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Quantum complexity

Quantum complexity is an important
and well-established notion in QI C�(| i)

Recent interest in quantum many-body physics:

I distinguish topological phases of matter at
zero temperature [Chen, Gu, Wen]

I describe regions behind black hole horizons
in AdS/CFT [Susskind], [Stanford, Susskind] C = V

More generally, complexity growth is one universal
aspect of real-time dynamics in strongly-interacting
many-body systems

→ relation to thermalization, quantum chaos, . . .

R2
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Complexity
some intuition

Circuit complexity is a somewhat intuitive notion

The traditional definition involves building a circuit with gates
drawn from a universal gate set, which implements the state or
unitary to within some tolerance δ

U ≈

We are interested in the minimal size of a circuit that achieves this

Consider systems of n qudits (with local dim q), such that d = qn
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Complexity
some expectations

It is believed(/expected/conjectured) that the complexity of a simple initial state,
grows (possibly linearly) under the time-evolution by a chaotic Hamiltonian

t ∼ en

t

Cδ(e−iHt |ψ〉)

saturating after an exponential time
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computing the quantum complexity analytically is very hard (especially
for a fixed H)
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Complexity
some expectations

t ∼ en

t

Cδ(e−iHt)

Why?

polynomial/linear growth: early time collisions should be rare; upper
bounds on growth from Hamiltonian simulation algorithms

saturation: counting δ-balls in U(d), doubly exp (∼ (1/δ)2
2n

) ‘distinct’
unitaries, and thus can reach any unitary with a depth t ∼ e2n circuit



Complexity
some expectations

t ∼ en

t

Cδ(eiHt)

To make progress:

→ use complexity theoretic assumptions to make statements about the
complexity of a particular Hamiltonian evolution at exponentially long
times [Aarsonson], [Susskind], [Bohdanowicz, Brandão]

→ focus on ensembles of time-evolutions (RQCs)



Our goal

Consider random quantum circuits, on n qudits of local dimension q,
evolving with staggered layers of 2-site unitaries, each drawn randomly
from a gate set G

t

where evolution to time t is given by Ut = U (t) . . . U (1)

and try to prove the growth of complexity in this model



Our goal

Consider random quantum circuits, on n qudits of local dimension q,
evolving with random nearest-neighbor 2-site unitaries, each drawn
randomly from a gate set G

t

where evolution to time t is given by Ut = U (t) . . . U (1)

and try to prove the growth of complexity in this model



Complexity growth in RQCs

Specifically, it has been conjectured that

Conjecture [Brown, Susskind], [Susskind]

Most local random quantum circuits of depth t have a complexity
that scales linearly in t for an exponentially long time.

This sounds reasonable, but is hard to prove: one needs to show that
collisions between circuits of subexponential size are rare.



Complexity growth in RQCs
(some results)

We expect that complexity grows linearly in time, saturating after an
exponential time

What we can prove for RQCs on n qubits

t

Cδ(RQC) t ∼ e2n t ∼ ec·n

d2
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Complexity growth in RQCs
(some results)

We expect that complexity grows linearly in time, saturating after an
exponential time

What we prove for RQCs on n qudits (large q)

t

Cδ(RQC) t ∼ e2n t ∼ ec·n

d2



Overview

I Define complexity

I Complexity by design

I Complexity of local random quantum circuits

I Complexity saturation and recurrence for RQCs



Unitary complexity

Consider a system of n qudits with local dimension q, where d = qn.

Complexity of a unitary: the minimal size of a circuit, built from
elementary 2-local gates, that approximates the unitary U

We assume the circuits are built from 2-local gates chosen from a
universal gate set G. Let Gr denote the set of all circuits of size r

U ≈

where ∈ G



Unitary complexity

Consider a system of n qudits with local dimension q, where d = qn.

Complexity of a unitary: the minimal size of a circuit, built from
elementary 2-local gates, that approximates the unitary U

We assume the circuits are built from 2-local gates chosen from a
universal gate set G. Let Gr denote the set of all circuits of size r

Complexity of a unitary

We say that a unitary U ∈ U(d) has δ-complexity Cδ(U) = r if and
only if

r = min
{
r′ : ∃V ∈ Gr′ s.t. ‖U − V ‖ ≤ δ

}

(where the distance used is ‖U − V‖� and U = U(ρ)U†)



Complexity from measurements

We can consider an alternative (stronger) definition of the complexity of
a state or unitary, in terms of an optimal distinguishing measurement

Roughly, the strong complexity of U is the minimal circuit required to
implement an ancilla-assisted measurement capable of distinguishing U
from the completely depolarizing channel D

Task is to distinguish the channels with restricted state preparation and
measurements as

maximize
∣∣Tr
(
M
(
(U ⊗ I)|φ〉〈φ| − (D ⊗ I)|φ〉〈φ|

))∣∣
subject to M ∈Mr′ , |φ〉 = V |0〉 , V ∈ Gr

V M

|φ〉



Complexity by design

We are interested in the complexity of random quantum circuits

To make progress we can derive some general statements about
the complexity of unitary k-designs

But first, we need to define the notion of a unitary design



Unitary k-designs

Haar: (unique L/R invariant) measure on the unitary group U(d)

k-fold channel: Φ
(k)
E (O) ≡∑i pi U

⊗k
i (O)U †i

⊗k

exact k-design: Φ
(k)
E (O) = Φ

(k)
Haar(O)

but for general k, few exact constructions are known

Approximate k-design

For ε > 0, an ensemble E is an ε-approximate k-design if the
k-fold channel obeys ∥∥∥Φ

(k)
E − Φ

(k)
Haar

∥∥∥
�
≤ ε

→ designs are powerful
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Unitary k-designs

If an ensemble of unitaries E forms an approximate k-design

the average over E is close to the average over the full unitary group up

to the k-th moment

〈
. . . U . . . U †︸ ︷︷ ︸

k of these

. . .

〉

U(d)

≈
〈
. . . U . . . U †︸ ︷︷ ︸

k of these

. . .

〉

U(d)



Intuition for k-designs
(eschewing rigor)

How random is the time-evolution of a system compared to the full
unitary group U(d)?

Consider an ensemble of time-evolutions at a time t: Et = {Ut}

U(d)

1
•
Ut

when does Et form a k-design?



Complexity by design
an exercise in enumeration

Consider an approximate unitary k-design E = {pi, Ui}

Can we say anything about the complexity of Ui’s?

The structure of a design is sufficiently restrictive, can bound the
complexity of design elements

Can prove that:

Complexity for unitary designs

With high prob, a unitary U drawn from an ε-approx k-design E
has complexity

Cδ(U) & nk



Complexity by design
an exercise in enumeration

Consider an approximate unitary k-design E = {pi, Ui}

Can we say anything about the complexity of Ui’s?

The structure of a design is sufficiently restrictive, can bound the
complexity of design elements

Theorem (Complexity for unitary designs)

With probability ≥ 1 − e−nk, a unitary U ∼ Ek drawn from an
ε-approximate k-design has

Cδ(U) ≥ 1

log n|G|
(
nk log q − log(1 + ε) + k log(1 + δ2)

)



RQCs and randomness

Consider local RQCs on n qudits, with gates drawn randomly from
a universal gate set G

Now we need a powerful result from [Brandão, Harrow, Horodecki]

RQCs form approximate designs

For k ≤
√
d, the set of local random quantum circuits of depth

t forms an ε-approximate unitary k-design if

t ≥ ck11(n+ log(1/ε))

where c is a constant

i.e. RQCs of depth t = O(nk11) form k-designs



Complexity by design

We now combine these two results to say something about the
complexity of local random circuits

With very high probability, a local RQC of depth t, has complexity

Cδ(Ut) & n(t/n)1/11

The k11 has been incrementally improved, the
current best known bounds are t = O(nk5+o(1)),
which implies a t1/5 complexity growth

→ but what we really want is linear growth
t

Cδ(U)
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RQCs and t ∼ k
an appeal for linearity

To get a linear growth in complexity we need a linear growth in
design

complexity ∼ k ∼ t

best known is t = O(nk5), but would need t = O(nk)

A lower bound on the k-design depth for these RQCs is Ω(nk)

Can we prove that RQCs saturate this lower bound? (and are thus
optimal implementations of k-designs)



Design growth in RQCs

Theorem (Design growth at large q) [NHJ]

RQCs on n qudits form ε-approximate k-designs when

t ≥ 4nk + log 1/ε → t = O(nk)

for some q ≥ q0, where q0 depends on the size of the circuit

Theorem (Design growth for q = Ω(k2)) [Haferkamp, NHJ]

RQCs on n qudits with q ≥ 6k2 form ε-approximate k-designs
when

t ≥ 18(2nk log q + log 1/ε) → t = O(nk log k)



Designs from domain walls and gaps

Two approaches to computing the design depth for RQCs:

1) Partition function of a lattice model

Z =
∑
{σ}

≤ ?

2) Spectral gap of a local Hamiltonian

∆(Hn,k) ≥ ?

E

∆



Towards linear complexity growth

This makes some progress on the conjecture for local random circuits
with large local dimension q

t

Cδ(RQC) t ∼ e2n t ∼ ec·n

d2

i.e. complexity is growing linearly in time t



Linear growth from small gaps

For RQCs, the spectral gap enters as [Brown, Viola], [Brandão, Horodecki]

(distance to forming a design) ≤ d2k
(

1− ∆(Hn,k)

n

)t
where Hn,k is a frustration-free Hamiltonian

Hn,k =

n∑
i=1

(
I−

i i+1

⊗k,k )

An exponentially-small, but k-
ind, gap allows us to prove a
linear complexity growth at late
times

(∆(Hn,k) ≥ Ω(e−c·n))

t

Cδ(RQC) t ∼ e2n t ∼ ec·n

e2n



Complexity saturation

How do we prove that complexity has saturated?

Haar random unitaries have maximal complexity, Cδ(U) ≈ d2, but RQCs
only approach Haar when t→∞

At exponential times (t ∼ e5n) RQCs equidistribute

U
r

νRQC(Br(U))

≈ c · r

Vol(c · r)

(more formally, the measure assigned to balls by the ensemble of RQCs
νRQC(Br(U)) ≈ VolHaar(c · r) for all U ∈ U(d))
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Complexity saturation

This allows us to show that

t

Cδ(RQC) t ∼ e2n t ∼ e5n

d2

(can also prove that recurrences happen at doubly-exp times)



Explicit recurrence times

Once we achieve equidistribution, the probability of ‘walking’ to a
particular unitary becomes ≈ that as prescribed by the Haar measure

U(d)

C≤rδ

t

Cδ(RQC)

t ∼ ee
n

e2n



Where do we go from here?

Getting closer and closer to the Brown-Susskind conjecture for RQCs!

I Prove linear designs conjecture → linear complexity growth
(seems hard, but continued progress)

I Forgo designs, look directly at specific moment quantities
(nice ideas in recent work [Haferkamp, 2303.16944])

t

Cδ(RQC)

e2n



Where do we go from here?

• Can prove a linear growth for the exact complexity
[Haferkamp, Faist, Kothakonda, Eisert, Yunger Halpern], [Li]

• Other time-dependent evolutions (Brownian spin systems, Brownian SYK)
[Onorati, Buerschaper, Kliesch, Brown,Werner, Eisert], [Nakata, Hirche, Koashi,Winter], [Jian, Bentsen, Swingle]

• Time-independent Hamiltonian evolution
[Kotowski, Oszmaniec, Horodecki], [work in progress]

• Connections to entropies
[Cotler, NHJ, Ranard]
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Subsystem entropy fluctuations

(a potential avatar of complexity)



Entropy fluctuations
Consider an n qubit system, initially in an unentangled state |ψ〉, which
undergoes some unitary evolution Ut = e−iHt (e.g. by a chaotic H)

A B

|ψ〉
Consider the vN entropy
(S(ρ) = −tr ρ log ρ) of a
subsystem

ρA(t) = trB Ut|ψ〉〈ψ|U†t

we expect the subsystem entropy to go like

t

S(ρA(t))

tth

How often does the subsystem entropy fluctuate?
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Entropy fluctuations

• How rare are entropy fluctuations after thermalization?

• How long must we wait (post-eq) to see an O(1) fluctuation in the
subsystem entropy S(ρA(t))?

For RQCs, we prove ([Cotler, NHJ, Ranard])

t ∼ log(dA) t ∼ en
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time (circuit depth)

Need to wait a doubly-exp long time to see a fluctuation
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Future science

I Can we prove anything about Cδ(e−iHt) for a fixed Hamiltonian?
or for an ensemble of Hamiltonians?

I Can we prove a linear design growth at small q (e.g. some constant
local dimension) for an exponentially long times?

I Improved RQC gaps? would give closer to linear growth and earlier
saturation time

I Connections between (the rarity of) subsystem entropy fluctuations
and complexity growth in many-body systems?

I Study the pseudorandomness properties of other RQCs (e.g. charge
conserving circuits [Khemani, Vishwanath, Huse], [Rakovszky, Pollmann, von Keyserlingk])

I Explore implications of strong definition of complexity (in terms of an

optimal measurement) in holography and for many-body physics?



Thanks!



Entropy fluctuations



Entropy fluctuations

The (informal) theorem statements are

For 1D RQCs on n qubits of depth t, the entropy of the evolved state
on the subsystem ρA(t) obeys

Pr
(
S(ρA(t)) ≤ log(dA)− δ

)
.

{
e−t t ≤ en

e−e
n

t > en

Let Nent
A be the number of times t that a subsystem A satisfies

S(ρA(t)) ≤ log(dA)− δ for all times from t = cth log(dA) up to t = ecrecd,
where cth > 1 and crec < 1

For 1D RQCs on n qubits, and n ≥ Ω(cth log(dA)), the probability of
an entropy fluctuation is bounded as

Pr
(
Nent
A > 0

)
.

1

eδ
1

d
cth
A

(similar statements for the distance to the max mixed state)



Early time fluctuations

Theorem (Fluctuation bound at early times)

Assume A is a contiguous subsystem. For depth t RQCs on a periodic
1D chain of qudits, and for some δ > 0, the entropy of the evolved
state on the subsystem ρA(t) obeys

Pr
(
S(ρA(t)) ≤ log(dA)− δ

)
≤ 1

eδ − 1

(
dA
dB

+ dA

(
2q

q2 + 1

)2(t−1)
)

and the trace distance to the maximally mixed state obeys

Pr
(∥∥ρA(t)− IA/dA

∥∥
1
≥ δ
)
≤ 1

δ2

(
dA
dB

+ dA

(
2q

q2 + 1

)2(t−1)
)
.



Fluctuations for designs

Theorem (Fluctuation bound for approximate designs)

For an approximate unitary 4k-design E , the entropy S(ρA) of
ρA = trB(U |ψ〉〈ψ|U†), where U is drawn from E , obeys

Pr
(
S(ρA) ≤ log(dA)− δ

)
≤ 2

(
k! +

1

dk

)(
9π3

γ2

dA
dB

)k
,

where γ := eδ − 1 − dA
dB

and for δ ≥ dA
dB

. Similarly, the distance

between ρA and the maximally mixed state IA/dA obeys

Pr
(∥∥ρA − IA/dA

∥∥
1
≥ δ
)
≤ 2

(
k! +

1

dk

)(
9π3

η2
dA
dB

)k
,

where η := max{δ2, eδ
2/2 − 1} − dA

dB
and taking δ2 > dA

dB
.



Counting subsystem fluctuations

Let N ent
A (δ) be the number of times t that a subsystem A satisfies

S(ρA(t)) ≤ log(dA)− δ for times cth log(dA) ≤ t ≤ ecrecd, where cth > 1
and crec < 1.

Theorem (Counting fluctuations)

For 1D brickwork RQCs on n qubits, for n ≥ Ω(cth log(dA)) and the
constant crec = γ2/(9π3d2Ae), the probability of an entropy fluctuation
is bounded as

Pr
(
Nent
A (δ) > 0

)
≤ 8

eδ − 1

(
1

dA

) 2
5
cth−1

.

(similar statement for the distance to the max mixed state)



Unitary designs from domain walls



k-designs from stat-mech in RQCs

Using an exact stat-mech mapping, we can show that RQCs form
k-designs in O(nk) depth in the limit of large local dimension

This is now for local random quantum circuits with Haar-random gates

Linear design growth in RQCs [NHJ]

Random quantum circuits on n qudits of local dimension q form ap-
proximate unitary k-designs when the circuit depth is t = O(nk) for
some q > q0, where q0 depends on the size of the circuit.



Random quantum circuits

Consider local RQCs on n qudits of local dimension q, evolved with
staggered layers of 2-site unitaries, each drawn randomly from the Haar
measure on U(q2)

t

where evolution to time t is given by Ut = U (t) . . . U (1)

Study the convergence of random quantum circuits to unitary k-designs,
i.e. depth where we start approximating moments of the unitary group



Our approach

I Focus on 2-norm and analytically compute the frame potential for
random quantum circuits

I Making use of the ideas in [Nahum, Vijay, Haah], [Zhou, Nahum], we can
write the frame potential as a lattice partition function

I We can compute the k = 2 frame potential exactly, but for general
k we must sacrifice some precision

I We’ll see that the decay to Haar-randomness can be understood in
terms of domain walls in the lattice model



Frame potential

The frame potential is a tractable measure of Haar randomness,
defined for an ensemble of unitaries E as [Gross, Audenaert, Eisert], [Scott]

k-th frame potential : F (k)
E =

∫
U,V ∈E

dUdV
∣∣Tr(U †V )

∣∣2k
For any ensemble E , the frame potential is lower bounded as

F (k)
E ≥ F (k)

Haar and F (k)
Haar = k! (for k ≤ d)

with = if and only if E is a k-design

F (k)
E ≥ k!

Related to ε-approximate k-design as∥∥Φ
(k)
E − Φ

(k)
Haar

∥∥2
� ≤ d

2k(F (k)
E −F

(k)
Haar)



Frame potential for RQCs

The goal is to compute the FP for RQCs evolved to time t:

F (k)
RQC =

∫
Ut,Vt∈RQC

dUdV
∣∣Tr(U†t Vt)

∣∣2k
Consider the k-th moments of RQCs, k copies of the circuit and its
conjugate:



Lattice mappings for RQCs

Haar averaging the 2-site unitaries allows us to exactly write the frame
potential as a partition function on a triangular lattice

The result is then that we can write the k-th frame potential as

F (k)
RQC =

∑
{σ}

∏
5

Jσ1
σ2σ3

=
∑
{σ}

with σ ∈ Sk, width ng = bn/2c, depth 2(t− 1), and pbc in time.

The plaquettes are functions of three σ ∈ Sk, written explicitly as

Jσ1
σ2σ3

=

σ1

σ2 σ3

=
∑
τ∈Sk

Wg(σ−11 τ, q2)q`(τ
−1σ2)q`(τ

−1σ3) .



Lattice mappings for RQCs

Haar averaging the 2-site unitaries allows us to exactly write the frame
potential as a partition function on a triangular lattice

The result is then that we can write the k-th frame potential as

F (k)
RQC =

∑
{σ}

∏
5

Jσ1
σ2σ3

=
∑
{σ}

with σ ∈ Sk, width ng = bn/2c, depth 2(t− 1), and pbc in time.

We can show that Jσσσ = 1, and thus the minimal Haar value of the frame
potential comes from the k! ground states of the lattice model

F (k)
RQC = k! + . . .



RQC domain walls

all non-zero contributions to F (k)
RQC are domain walls

(which must wrap the circuit)

e.g. for k = 2 we have

a single domain wall
configuration:

a double domain wall
configuration:



k-designs from domain walls

To compute the k-design time, we simply need to count the domain wall
configurations

F (k)
RQC = k!

(
1 +

∑
1 dw

wt(q, t) +
∑
2 dw

wt(q, t) + . . .

)

→ decay to Haar-randomness from dws



RQC 2-design time

We have the k = 2 frame potential for random circuits

F (2)
RQC ≤ 2

(
1 +

(
2q

q2 + 1

)2(t−1))ng−1

the circuit depth at which we form an ε-approximate 2-design is then

t2 ≥ C
(
2n log q + log n+ log 1/ε

)
with C =

(
log

q2 + 1

2q

)−1
where for q = 2 we have t2 ≈ 6.2n, and at large q we find t2 ≈ 2n

t2 ∼ n+ log 1/ε

as is known [Harrow, Low]

Can actually compute the k = 2 partition function exactly by solving the
problem of p nonintersecting random walks [Fisher], [Huse, Fisher]
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k-designs in RQCs
(a panoply of domain walls)

For general k, we can prove a simple contribution from the ground states
and single domain wall sector, plus higher order contributions

F (k)
RQC ≤ k!

(
1 + (ng − 1)

(
k

2

)(
2(t− 1)

t− 1

)( q

q2 + 1

)2(t−1)
+ . . .

)

Moreover, the multi-domain wall terms are heavily suppressed and higher
order interactions are subleading in 1/q as

∼ 1

q#dw’s

For some q ≥ q0, the single domain wall sector gives the ε-approximate
k-design time:

tk ≥ 2nk + log(1/ε)



k-designs from stat-mech

RQCs form k-designs in O(nk) depth at large q

As the lower bound on the design depth is nk, RQCs are then
optimal implementations of randomness

we showed this in the large q limit, but this limit is likely not necessary

Conjecture (designs at small q)
The single domain wall sector of the lattice partition function dom-

inates the multi-domain wall sectors for higher moments k and any

local dimension q.



Unitary designs from spectral gaps



A retreat to operator norms
[Brown, Viola], [Brandão, Horodecki], [Brandão, Harrow, Horodecki]

Another approach to compute the circuit depth required to form a design∥∥M (k)
E −M

(k)
Haar

∥∥
∞

For depth t RQCs, the operator norm has two nice properties:

i) Amplification:
∥∥M (k)

RQC −M
(k)
Haar

∥∥
∞ =

(∥∥M (k)
layer −M

(k)
Haar

∥∥
∞

)t

ii) Hamiltonian gap∗:
∥∥M (k)

layer −M
(k)
Haar

∥∥
∞ ≤

1√
∆(Hn,k)/4 + 1

where Hn,k =
∑
i Pi,i+1

and Pi,i+1 = I− I⊗
( ∫

dU U⊗k,k
)
i,i+1

⊗ I

E

∆



Knabe bounds on the spectral gap

Hn,k =
∑n
i=1 Pi,i+1 is a sum of projectors, has g.s. energy 0, and is FF

Theorem ([Knabe]). For a 1D translationally-invariant frustration-free
Hamiltonian Hn,k =

∑
i Pi,i+1, the spectral gap obeys

∆(Hn,k) ≥ 2

(
∆(Hn=3,k)− 1

2

)
.

also [Gosset-Mozgunov], [Lemm-Mozgunov]



Rough recap:

Amplification:

t

Reinterpret as spectral gap (+detectability lemma):

∑
i

i i+1

Knabe bound:∑
i

i i+1

+



Knabe bounds on the spectral gap

Hn,k =
∑n
i=1 Pi,i+1 is a sum of projectors, has g.s. energy 0, and is FF

Theorem ([Knabe]). For a 1D translationally-invariant frustration-free
Hamiltonian Hn,k =

∑
i Pi,i+1, the spectral gap obeys

∆(Hn,k) ≥ 2

(
∆(Hn=3,k)− 1

2

)
.

also [Gosset-Mozgunov], [Lemm-Mozgunov]

Can exactly compute the second moment gap

∆(Hn=3,k=2) =
3

5

Moreover, using almost-orthogonality of g.s. can show that for q ≥ 6k2

∆(Hn=3,k) ≥ 3

4



(Almost) Linear designs from spectral gaps

These lower bounds on the n = 3 gap allow us to conclude:

Theorem

RQCs on n qubits form ε-approximate 2-designs when

t ≥ 20(4n log q + log 1/ε)

and RQCs on n qudits with local dim q ≥ 6k2 form
ε-approximate k-designs when

t ≥ 18(2nk log q + log 1/ε) → t = O(nk log k)

More importantly for near-term applications of RQCs: find good
constants from analytically and numerically computing the gaps

Can also improve design depths for non-local RQCs
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Complexity from measurements

We can consider an alternative (stronger) definition of the complexity of
a state or unitary, in terms of an optimal distinguishing measurement

Roughly, the strong complexity of U is the minimal circuit required to
implement an ancilla-assisted measurement capable of distinguishing U
from the completely depolarizing channel D

Task is to distinguish the channels with restricted state preparation and
measurements as

maximize
∣∣Tr
(
M
(
(U ⊗ I)|φ〉〈φ| − (D ⊗ I)|φ〉〈φ|

))∣∣
subject to M ∈Mr′ , |φ〉 = V |0〉 , V ∈ Gr

V M

|φ〉



Complexity from measurements

We can consider an alternative (stronger) definition of the complexity of
a state or unitary, in terms of an optimal distinguishing measurement

Definition (strong δ-unitary complexity)

A unitary U ∈ U(d) has strong δ-complexity of at most r if

β(r, U) ≥ 1− 1
d2 − δ

which we denote as Cδ(U) ≤ r and where the optimal bias to distinguish
the channels with restricted state preparation and measurements is

β(r, U) = maximize
∣∣Tr
(
M
(
(U ⊗ I)|φ〉〈φ| − (D ⊗ I)|φ〉〈φ|

))∣∣
subject to M ∈Mr′ , |φ〉 = V |0〉 , V ∈ Gr′′ , r = r′ + r′′

V M

|φ〉


