Gravitational singularities and Holographic Complexity ${ }^{1}$

Shubho Roy
(Indian Inst. of Technology Hyderabad)

BIRS workshop on "Quantum Information Theory in Quantum Field Theory and Cosmology"

June 9, 2023

[^0]
Introduction

- Holography: Bulk geometry \equiv Boundary State Entanglement structure (Ryu-Takayanagi' 06, Maldacena-Susskind '13 " $E R=E P R^{\prime}$ ", Raamsdonk '10)

Introduction

- Holography: Bulk geometry \equiv Boundary State Entanglement structure (Ryu-Takayanagi' 06, Maldacena-Susskind '13 " $E R=E P R$ ", Raamsdonk '10)
- E.g.: Eternal AdS BH \leftrightarrow thermofield double state in CFT (Maldacena '01, Hartman-Maldacena'13)

Introduction

- Holography: Bulk geometry \equiv Boundary State Entanglement structure (Ryu-Takayanagi' 06, Maldacena-Susskind '13 " $E R=E P R$ ",
Raamsdonk '10)
- E.g.: Eternal AdS BH \leftrightarrow thermofield double state in CFT (Maldacena '01, Hartman-Maldacena'13)

- Recover gravity from boundary state entanglement (Lashkari et. al.' 13, Faulkner et. al. '13, '17,...)

Introduction

- Holography: Bulk geometry \equiv Boundary State Entanglement structure (Ryu-Takayanagi' 06, Maldacena-Susskind '13 " $E R=E P R$ ",
Raamsdonk '10)
- E.g.: Eternal AdS BH \leftrightarrow thermofield double state in CFT (Maldacena '01, Hartman-Maldacena'13)

- Recover gravity from boundary state entanglement (Lashkari et. al.' 13, Faulkner et. al. '13, '17,...)
- Comp. Complexity of CFT state \leftrightarrow Spatial volume in bulk

Introduction

- Holography: Bulk geometry \equiv Boundary State Entanglement structure (Ryu-Takayanagi' 06, Maldacena-Susskind '13 " $E R=E P R$ ",
Raamsdonk '10)
- E.g.: Eternal AdS BH \leftrightarrow thermofield double state in CFT (Maldacena '01, Hartman-Maldacena'13)

- Recover gravity from boundary state entanglement (Lashkari et. al.' 13, Faulkner et. al. '13, '17,...)
- Comp. Complexity of CFT state \leftrightarrow Spatial volume in bulk
- EAdS-BH at late times:

$$
C \sim " E R B \text { volume" } ; \frac{d C}{d t} \sim T_{L} S,
$$

Outline

Outline

- Computational/Quantum Complexity

Outline

- Computational/Quantum Complexity
- Complexity-Volume (CV) and Complexity-Action conjectures (CA)

Outline

- Computational/Quantum Complexity
- Complexity-Volume (CV) and Complexity-Action conjectures (CA)
- Cosmological Singularities in the bulk ala Barbon and Rabinovici (1509.0929)

Outline

- Computational/Quantum Complexity
- Complexity-Volume (CV) and Complexity-Action conjectures (CA)
- Cosmological Singularities in the bulk ala Barbon and Rabinovici (1509.0929)
- CV vs CA results: Universal features of spacelike singularities

Outline

- Computational/Quantum Complexity
- Complexity-Volume (CV) and Complexity-Action conjectures (CA)
- Cosmological Singularities in the bulk ala Barbon and Rabinovici (1509.0929)
- CV vs CA results: Universal features of spacelike singularities
- Timelike naked singularities \& AdS/CFT: Gubser criterion (2303.02752)

Outline

- Computational/Quantum Complexity
- Complexity-Volume (CV) and Complexity-Action conjectures (CA)
- Cosmological Singularities in the bulk ala Barbon and Rabinovici (1509.0929)
- CV vs CA results: Universal features of spacelike singularities
- Timelike naked singularities \& AdS/CFT: Gubser criterion (2303.02752)
- Negative mass SAdS: Complexity criterion

Outline

- Computational/Quantum Complexity
- Complexity-Volume (CV) and Complexity-Action conjectures (CA)
- Cosmological Singularities in the bulk ala Barbon and Rabinovici (1509.0929)
- CV vs CA results: Universal features of spacelike singularities
- Timelike naked singularities \& AdS/CFT: Gubser criterion (2303.02752)
- Negative mass SAdS: Complexity criterion
- Timelike Kasner SAdS

Outline

- Computational/Quantum Complexity
- Complexity-Volume (CV) and Complexity-Action conjectures (CA)
- Cosmological Singularities in the bulk ala Barbon and Rabinovici (1509.0929)
- CV vs CA results: Universal features of spacelike singularities
- Timelike naked singularities \& AdS/CFT: Gubser criterion (2303.02752)
- Negative mass SAdS: Complexity criterion
- Timelike Kasner SAdS
- Naked Singularities in the Einstein-Scalar theory

Outline

- Computational/Quantum Complexity
- Complexity-Volume (CV) and Complexity-Action conjectures (CA)
- Cosmological Singularities in the bulk ala Barbon and Rabinovici (1509.0929)
- CV vs CA results: Universal features of spacelike singularities
- Timelike naked singularities \& AdS/CFT: Gubser criterion (2303.02752)
- Negative mass SAdS: Complexity criterion
- Timelike Kasner SAdS
- Naked Singularities in the Einstein-Scalar theory
- Conclusions and Outlook

Computational Complexity in Quantum systems

Computational Complexity in Quantum systems

- Information theory/ Computer Sc.: Quantifies "difficulty of performing a task"

Computational Complexity in Quantum systems

- Information theory/ Computer Sc.: Quantifies "difficulty of performing a task"
- Ingredients: System, Set of States, Reference state (O), Simple operations (SO)

Computational Complexity in Quantum systems

- Information theory/ Computer Sc.: Quantifies "difficulty of performing a task"
- Ingredients: System, Set of States, Reference state (O), Simple operations (SO)
- Complexity of State A

$$
C_{A}=\text { Minimum } \# \text { SO's needed from } O \text { to } A
$$

Computational Complexity in Quantum systems

- Information theory/ Computer Sc.: Quantifies "difficulty of performing a task"
- Ingredients: System, Set of States, Reference state (O), Simple operations (SO)
- Complexity of State A

$$
C_{A}=\text { Minimum } \# \text { SO's needed from } O \text { to } A
$$

- Classically

$$
C_{\max } \sim S_{\max } \sim N
$$

but,

Computational Complexity in Quantum systems

- Information theory/ Computer Sc.: Quantifies "difficulty of performing a task"
- Ingredients: System, Set of States, Reference state (O), Simple operations (SO)
- Complexity of State A

$$
C_{A}=\text { Minimum } \# \text { SO's needed from } O \text { to } A
$$

- Classically

$$
C_{\max } \sim S_{\max } \sim N
$$

but,

- Quant. mech., $\quad|\psi\rangle=\sum_{1}^{2^{N}} \alpha_{i}|i\rangle$

$$
C_{\max } \sim 2^{N}!
$$

Computational Complexity in Quantum systems

Computational Complexity in Quantum systems

- Time evolution of Complexity

Computational Complexity in Quantum systems

- Time evolution of Complexity

- Entropy saturation $t \sim N^{p}$

Computational Complexity in Quantum systems

- Time evolution of Complexity

- Entropy saturation $t \sim N^{p}$
- Complexity saturation $t \sim \beta e^{N}$

Computational Complexity in Quantum systems

- Time evolution of Complexity

- Entropy saturation $t \sim N^{p}$
- Complexity saturation $t \sim \beta e^{N}$
- Complexity decrease by $t \sim \beta e^{e^{N}}$ (Poincaré recurrences)

Computational Complexity in Quantum systems

- Time evolution of Complexity

- Entropy saturation $t \sim N^{p}$
- Complexity saturation $t \sim \beta e^{N}$
- Complexity decrease by $t \sim \beta e^{e^{N}}$ (Poincaré recurrences)
- Initial Growth Slope: $\quad \frac{d C}{d t} \sim T S$

Holography: Complexity and Volumes: CV

Holography: Complexity and Volumes: CV

Holography: Complexity and Volumes: CV

- Susskind (1402.5674, 1403.5695,..., 1411.0690)

$$
C=\frac{\operatorname{Vol}\left(\Sigma_{\max }\right)}{G_{N} R_{c}}
$$

Holography: Complexity and Volumes: CV

- Susskind (1402.5674, 1403.5695,...,1411.0690)

$$
C=\frac{\operatorname{Vol}\left(\Sigma_{\max }\right)}{G_{N} R_{c}}
$$

- However, $\Sigma_{\text {max }}$ is a maximal surface, repelled away from the singularity

Holography: Complexity and Volumes: CV

- Susskind (1402.5674, 1403.5695,...,1411.0690)

$$
C=\frac{\operatorname{Vol}\left(\Sigma_{\max }\right)}{G_{N} R_{c}}
$$

- However, $\Sigma_{\text {max }}$ is a maximal surface, repelled away from the singularity
- No association b/w singularities and Complexity?

Holography: Complexity and Volumes: CV

- Susskind (1402.5674, 1403.5695,...,1411.0690)

$$
C=\frac{\operatorname{Vol}\left(\Sigma_{\max }\right)}{G_{N} R_{c}}
$$

- However, $\Sigma_{\text {max }}$ is a maximal surface, repelled away from the singularity
- No association b/w singularities and Complexity?
- However, lesson from BH: lack of entanglement \Rightarrow sinoular snacetime (firewalls)

Holography: Complexity and WdW Action: CA

Holography: Complexity and WdW Action: CA

Brown et. al. (1509.07876)

$$
C=\frac{I_{\text {bulk }}(W d W)}{\pi \hbar}
$$

Holography: Complexity and WdW Action: CA

Brown et. al. (1509.07876)

$$
C=\frac{I_{\text {bulk }}(W d W)}{\pi \hbar}
$$

- Universal form, but Complications due to null boundaries of the WdW patch, fixed by Lehner et. al. (1609.00207)

Holography: Complexity and WdW Action: CA

Brown et. al. (1509.07876)

$$
C=\frac{I_{\text {bulk }}(W d W)}{\pi \hbar}
$$

- Universal form, but Complications due to null boundaries of the WdW patch, fixed by Lehner et. al. (1609.00207)
- Eternal BH revisited: WdW patch has a finite contribution from the singularity!

Holography: Complexity and WdW Action: CA

Brown et. al. (1509.07876)

$$
C=\frac{I_{\text {bulk }}(W d W)}{\pi \hbar}
$$

- Universal form, but Complications due to null boundaries of the WdW patch, fixed by Lehner et. al. (1609.00207)
- Eternal BH revisited: WdW patch has a finite contribution from the singularity!
- Still CV and CA matches perfectly!

Cosmological Singularities in the bulk ${ }^{2}$

${ }^{2}$ Barbon and Rabinovici, (1509.0929 [hep-th])
SR. Rabinovici and Boloonesi (1802 02045[hen-thl)

Cosmological Singularities in the bulk ${ }^{2}$

- Generic idea: Time-dependent deformations of CFTs (Deformed H becomes singular at finite time)

[^1]
Cosmological Singularities in the bulk ${ }^{2}$

- Generic idea: Time-dependent deformations of CFTs (Deformed H becomes singular at finite time)
- Preserve UV-completeness: Only allow Marginal and Relevant deformations
${ }^{2}$ Barbon and Rabinovici, (1509.0929 [hep-th])
SR. Rabinovici and Boloonesi (1802 02045[hen-thl)

Cosmological Singularities in the bulk ${ }^{2}$

- Generic idea: Time-dependent deformations of CFTs (Deformed H becomes singular at finite time)
- Preserve UV-completeness: Only allow Marginal and Relevant deformations
- Marginal: Coupling or boundary metric gains time-dependence (Kasner, Topological Crunch)

$$
\begin{aligned}
d s^{2}= & \frac{l^{2}}{z^{2}}\left(d z^{2}-d t^{2}+h_{i j}(t, x) d x^{i} d x^{j}\right), i, j=1, . ., d \\
& h_{i j}^{K}(t, x)=\operatorname{diag}\left(\left(\frac{t}{l}\right)^{2 p_{1}}, \ldots,\left(\frac{t}{l}\right)^{2 p_{d}}\right), \\
& h_{i j}^{T C}(t, x)=l^{2}\left(d \Omega_{d-1}^{2}+\cos ^{2} t d \phi^{2}\right) .
\end{aligned}
$$

${ }^{2}$ Barbon and Rabinovici, (1509.0929 [hep-th])
SR. Rabinovici and Boloonesi (180202045 [hen-thl)

Cosmological Singularities in the bulk ${ }^{2}$

- Generic idea: Time-dependent deformations of CFTs (Deformed H becomes singular at finite time)
- Preserve UV-completeness: Only allow Marginal and Relevant deformations
- Marginal: Coupling or boundary metric gains time-dependence (Kasner, Topological Crunch)

$$
\begin{aligned}
d s^{2}= & \frac{l^{2}}{z^{2}}\left(d z^{2}-d t^{2}+h_{i j}(t, x) d x^{i} d x^{j}\right), i, j=1, . ., d \\
& h_{i j}^{K}(t, x)=\operatorname{diag}\left(\left(\frac{t}{l}\right)^{2 p_{1}}, \ldots,\left(\frac{t}{l}\right)^{2 p_{d}}\right) \\
& h_{i j}^{T C}(t, x)=l^{2}\left(d \Omega_{d-1}^{2}+\cos ^{2} t d \phi^{2}\right) .
\end{aligned}
$$

- Relevant: Time dependent Mass scale, $M(t)=M \sec t$ (dS/Crunch)

$$
d s_{\text {bulk }}^{2}=d \rho^{2}+f^{2}(\rho, M) d s_{d s_{d}}^{2}
$$

${ }^{2}$ Barbon and Rabinovici, (1509.0929 [hep-th])
SR. Rabinovici and Bolognesi (1802 02045[hen-thl)

Cosmological Singularities in the bulk ${ }^{3}$

[^2]
Cosmological Singularities in the bulk ${ }^{3}$

AdS Kasner
Topological Crunch

dS Crunch

[^3]
Complexity Estimates CV

Complexity Estimates CV

- AdS-Kasner:

$$
C(t) \sim N^{2} \Lambda^{d} V_{x} \frac{|t|}{l}+\Lambda^{d-2} N^{2} \frac{V_{x}}{I t}, N^{2} \sim \frac{l^{d}}{G_{N}}
$$

Complexity Estimates CV

- AdS-Kasner:

$$
C(t) \sim N^{2} \Lambda^{d} V_{x} \frac{|t|}{l}+\Lambda^{d-2} N^{2} \frac{V_{x}}{I t}, N^{2} \sim \frac{l^{d}}{G_{N}}
$$

- Topological Crunch:

$$
C_{\infty} \sim N^{2} V_{S^{d}} \Lambda^{d} \cos \left(\frac{t}{I}\right)+N^{2} \frac{V_{S^{d}}}{I^{2}} \Lambda^{d-2} \frac{\sin ^{2} t / l}{\cos t / l}
$$

Complexity Estimates CV

- AdS-Kasner:

$$
C(t) \sim N^{2} \Lambda^{d} V_{x} \frac{|t|}{l}+\Lambda^{d-2} N^{2} \frac{V_{x}}{I t}, N^{2} \sim \frac{l^{d}}{G_{N}}
$$

- Topological Crunch:

$$
C_{\infty} \sim N^{2} V_{S^{d}} \Lambda^{d} \cos \left(\frac{t}{I}\right)+N^{2} \frac{V_{S^{d}}}{I^{2}} \Lambda^{d-2} \frac{\sin ^{2} t / l}{\cos t / l}
$$

- dS/Crunch:

$$
C \sim N^{2} V\left(\Lambda^{d-1}-M(t)^{d-1}\right)+N^{2} I_{-} \Omega_{d-1} r(t)^{d-1}
$$

Complexity Estimates CV

- AdS-Kasner:

$$
C(t) \sim N^{2} \Lambda^{d} V_{x} \frac{|t|}{l}+\Lambda^{d-2} N^{2} \frac{V_{x}}{I t}, N^{2} \sim \frac{l^{d}}{G_{N}}
$$

- Topological Crunch:

$$
C_{\infty} \sim N^{2} V_{S^{d}} \Lambda^{d} \cos \binom{t}{I}+N^{2} \frac{V_{S^{d}}}{I^{2}} \Lambda^{d-2} \frac{\sin ^{2} t / l}{\cos t / l}
$$

- dS/Crunch:

$$
C \sim N^{2} V\left(\Lambda^{d-1}-M(t)^{d-1}\right)+N^{2} I_{-} \Omega_{d-1} r(t)^{d-1}
$$

- Every case: Complexity decreases as we approach the singularity!

Complexity Estimates: CA

Complexity Estimates: CA

- Kasner

$$
\begin{aligned}
& C_{\mathcal{V}} \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t l}+O\left(\Lambda^{d-5}\right) \\
& C_{\mathcal{A}} \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t l}+O\left(\Lambda^{d-5}\right)
\end{aligned}
$$

Complexity Estimates: CA

- Kasner

$$
\begin{aligned}
& C_{V} \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t \mid}+O\left(\Lambda^{d-5}\right) \\
& C_{\mathcal{A}} \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t l}+O\left(\Lambda^{d-5}\right)
\end{aligned}
$$

- Topological Crunch

$$
\begin{gathered}
C_{V} \sim N^{2} \Lambda^{d-1} l^{d} \cos \left(\frac{t}{l}\right)+N^{2} \Lambda^{d-3} l^{d-3} \sin ^{2}\left(\frac{t}{l}\right) \sec \left(\frac{t}{l}\right) \\
C_{\mathcal{A}} \sim N^{2} \Lambda^{d-1} l^{d} \cos \left(\frac{t}{l}\right)+N^{2} \Lambda^{d-3} l^{d-3}\left[\sin ^{2}\left(\frac{t}{l}\right) \sec \left(\frac{t}{l}\right)+. . \cos \left(\frac{t}{l}\right)\right]
\end{gathered}
$$

Complexity Estimates: CA

- Kasner

$$
\begin{aligned}
& C_{V} \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t l}+O\left(\Lambda^{d-5}\right) \\
& C_{\mathcal{A}} \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t l}+O\left(\Lambda^{d-5}\right)
\end{aligned}
$$

- Topological Crunch

$$
\begin{gathered}
C_{\mathcal{V}} \sim N^{2} \Lambda^{d-1} I^{d} \cos \left(\frac{t}{I}\right)+N^{2} \Lambda^{d-3} I^{d-3} \sin ^{2}\left(\frac{t}{I}\right) \sec \left(\frac{t}{I}\right) \\
C_{\mathcal{A}} \sim N^{2} \Lambda^{d-1} I^{d} \cos \left(\frac{t}{I}\right)+N^{2} \Lambda^{d-3} I^{d-3}\left[\sin ^{2}\left(\frac{t}{I}\right) \sec \left(\frac{t}{I}\right)+. . \cos \left(\frac{t}{I}\right)\right]
\end{gathered}
$$

- dS/Crunch

$$
\begin{aligned}
& \frac{d C_{\mathcal{V}}}{d t} \sim\left(\frac{\pi}{2}-t_{*}\right)^{-d}, \\
& \frac{d C_{\mathcal{A}}}{d t} \sim\left(\frac{\pi}{2}-t_{*}\right)^{-d} .
\end{aligned}
$$

Complexity Estimates: CA

- Kasner

$$
\begin{aligned}
& C_{V} \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t l}+O\left(\Lambda^{d-5}\right) \\
& C_{\mathcal{A}} \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t l}+O\left(\Lambda^{d-5}\right)
\end{aligned}
$$

- Topological Crunch

$$
\begin{gathered}
C_{\nu} \sim N^{2} \Lambda^{d-1} l^{d} \cos \left(\frac{t}{l}\right)+N^{2} \Lambda^{d-3} l^{d-3} \sin ^{2}\left(\frac{t}{l}\right) \sec \left(\frac{t}{l}\right) \\
C_{\mathcal{A}} \sim N^{2} \Lambda^{d-1} l^{d} \cos \left(\frac{t}{l}\right)+N^{2} \Lambda^{d-3} l^{d-3}\left[\sin ^{2}\left(\frac{t}{l}\right) \sec \left(\frac{t}{l}\right)+. . \cos \left(\frac{t}{l}\right)\right]
\end{gathered}
$$

- dS/Crunch

$$
\begin{aligned}
& \frac{d C_{\mathcal{V}}}{d t} \sim\left(\frac{\pi}{2}-t_{*}\right)^{-d}, \\
& \frac{d C_{\mathcal{A}}}{d t} \sim\left(\frac{\pi}{2}-t_{*}\right)^{-d} .
\end{aligned}
$$

- dS/Crunch: Subleading terms are also different!

Complexity of Cosmological Crunches: Universal features

Complexity of Cosmological Crunches: Universal

 features- Complexity Monotonically decreases due to loss of dof (CFT volume crunches)!

Complexity of Cosmological Crunches: Universal

 features- Complexity Monotonically decreases due to loss of dof (CFT volume crunches)!
- Time rate of change of complexity contains a UV divergent time-dependent piece for CFT metric being time-dependent

Complexity of Cosmological Crunches: Universal

 features- Complexity Monotonically decreases due to loss of dof (CFT volume crunches)!
- Time rate of change of complexity contains a UV divergent time-dependent piece for CFT metric being time-dependent
- Coefficient of the rate of change determined by the subleading term $(\mathrm{YGH}$ term for $C \propto \mathcal{A})$.

Complexity of Cosmological Singularities:

Takeaway

Complexity of Cosmological Singularities:

Takeaway

- Perhaps two distinct bulk geometric constructions are two different CFT complexities as well

Complexity of Cosmological Singularities:

 Takeaway- Perhaps two distinct bulk geometric constructions are two different CFT complexities as well
- Universal features for decrease of complexity, contrasts w/ local probes (point probes/strings - blue shifting)

Complexity of Cosmological Singularities:

Takeaway

- Perhaps two distinct bulk geometric constructions are two different CFT complexities as well
- Universal features for decrease of complexity, contrasts w/ local probes (point probes/strings - blue shifting)
- Perhaps one can attempt a parallel with the classic BKL work regarding universality

Timelike singularities (2303.02752 [hep-th] w/ J. Ren \& G. Katoch)

Timelike singularities (2303.02752 [hep-th] w/ J.

 Ren \& G. Katoch)- Solutions to effective holographic theories at zero temperature have typically naked timelike singularities

Timelike singularities (2303.02752 [hep-th] w/ J.

 Ren \& G. Katoch)- Solutions to effective holographic theories at zero temperature have typically naked timelike singularities
- Such singularities are generically resolved by lifting them to higher dimensions or eventually by the inclusion of the stringy states.

Timelike singularities (2303.02752 [hep-th] w/ J.

 Ren \& G. Katoch)- Solutions to effective holographic theories at zero temperature have typically naked timelike singularities
- Such singularities are generically resolved by lifting them to higher dimensions or eventually by the inclusion of the stringy states.
- Gubser criterion: Naked singularities allowed in geometries are those which can be obtained as deformations/limits of regular black holes [Gubser '01, Kiritsis et. al. '10,...]

Warm up example: Negative mass SAdS

Warm up example: Negative mass SAdS

This manifestly violates Gubser criterion (CFT dual has no ground state)

Warm up example: Negative mass SAdS

This manifestly violates Gubser criterion (CFT dual has no ground state)

- Action Complexity has UV divergent pieces $\left(\Lambda^{D-2}\right)$, scales as μ / Λ^{D-3}, vanishing contribution from singularity!

Warm up example: Negative mass SAdS

This manifestly violates Gubser criterion (CFT dual has no ground state)

- Action Complexity has UV divergent pieces $\left(\Lambda^{D-2}\right)$, scales as μ / Λ^{D-3}, vanishing contribution from singularity!
- Overall action complexity (also \mathcal{C}_{V}) is less than empty global AdS! (criterion)

Timelike Kasner AdS

Timelike Kasner AdS

- Deformation of planar BH, an exact solution to AdS SUGRA equations (J. Ren: 1603.08004[hep-th])

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\frac{d z^{2}}{f(z)}-f^{\alpha}(z) d t^{2}+f^{\beta}(z) d x^{2}+f^{\gamma}(z) d y^{2}\right), \quad f(z)=1-\frac{z^{3}}{z_{0}^{3}}
$$

Timelike Kasner AdS

- Deformation of planar BH, an exact solution to AdS SUGRA equations (J. Ren: 1603.08004[hep-th])

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\frac{d z^{2}}{f(z)}-f^{\alpha}(z) d t^{2}+f^{\beta}(z) d x^{2}+f^{\gamma}(z) d y^{2}\right), \quad f(z)=1-\frac{z^{3}}{z_{0}^{3}}
$$

$$
\mathcal{C}_{A}=\frac{I^{2}}{16 \pi^{2} G_{N}} \frac{V_{x y}}{\delta^{2}}-\frac{I^{2}}{32 \pi G_{N}} \frac{V_{x y}}{z_{0}^{2}} \frac{(3-\alpha) \Gamma\left(\frac{1}{3}\right) \sec \left(\frac{\pi \alpha}{2}\right)}{\Gamma\left(\frac{5-3 \alpha}{6}\right) \Gamma\left(\frac{\alpha+1}{2}\right)} .
$$

(Singularity contribution negative \& finite)

Timelike Kasner AdS

- Deformation of planar BH, an exact solution to AdS SUGRA equations (J. Ren: 1603.08004[hep-th])

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\frac{d z^{2}}{f(z)}-f^{\alpha}(z) d t^{2}+f^{\beta}(z) d x^{2}+f^{\gamma}(z) d y^{2}\right), \quad f(z)=1-\frac{z^{3}}{z_{0}^{3}}
$$

$$
\mathcal{C}_{A}=\frac{I^{2}}{16 \pi^{2} G_{N}} \frac{V_{x y}}{\delta^{2}}-\frac{I^{2}}{32 \pi G_{N}} \frac{V_{x y}}{z_{0}^{2}} \frac{(3-\alpha) \Gamma\left(\frac{1}{3}\right) \sec \left(\frac{\pi \alpha}{2}\right)}{\Gamma\left(\frac{5-3 \alpha}{6}\right) \Gamma\left(\frac{\alpha+1}{2}\right)} .
$$

(Singularity contribution negative \& finite)

- Action complexity lower than the empty (Poincaré) AdS: in sync with Gubser criterion

Naked Singularities in ES systems

Naked Singularities in ES systems

- Timelike Naked singular solutions in the Einstein-Scalar system (J. Ren: 1910.06344 [hep-th])

$$
d s^{2}=f(r)\left(-d t^{2}+d \mathbf{x}^{2}\right)+\frac{d r^{2}}{f(r)}, \quad f(r)=r^{2}\left(1+\frac{b}{r}\right)^{\frac{2 \delta^{2}}{1+\delta^{2}}}=e^{\delta \phi}
$$

Naked Singularities in ES systems

- Timelike Naked singular solutions in the Einstein-Scalar system (J. Ren: 1910.06344 [hep-th])

$$
d s^{2}=f(r)\left(-d t^{2}+d \mathbf{x}^{2}\right)+\frac{d r^{2}}{f(r)}, \quad f(r)=r^{2}\left(1+\frac{b}{r}\right)^{\frac{2 \delta^{2}}{1+\delta^{2}}}=e^{\delta \phi}
$$

- For $\delta<\sqrt{\frac{1}{3}}$, Gubser criterion is violated, i.e., the singular geometry is not the extremal limit of a finite temperature geometry $(V(\phi)$ bounded from above).

Naked Singularities in ES systems

- Timelike Naked singular solutions in the Einstein-Scalar system (J. Ren: 1910.06344 [hep-th])

$$
d s^{2}=f(r)\left(-d t^{2}+d \mathbf{x}^{2}\right)+\frac{d r^{2}}{f(r)}, \quad f(r)=r^{2}\left(1+\frac{b}{r}\right)^{\frac{2 \delta^{2}}{1+\delta^{2}}}=e^{\delta \phi}
$$

- For $\delta<\sqrt{\frac{1}{3}}$, Gubser criterion is violated, i.e., the singular geometry is not the extremal limit of a finite temperature geometry $(V(\phi)$ bounded from above).

$$
\mathcal{C}_{\mathcal{A}}=\frac{V_{x y}}{8 \pi G_{N}}\left(\frac{\Lambda^{2}}{2 L^{2}}+\frac{\Lambda Q}{\left(\delta^{2}+1\right) L^{2}}+\frac{6 \delta^{2} Q^{\frac{3-\delta^{2}}{\delta^{2}+1}}}{\left(3 \delta^{2}-1\right) L^{2}} \epsilon^{\frac{3 \delta^{2}-1}{\delta^{2}+1}}+O\left(\Lambda^{0}\right)\right)
$$

Naked Singularities in ES systems

- Timelike Naked singular solutions in the Einstein-Scalar system (J. Ren: 1910.06344 [hep-th])

$$
d s^{2}=f(r)\left(-d t^{2}+d \mathbf{x}^{2}\right)+\frac{d r^{2}}{f(r)}, \quad f(r)=r^{2}\left(1+\frac{b}{r}\right)^{\frac{2 \delta^{2}}{1+\delta^{2}}}=e^{\delta \phi}
$$

- For $\delta<\sqrt{\frac{1}{3}}$, Gubser criterion is violated, i.e., the singular geometry is not the extremal limit of a finite temperature geometry $(V(\phi)$ bounded from above).

$$
\mathcal{C}_{\mathcal{A}}=\frac{V_{x y}}{8 \pi G_{N}}\left(\frac{\Lambda^{2}}{2 L^{2}}+\frac{\Lambda Q}{\left(\delta^{2}+1\right) L^{2}}+\frac{6 \delta^{2} Q^{\frac{3-\delta^{2}}{\delta^{2}+1}}}{\left(3 \delta^{2}-1\right) L^{2}} \frac{\frac{3 \delta^{2}-1}{\delta^{2}+1}}{}+O\left(\Lambda^{0}\right)\right)
$$

- Overall \mathcal{C}_{A} is positive and larger than pure AdS for $\delta>1 / \sqrt{3}$. For $\delta<1 / \sqrt{3}, \mathcal{C}_{A}$ is negative and (IR) divergent! In sync Gubser criterion!

Conclusions and Outlook

Conclusions and Outlook

- Timelike Naked singular solutions can be more or less complex than the empty AdS geometry.

Conclusions and Outlook

- Timelike Naked singular solutions can be more or less complex than the empty AdS geometry.
- Action Complexity test for singularities: Having less complexity compared to the empty AdS backgrounds is not allowed in a UV complete QG theory (in sync with Gubser criterion)

Conclusions and Outlook

- Timelike Naked singular solutions can be more or less complex than the empty AdS geometry.
- Action Complexity test for singularities: Having less complexity compared to the empty AdS backgrounds is not allowed in a UV complete QG theory (in sync with Gubser criterion)
- Volume complexity not a reliable tool to probe timelike singularities.

Conclusions and Outlook

- Timelike Naked singular solutions can be more or less complex than the empty AdS geometry.
- Action Complexity test for singularities: Having less complexity compared to the empty AdS backgrounds is not allowed in a UV complete QG theory (in sync with Gubser criterion)
- Volume complexity not a reliable tool to probe timelike singularities.
- Need to conduct a more comprehensive survey of other nakedly timelike singular geometries in future to confirm \mathcal{C}_{A} criterion.

[^0]: ${ }^{1}$ w/ J. Ren (SY-S U.) \& G. Katoch (IITH) (2303.02752 [hep-th])
 w/ E. Rabinovici (Racah) \& S. Bolognesi (Pisa), 1802.02045 [hep-th] \equiv

[^1]: ${ }^{2}$ Barbon and Rabinovici, (1509.0929 [hep-th])
 SR. Rabinovici and Boloonesi (1802 02045[hen-thl)

[^2]: ${ }^{3}$ Barbon and Rabinovici, (1509.0929 [hep-th]) SR, Rabinovici and Bolognesi (1802.02045[hep-th])

[^3]: ${ }^{3}$ Barbon and Rabinovici, (1509.0929 [hep-th]) SR, Rabinovici and Bolognesi (1802.02045[hep-th])

