentation: U-net CNN with EfficientNetB0 encoder
❏ capture spatial features of the image through application of successive filters 
❏ i.e., transform image into relevant features maps
➢ used to recognise spatial features that belong to an anthropogenic plume
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Two ways of training !

Generalising or extrapolating geographically

❖ Generalising
➢ Training on pairs of Berlin 

fields/plumes
➢ Testing on Berlin fields

❖ Extrapolating
➢ Training on pairs of 

Paris and power plant 
fields/plumes

➢ Testing on Berlin fields

A universal model (=extrapolation) is harder but preferable: 
it limits the amount of data needed to segment all future plumes
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Segmentation: Generalisation on Berlin
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Segmentation as generalisation: multi-plume PP area
XCO2 field Targeted seg. Predicted seg.
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Segmentation as extrapolation: Berlin
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Inversion: Set-up

Regression CNN  model 
([images] to [emission flux rate])

Output: Emission flux rate in 
Mt/yr

● xco2 field at time t
● xco2 field at time t-2
● wind fields at time t (u and v)
● segmentation predictions 

(with post-treatment)
● no2 field
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Power plants for test considered are various: 
➢ power plant above background noise / of high 

emission rate (e.g. Boxberg)
➢ power plant below background noise / of low 

emission rate (e.g. Patnow)
➢ power plant with multiple “high” plumes (e.g. 

Boxberg)

Inversion: About the data
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Inversion: data augmentation ?

Key is to generate new data at training time:
- each image used to train the CNN has new 

random gaussian noise
- each {plume, emission} of an image used 

to train the CNN is scaled by a random 
scaling factor

+  scaling × 

scaling × emission flux
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Inversion: About the model

Model:
Inversion is a less complicate problem than segmentation.
For ~ the same base set of images
★ for segmentation, good performance is achieved with encoders 

such as EfficientNetB0 (~5M parameters)
★ for inversion, good performance is achieved with much simpler 

regression models (~100k parameters)

Several “small” state-of-the-art models (with descaling) have been 
considered (squeezenet, shufflenet) but less good performances than 
simple model only consisting of convolutions, maxpooling, dropout, … 

Training
Model only trained only in “geographical 
extrapolation” mode. For example:
❖ Train: on a subset of power plants 

excluding Boxberg
❖ Test: on Boxberg power plant.
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Inversion: preliminary results

Mass-balance, Cross-sectional CNN model

Lippendorf (high SNR) median > 35% (when applicable) median ~ 19%

Patnow (low SNR) non-applicable median ~ 28%
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Conclusions - next steps

Next steps
❖ Inversion of city plumes. But few data available …
❖ Consideration of clouds on images.
❖ Dealing with real CO2 satellite observations (coming in 2027)

Inversion conclusions
CNN models for XCO2 plume inversion: 

I. Ability to perform inversion on low SNR plumes with the help of 
a segmentation pre-step or NO2 fields

II. CNN models outperform standard plume inversion methods 
with or without the help of NO2 fields

III. Performance is not degraded by the presence of multiple 
plumes on the same image
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