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First class constraints generate gauge transformations:
For any phase space function f(q, p){

f, ϕi} = δf = gauge transf.

Example: ∇ · E = 0 in Maxwell eqs. is actually a first class constraint:

δAµ =

Aµ(x),
∫

d4y
(
Φ(y)

∂Eν(y)
∂yν

)
︸ ︷︷ ︸
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∂
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∂

∂yν
δ (x− y)

=−
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δνµδ (x− y) = −∂µΦ = δAµ
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Example: E in EM is a Dirac observable!

δEµ =

{
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It turns out that the vacuum GR or GR+matter is a totally constrained system:

H =

∫
d3x

(
NH+ NaDa + λiGi

)
where

• H: Hamiltonian constraint (1st class)

• Da: Diffeomorphism constraint (1st class)

• Gi: Diffeomorphism constraint (1st class)

• N, Na, λi: Lagrange multipliers

• There is no zero Hamiltonian

• H is nothing but a sum of 1st class constraints!
• Generally covariant (diffeomorphism-invariant) system

• time reparametrization invariant
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ḟ = {f,H} =

{
f,
∫

d3y (NH+ NaDa)

}

=

∫
d3y

N {f,H}︸ ︷︷ ︸
δ(H)f

+Na {f,Da}︸ ︷︷ ︸
δ(D)f


︸ ︷︷ ︸

δf=gauge transformation!

For a Dirac observable O, by definition
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The Problem of Time

In canonical GR (even with matter)

• All observables are constant of motion!

• There is no time evolution

• This is carried over to the quantum regime

• This is because t in GR is a pure gauge parameter: t → T(t) yields the same physics
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Built on top of the works by Rovelli [PRD 42, 2638 (1990)], Page & Wootters [PRD 27, 2885 (1983)],
Gambini & Pullin [PRD 79, 041501(R) (2009)]

1. Relational evolution: we don’t have access to t, we measure relations between physical
objects

• Measured quantity Q(t), clock quantity T(t); Evolution of one vs another: Q(T)
• Use Dirac observables parametrized by t, called evolving constants of motion

2. Conditional probability

P
(
Q = Q0

∣∣T = T0
)
=

P (Q = Q0 ∩ T = T0)
P (T = T0)

=

∫∞
−∞ dtTr

[
ρ̂P̂q(t)P̂T0(t)

]
∫∞
−∞ dtTr

[
ρ̂P̂T0(t)

]
=

∫∞
−∞ dtTr

[
P̂q(t)P̂T0(t)ρ̂P̂T0(t)

]
∫∞
−∞ dtTr

[
P̂T0(t)ρ̂

]

• P̂T0(t) projector onto the subspace of eigenstates of T̂ with eigenvalue T0
• P̂q(t) projector onto the subspace of eigenstates of Q̂ with eigenvalue Q0
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• FLRW Universe
ds2 = −dt2 + a2(t)

(
dx21 + dx22 + dx23

)

• Gravity sector canonical variables: c = γȧ and |p| = a2

• Volume of the Universe: V = |p|3/2

• Two scalar matter fields ϕ1, ϕ2 with momenta pϕ1 , pϕ2

• The Hamiltonian (constraint) of the system

C = − 6
γ2

c2
√

|p|︸ ︷︷ ︸
gravity

+
8πG

|p|
3
2

2∑
i=1

p2ϕi︸ ︷︷ ︸
matter

• Algebra

{c, p} =
8πGγ
3

,
{
ϕi, pϕj

}
=δij
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• Volume of the Universe: V = |p|3/2

• Two scalar matter fields ϕ1, ϕ2 with momenta pϕ1 , pϕ2

• The Hamiltonian (constraint) of the system

C = − 6
γ2

c2
√

|p|︸ ︷︷ ︸
gravity

+
8πG

|p|
3
2

2∑
i=1

p2ϕi︸ ︷︷ ︸
matter

• Algebra

{c, p} =
8πGγ
3

,
{
ϕi, pϕj

}
=δij



The Model [R. Gambini, S. Rastgoo, J. Roberts, in preparation]

14/27

• FLRW Universe
ds2 = −dt2 + a2(t)

(
dx21 + dx22 + dx23

)
• Gravity sector canonical variables: c = γȧ and |p| = a2

• Volume of the Universe: V = |p|3/2

• Two scalar matter fields ϕ1, ϕ2 with momenta pϕ1 , pϕ2

• The Hamiltonian (constraint) of the system

C = − 6
γ2

c2
√

|p|︸ ︷︷ ︸
gravity

+
8πG

|p|
3
2

2∑
i=1

p2ϕi︸ ︷︷ ︸
matter

• Algebra

{c, p} =
8πGγ
3

,
{
ϕi, pϕj

}
=δij



The Model [R. Gambini, S. Rastgoo, J. Roberts, in preparation]

14/27

• FLRW Universe
ds2 = −dt2 + a2(t)

(
dx21 + dx22 + dx23

)
• Gravity sector canonical variables: c = γȧ and |p| = a2
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• Algebra

{c, p} =
8πGγ
3

,
{
ϕi, pϕj

}
=δij
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EoM of the system

ċ = {c,NC} = −8πGN
γ

sgn (p)√
|p|

[
c2 +

4πγ2G

|p|2
∑
i

p2ϕi

]
,

ṗ = {p,NC} =
32πGN
γ

c
√

|p|,

ϕ̇i = {ϕi,NC} = 16πGN
pϕi

|p|
3
2

, i = 1, 2,

ṗϕi = {pϕi ,NC} = 0, i = 1, 2.
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ċ = {c,NC} = −8πGN
γ

sgn (p)√
|p|

[
c2 +

4πγ2G

|p|2
∑
i

p2ϕi

]
,
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ċ = {c,NC} = −8πGN
γ

sgn (p)√
|p|

[
c2 +

4πγ2G

|p|2
∑
i

p2ϕi

]
,
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, i = 1, 2,

ṗϕi ={pϕi ,NC} = 0, i = 1, 2.

Remember: O is Dirac observable if {O, C} = 0 so we get two Dirac observables

O1 =pϕ1 , O2 =pϕ2 .

The algebra
{
ϕi, pϕj

}
= δij, so we define the momenta conjugate to Oi as

Π1 =− ϕ1, Π2 =− ϕ2,

so that {
Oi,Πj

}
= δij, i, j = 1, 2.
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Now Oi look like positions and Πi as momenta =⇒ new Dirac observable mimicking Lz

O3 = L3 = O1Π2 − O2Π1
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Now Oi look like positions and Πi as momenta =⇒ new Dirac observable mimicking Lz

O3 = L3 = O1Π2 − O2Π1

Finally, using EoM, we can get

d ln
(
|p|

3
2

)
dϕ2

=
3
γ

cp
pϕ2

⇒ ln
(
|p|

3
2

)
=

3
γ
cp
ϕ2
pϕ2

+ C

since C is a constant, it is a Dirac observable

C = O4= ln (|p|)− 2
γ
cp
ϕ2
pϕ2

= β
√(

O2
1 + O2

2

)Π2

O2



Evolving Constants of Motion
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• Define a global time parameter

t =
ϕ1
pϕ1

• Construct the first evolving constant of motion

E1(t) := pϕ1ϕ2 = O2Π1 − O1Π2 + O1O2t =: T

• Acts as our physical time
• Entirely made from matter

• Construct another evolving constant of motion; acts as evolving observable

E2(t) := pϕ1pϕ2 ln (|p|) = β
√

O2
1 + O2

2 (O2Π1 + O1O2t)

• Acts as the evolving observable
• Made out of gravitational (spacetime) DoF; volume of the universe

• Classical algebra

{E1(t), E2(t)} = β
√

O2
1 + O2

2

(
O1Π1 − O2Π2 + O2

1t
)
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Quantization
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T has discrete spectrum
T̂ΨmT (O1,O2) = mTΨT (O1,O2)

yields an ugly eigenstate

ΨmT,
√

o21+o22
(O1,O2) =

1√
2πℏ

√√√√ sgn (O2)√
o21 + o22

δ

(√
O2
1 + O2

2 −
√

o21 + o22

)
×

exp

[
− i
2ℏ

O2
1t
]
exp

[
± i
ℏ
mT tan

−1
(
O1

O2

)
sgn (O2)

]
working with quantum clock!

• Small o1, o2: eigenvalues of Ô1 and Ô2
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E2 has continuous spectrum

Ê2Ψe2 (O1,O2) = e2Ψe2 (O1,O2)

yields another ugly eigenstate

Ψe2,o2 (O1,O2) =
1√

2πβℏo2
δ (O2 − o2)(
O2
1 + O2

2

) 1
4

exp

− i
2ℏ

O2
1t∓

2e2 tanh−1
(

O1√
O2
1+O2

2

)
βO2






Probability
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Conditional probability of E2 ∈
[
e(1)2 , e(2)2

]
given that T = mT is expressed as

P
(
E2 ∈

[
e(1)2 , e(2)2

] ∣∣T = mT

)
=

∫∞
−∞ dtTr

[
P̂e2(t)P̂mT(t)ρ̂P̂mT(t)

]
∫∞
−∞ dtTr

[
P̂mT(t)ρ̂

]

• Projection operator for Ê2

P̂
e(0)2

(t) =
∫ e(0)2 +∆e2

e(0)2 −∆e2
de2

∫ ∞

−∞
do2 |e2, o2, t⟩ ⟨e2, o2, t|

• Projection operator for T̂

P̂
m(0)

T
(t) =

∫ ∞

−∞
do1

∫ ∞

−∞
do2

∣∣∣∣m(0)
T ,

√
o21 + o22, t

〉〈
m(0)

T ,
√

o21 + o22, t
∣∣∣∣
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Conditional probability of E2 ∈
[
e(1)2 , e(2)2

]
given that T = mT is expressed as

P
(
E2 ∈

[
e(1)2 , e(2)2

] ∣∣T = mT

)
=

∫∞
−∞ dtTr

[
P̂e2(t)P̂mT(t)ρ̂P̂mT(t)

]
∫∞
−∞ dtTr

[
P̂mT(t)ρ̂

]
• Density operator ρ̂ = |ψρ⟩ ⟨ψρ| with

|ψρ⟩ =
∫ ∞

−∞
dO1

∫ ∞

−∞
dO2Θ

(
O1 − o(1)1

)
Θ
(
o(2)1 − O1

)
×

Θ
(
O2 − o(1)2

)
Θ
(
o(2)2 − O2

)
Nρ |O1,O2⟩ ,
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Yields

P
(
E2 ∈

[
e(1)2 , e(2)2

] ∣∣T = mT

)
≈ 16β∆e2∆or

π

((
o(2)r

)2
−
(
o(1)r

)2
)

 o(0)r cos2
(
o(0)θ

)
e(0)2 − mTβo

(0)
r cos2

(
o(0)θ

)
2

×

sin2

∆oθ
ℏ

 e(0)2

βo(0)r cos2
(
o(0)θ

) − mT


where

• o(0)r : central value of Or = O2
1 + O2

2

• oθ : central value of Oθ = tan−1
(

O1
O2

)
• e(0)2 : central value of E2

• ∆X : interval around X

• β: a constant including G
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• Time is an illusive concept in physics: probably an emergent phenomenon

• Absolute time t in unphysical; we never have access to it, only to relation between
physical quantities

• No absolute-time evolution in totally constrained systems (GR+matter)

• On quantum gravity scales, probably time does not exists, it emerges as relations
between quantum observables as an approximation

• We can thus take the conditional probability interpretation and use evolving constants
of motion to formulate a relational time via physical clocks

• This probability seems to agree with what we know of time

• We studied this in the context of cosmology (preliminary) and will extend the study



Conditional Probability
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• Conditional probability (continuous Q, discrete T)

P
(
Q ∈ [q1, q2]

∣∣T = T0
)
=

∫∞
−∞ dtTr

[
P̂q(t)P̂T0(t)ρ̂P̂T0(t)

]
∫∞
−∞ dtTr

[
P̂T0(t)ρ̂

]
• Interpretation of numerator:

• Ensemble of noninteracting systems with two quantum variables Q and T, each to be
measured.

• Each system equipped with a recording device that takes a single snapshot of Q and T at a
random unknown value of the ideal time t.

• Take a large number of such systems, initially all in the same quantum state, wait for a
“long time” and concludes the experiment.

• Recordings taken by the measurement devices are then collected and analyzed all
together.

• Computes how many times n (T = T0,Q ∈ [q1, q2]) each reading with a given value
T = T0, Q ∈ [q1, q2] occurs

• Take each of those values n (T = T0,Q ∈ [q1, q2]) and divides them by the number of
systems in the ensemble; in the limit of infinite systems, a joint probability is given.



Ashtekar formulation
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• Tetrad formulation of gravity action

S =
∫

bulk integral︸ ︷︷ ︸
Hilbert-Palatini

+
1
γ

∫
boundary term︸ ︷︷ ︸
Nieh-Yan term︸ ︷︷ ︸

written in terms of tetrads gab=ηIJeIae
J
b

with γ = Barbero-Immirzi parameter

• Decompose into space+time; Legendre transformation:

• Canonical variables: su(2) Ashtekar connection

Ai
a = Γi

a︸︷︷︸
spin connection

+γ Ki
a︸︷︷︸

extrinsic curvature

• Momenta: inverse triads Eai , where spatial metric is qab = ηijEiaE
j
b
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Cosmology
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• FLRW Universe
ds2 = −dt2 + a2(t)

(
dx21 + dx22 + dx23

)
with a(t) =scale factor

• Aia has only one independent component c = γȧ

• Eia has only one independent component p where |p| = a2

• Volume of the Universe: V = |p|3/2
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• FLRW Universe
ds2 = −dt2 + a2(t)

(
dx21 + dx22 + dx23

)
with a(t) =scale factor

• Aia has only one independent component c = γȧ

• Eia has only one independent component p where |p| = a2

• Volume of the Universe: V = |p|3/2

The Hamiltonian (constraint) of the system

C = − 6
γ2

c2
√

|p|
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