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‘@ CoCO2, prototype system for a CO2 monitoring service
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are combined to provide timely emission estimates,
...... v with the detail required to support mitigation actions
from local to global scale.

Copernicus CoCO2 project, e
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monitoring service which
aims, in particular, to
improve the estimation of
CO2 emissions from new
satellites launched from
2025 onwards.
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based on the spaceborne imagery of the CO, atmospheric plumes from these sources.
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Inversion:

From a given satellite image:
estimate emission rates from
a point source

Emissions and
“consequences” of the
emissions: the plume,
are directly related
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Segmentation:
-> find map of probabilities

(pixel values between 0 and 1)
describing potential positions
of the plume
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Signal of CO2 plumes induced by cities emissions is
intrinsically difficult to detect
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> Rarely exceeds values of a few ppm
> Perturbed by variable regional CO2 background signals
and satellite noise
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> Signal-to-noise ratio:
o  “Background” noise:
m Variability of the
background
m Instrument noise

o  Plume “definition” (signal):

m Meteorological conditions,
which determine dilution
and dispersion

m Intensity of the source
emission

Simulate satellite
observations (OSSE)

> Image integrity:

u Clouds 1. Detectability of CO2 emission plumes of cities and power

m Number of satellite plants with the Copernicus Anthropogenic CO2
Monitoring (CO2M) mission. Kuhlman et al.
overpasses



To segment and inverse plumes in images with low SNR ratio: need of techniques
that can learn specific characteristics of plumes, other than high signal, such as

spatial patterns
-> deep learning methods

I. Inthe framework of CoCO2: creation of a synthetic
dataset, i.e., of pairs of XCO2 field/plume or
emission

lI.  Segmentation

l1l. Inversion



Simulated atmospheric

July, afternoon, dispersion of the plume

emissions from Paris only
All fluxes
408.0 A.ddltlon of the
simulated
4075 background
407.0

wss Addition of the
satellite noise

00 125 150 (0.7ppm)

&

3

3

100

120

140

100

120

140

Plume

411

410



. . 1-year simulation (~2km, 1hr) of the XCO2 fields in the
Variety of point sources,

geographical areas, «  Paris (LSCE/Suez-Origins) with CHIMERE model
plume types, plumes «  Berlin, and ~15 power plants (EMPA) with COSMO-GHG model
number ...

areas, tracing the anthropogenic plume and other bio and
anthropogenic components.

Dataset must be as diverse as
possible:

> use of data

- - - R

techniques to artifically
“create” more plumes
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The model learns the relation between pairs of a provided input
(simulated satellite image) and an output (here, segmented
plume)
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Example 1

Example 2

Original plume

(ppmv]

Boolean plume boolean Targetted plume  weight bool.
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capture spatial features of the image through application of successive filters

i.e., transform image into relevant features maps
used to recognise spatial features that belong to an anthropogenic plume
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Two ways of training !

% Generalising % Extrapolating
> Training on pairs of Berlin > Training on pairs of
fields/plumes Paris and power plant
> Testing on Berlin fields fields/plumes

> Testing on Berlin fields

A universal model (=extrapolation) is harder but preferable:
it limits the amount of data needed to segment all future plumes



Generalisation, ex. 1

Generalisation, ex. 2

XCO2 field
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CNN segmentation proba.
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Targeted seg. Weighted Boolean Predicted seg. Probability
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Extrapolation, ex. 1

Extrapolation, ex. 2

XCO?2 field
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Targetted plume

weight bool.
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CNN segmentation proba.
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NO2 field (molecules cm-2)
XCO2 field [ppm] u-wind field [m/s] Segmentation results with post-treatment 1lel6
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Regression CNN model e XxcoZ field at time t-2
(limages] to [emission flux rate]) e wind fields at time t (u and v)
e segmentation predictions
l (with post-treatment)
e no2 field

Output: Emission flux rate in
Mt/yr



XCO2 field [ppm]

Boxberg - emissions flux: 23.5 Mt/yr
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Patnow - emissions flux: 7.0 Mt/yr

Power plants for test considered are various:

>

>

power plant above background noise / of high
emission rate (e.g. Boxberg)

power plant below background noise / of low
emission rate (e.g. Patnow)

power plant with multiple “high” plumes (e.qg.
Boxberg)



Lippendorf background [ppm]

Key is to generate new data at training time:
- each image used to train the CNN has new
random gaussian noise
- each {plume, emission} of an image used
to train the CNN is scaled by a random
scaling factor
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Model:

Inversion is a less complicate problem than segmentation.

For ~ the same base set of images

% for segmentation, good performance is achieved with encoders
such as EfficientNetBO (~5M parameters)

% for inversion, good performance is achieved with much simpler
regression models (~100k parameters)

Several “small” state-of-the-art models (with descaling) have been
considered (squeezenet, shufflenet) but less good performances than
simple model only consisting of convolutions, maxpooling, dropout, ...

Training
Model only trained only in “geographical
extrapolation” mode. For example:
% Train: on a subset of power plants
excluding Boxberg
% Test: on Boxberg power plant.



nversion: preliminary results
Lippendorf (emission flux range: 10-25 Mt/yr)

Density

Patnow (emission flux range: 5-10 Mt/yr)

Lippendorf (high SNR)

median > 35% (when applicable) | median ~ 19%

Patnow (low SNR)

non-applicable

median ~ 28%
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Inputs: Inputs:
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Inversion conclusions
CNN models for XCO2 plume inversion:
[.  Ability to perform inversion on low SNR plumes with the help of
a segmentation pre-step or NO2 fields
[I.  CNN models outperform standard plume inversion methods
with or without the help of NO2 fields
lll.  Performance is not degraded by the presence of multiple
plumes on the same image

Next steps

% Inversion of city plumes. But few data available ...
% Consideration of clouds on images.
% Dealing with real CO2 satellite observations (coming in 2027)
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