The problem of time, relational observables, and quantum clocks

Saeed Rastgoo

BIRS workshop 23w5092
Quantum Information Theory in Quantum Field Theory and Cosmology
5/June/2023

Table of Contents

What is the Problem of Time?
Constrained systems
Gravity and the problem of time

What is the Problem of Time?

Constrained systems

Obtaining the Hamiltonian: Unconstrained Systems

Lagrangian density $\mathcal{L}(q, \dot{q})$

Obtaining the Hamiltonian: Unconstrained Systems

Lagrangian density $\mathcal{L}(q, \dot{q})$

$$
\mathcal{L}(q, \dot{q})=\frac{1}{2} m \dot{q}^{2}+\frac{1}{2} k q^{2}
$$

Obtaining the Hamiltonian: Unconstrained Systems

Lagrangian density $\mathcal{L}(q, \dot{q})$

$$
\mathcal{L}(q, \dot{q})=\frac{1}{2} m \dot{q}^{2}+\frac{1}{2} k q^{2}
$$

Find momenta:
$p_{i}=\frac{\delta \mathcal{L}}{\delta \dot{q}^{i}}=f(q, \dot{q})$

Obtaining the Hamiltonian: Unconstrained Systems

Lagrangian density $\mathcal{L}(q, \dot{q})$

$$
\mathcal{L}(q, \dot{q})=\frac{1}{2} m \dot{q}^{2}+\frac{1}{2} k q^{2}
$$

Find momenta:
$p_{i}=\frac{\delta \mathcal{L}}{\delta \dot{q}^{\prime}}=f(q, \dot{q})$
Find momenta:
$p=\frac{\partial \mathcal{L}}{\partial \dot{q}}=m \dot{q}$

Obtaining the Hamiltonian: Unconstrained Systems

Lagrangian density $\mathcal{L}(q, \dot{q})$

$$
\mathcal{L}(q, \dot{q})=\frac{1}{2} m \dot{q}^{2}+\frac{1}{2} k q^{2}
$$

Find momenta:
$p_{i}=\frac{\delta \mathcal{L}}{\delta \dot{q}^{i}}=f(q, \dot{q})$
Find momenta:
$p=\frac{\partial \mathcal{L}}{\partial \dot{q}}=m \dot{q}$

Find $\dot{q}^{i}(p, q)$ from above

Obtaining the Hamiltonian: Unconstrained Systems

Lagrangian density $\mathcal{L}(q, \dot{q})$

\Downarrow

Find momenta:
$p_{i}=\frac{\delta \mathcal{L}}{\delta \dot{q}^{i}}=f(q, \dot{q})$
\Downarrow

Find $\dot{q}^{i}(p, q)$ from above

$$
\mathcal{L}(q, \dot{q})=\frac{1}{2} m \dot{q}^{2}+\frac{1}{2} k q^{2}
$$

$$
\Downarrow
$$

Find momenta:
$p=\frac{\partial \mathcal{L}}{\partial \dot{q}}=m \dot{q}$
\Downarrow
Find $\dot{q}^{i}(p, q)$ from above, $\dot{q}=\frac{p}{m}$

Obtaining the Hamiltonian: Unconstrained Systems

Lagrangian density $\mathcal{L}(q, \dot{q})$
\Downarrow
Find momenta:
$p_{i}=\frac{\delta \mathcal{L}}{\delta \dot{q}^{i}}=f(q, \dot{q})$
\Downarrow

Find $\dot{q}^{i}(p, q)$ from above
\Downarrow
Replace in $p_{i} \dot{q}^{i}-\mathcal{L}(q, \dot{q})$ and write the Hamiltonian density $\mathcal{H}(p, q)$

$$
\mathcal{L}(q, \dot{q})=\frac{1}{2} m \dot{q}^{2}+\frac{1}{2} k q^{2}
$$

$$
\Downarrow
$$

Find momenta:
$p=\frac{\partial \mathcal{L}}{\partial \dot{q}}=m \dot{q}$
\Downarrow
Find $\dot{q}^{i}(p, q)$ from above, $\dot{q}=\frac{p}{m}$

Obtaining the Hamiltonian: Unconstrained Systems

Lagrangian density $\mathcal{L}(q, \dot{q})$
\Downarrow
Find momenta:
$p_{i}=\frac{\delta \mathcal{L}}{\delta \dot{q}^{i}}=f(q, \dot{q})$
\Downarrow

Find $\dot{q}^{i}(p, q)$ from above

Replace in $p_{i} \dot{q}^{i}-\mathcal{L}(q, \dot{q})$ and write the Hamiltonian density $\mathcal{H}(p, q)$

$$
\mathcal{L}(q, \dot{q})=\frac{1}{2} m \dot{q}^{2}+\frac{1}{2} k q^{2}
$$

$$
\Downarrow
$$

Find momenta:
$p=\frac{\partial \mathcal{L}}{\partial \dot{q}}=m \dot{q}$

$$
\Downarrow
$$

Find $\dot{q}^{i}(p, q)$ from above, $\dot{q}=\frac{p}{m}$
\Downarrow
Replace in $p_{i} \dot{q}^{i}-\mathcal{L}(q, \dot{q})$ and write the Hamiltonian density $\mathcal{H}(p, q)=\frac{p^{2}}{2 m}-\frac{1}{2} k q^{2}$

Obtaining the Hamiltonian: Unconstrained Systems

Lagrangian density $\mathcal{L}(q, \dot{q})$
\Downarrow
Find momenta:
$p_{i}=\frac{\delta \mathcal{L}}{\delta \dot{q}^{i}}=f(q, \dot{q})$
\Downarrow
Find $\dot{q}^{i}(p, q)$ from above

Replace in $p_{i} \dot{q}^{i}-\mathcal{L}(q, \dot{q})$ and write the Hamiltonian density $\mathcal{H}(p, q)$

Obtaining the Hamiltonian: Constrained Systems

Lagrangian density $\mathcal{L}(q, \dot{q})$
\Downarrow
Find momenta: $p_{i}=\frac{\delta \mathcal{L}}{\delta q^{i}}=f(q, \dot{q})$
This p_{i} does not appear in \mathcal{H}, so
$\phi_{i}=p_{i}-f(q)=0$ is a constraint!
\Downarrow
Find $\dot{q}^{i}(p, q)$ from above
\Downarrow

Replace in $p_{i} \dot{q}^{i}-\mathcal{L}(q, \dot{q})$ and write the Hamiltonian density
$\mathcal{H}(p, q)=p_{i} \dot{q}^{i}-\mathcal{L}(q, \dot{q})+\lambda^{i} \phi_{i}$ with Lagrange multipliers λ^{i}

Obtaining the Hamiltonian: Constrained Systems

Lagrangian density $\mathcal{L}(q, \dot{q})$

$$
\mathcal{L}(q, \dot{q})=\frac{1}{2}\left(\dot{q}^{\prime}\right)^{2}+\dot{q}^{\prime} q^{2}+\frac{1}{2}\left(q^{1}-q^{2}\right)^{2}
$$

Find momenta: $p_{i}=\frac{\delta \mathcal{L}}{\delta q^{i}}=f(q, \dot{q})$
This p_{i} does not appear in \mathcal{H}, so
$\phi_{i}=p_{i}-f(q)=0$ is a constraint!

\Downarrow

Find $\dot{q}^{i}(p, q)$ from above
\Downarrow

Replace in $p_{i} \dot{q}^{\dot{i}}-\mathcal{L}(q, \dot{q})$ and write the Hamiltonian density $\mathcal{H}(p, q)=p_{i} \dot{q}^{i}-\mathcal{L}(q, \dot{q})+\lambda^{i} \phi_{i}$ with Lagrange multipliers λ^{i}

Obtaining the Hamiltonian: Constrained Systems

Lagrangian density $\mathcal{L}(q, \dot{q})$ \Downarrow

Find momenta: $p_{i}=\frac{\delta \mathcal{L}}{\delta q^{i}}=f(q, \dot{q})$ This p_{i} does not appear in \mathcal{H}, so $\phi_{i}=p_{i}-f(q)=0$ is a constraint!
$\mathcal{L}(q, \dot{q})=\frac{1}{2}\left(\dot{q}^{\prime}\right)^{2}+\dot{q}^{\prime} q^{2}+\frac{1}{2}\left(q^{\prime}-q^{2}\right)^{2}$
\Downarrow
Find momenta:
$p_{1}=q^{1}+q^{2}$
$p_{2}=0 \Rightarrow \phi=p_{2}=0$ is a constraint!

Find $\dot{q}^{i}(p, q)$ from above
\Downarrow

Replace in $p_{i} \dot{q}^{i}-\mathcal{L}(q, \dot{q})$ and write the Hamiltonian density $\mathcal{H}(p, q)=p_{i} \dot{q}^{i}-\mathcal{L}(q, \dot{q})+\lambda^{i} \phi_{i}$ with Lagrange multipliers λ^{i}

Obtaining the Hamiltonian: Constrained Systems

Lagrangian density $\mathcal{L}(q, \dot{q})$
\Downarrow
Find momenta: $p_{i}=\frac{\delta \mathcal{L}}{\delta q^{i}}=f(q, \dot{q})$ This p_{i} does not appear in \mathcal{H}, so
$\phi_{i}=p_{i}-f(q)=0$ is a constraint!

$$
\Downarrow
$$

Find $\dot{q}^{i}(p, q)$ from above \Downarrow

Replace in $p_{i} \dot{q}^{\dot{i}}-\mathcal{L}(q, \dot{q})$ and write the Hamiltonian density $\mathcal{H}(p, q)=p_{i} \dot{q}^{i}-\mathcal{L}(q, \dot{q})+\lambda^{i} \phi_{i}$ with Lagrange multipliers λ^{i}

$$
\mathcal{L}(q, \dot{q})=\frac{1}{2}\left(\dot{q}^{1}\right)^{2}+\dot{q}^{\prime} q^{2}+\frac{1}{2}\left(q^{1}-q^{2}\right)^{2}
$$

Find momenta:
$p_{1}=q^{1}+q^{2}$
$p_{2}=0 \Rightarrow \phi=p_{2}=0$ is a constraint!
\Downarrow
Find $\dot{q}^{i}(p, q)$ from above

Obtaining the Hamiltonian: Constrained Systems

Lagrangian density $\mathcal{L}(q, \dot{q})$

\Downarrow

Find momenta: $p_{i}=\frac{\delta \mathcal{L}}{\delta q^{i}}=f(q, \dot{q})$ This p_{i} does not appear in \mathcal{H}, so $\phi_{i}=p_{i}-f(q)=0$ is a constraint!

Find $\dot{q}^{i}(p, q)$ from above

Replace in $p_{i} \dot{q}-\mathcal{L}(q, \dot{q})$ and write the Hamiltonian density $\mathcal{H}(p, q)=p_{i} \dot{q}^{i}-\mathcal{L}(q, \dot{q})+\lambda^{i} \phi_{i}$ with Lagrange multipliers λ^{i}

$$
\mathcal{L}(q, \dot{q})=\frac{1}{2}\left(\dot{q}^{1}\right)^{2}+\dot{q}^{1} q^{2}+\frac{1}{2}\left(q^{1}-q^{2}\right)^{2}
$$

Find momenta:
$p_{\mathrm{I}}=\dot{q}^{1}+q^{2}$
$p_{2}=0 \Rightarrow \phi=p_{2}=0$ is a constraint!
\Downarrow
Find $\dot{q}^{i}(p, q)$ from above
\Downarrow

Replace in $p_{i} \dot{q}^{i}-\mathcal{L}(q, \dot{q})$ and write the Hamiltonian density with Lagrange multipliers λ^{i} $\mathcal{H}=\frac{1}{2} p_{1}^{2}-\frac{1}{2}\left(q^{1}\right)^{2}-q^{2} p_{1}+q^{1} q^{2}+\lambda p_{2}$

Further Constraints

Constraints should be preserved during evolution

$$
\dot{\phi}^{i}=\left\{\phi^{i}, \mathcal{H}\right\}=0 \Rightarrow\left\{\begin{array}{l}
\text { determining } \lambda^{i} \\
\text { new constraints } \chi^{j}=\left\{\phi^{i}, \mathcal{H}\right\}=0
\end{array}\right.
$$

and so on ...

Further Constraints

Constraints should be preserved during evolution

$$
\dot{\phi}^{i}=\left\{\phi^{i}, \mathcal{H}\right\}=0 \Rightarrow\left\{\begin{array}{l}
\text { determining } \lambda^{i} \\
\text { new constraints } \chi^{j}=\left\{\phi^{i}, \mathcal{H}\right\}=0
\end{array}\right.
$$

and so on ...
In our example

$$
\dot{p}_{2}=\left\{p_{2}, \frac{1}{2} p_{1}^{2}-\frac{1}{2}\left(q^{\prime}\right)^{2}-q^{2} p_{1}+q^{1} q^{2}+\lambda p_{2}\right\}=-p_{1}+q^{1}
$$

so we get a new constraint

$$
\chi=-p_{1}+q^{1}=0
$$

and again

$$
\dot{\chi}=0 \Rightarrow \text { no new constraint }
$$

and the full Hamiltonian

$$
\mathcal{H}=\underbrace{\frac{1}{2} p_{1}^{2}-\frac{1}{2}\left(q^{\prime}\right)^{2}-q^{2} p_{1}+q^{\prime} q^{2}}_{\mathcal{H}_{0} \text { Zero Hamiltonian }} \underbrace{+\lambda p_{2}+\bar{\lambda}\left(-p_{1}+q^{\prime}\right)}_{\text {Constraint }}
$$

Further Constraints

Constraints should be preserved during evolution

$$
\dot{\phi}^{i}=\left\{\phi^{i}, \mathcal{H}\right\}=0 \Rightarrow\left\{\begin{array}{l}
\text { determining } \lambda^{i} \\
\text { new constrain }
\end{array}\right.
$$

and so on ...

Constraints and Gauge Transformations

First class constraint: If a constraint ϕ^{i} commutes with all other constraints

$$
\left\{\phi^{i}, \phi^{j}\right\}=0, \forall \phi^{j}
$$

Constraints and Gauge Transformations

First class constraint: If a constraint ϕ^{i} commutes with all other constraints

$$
\left\{\phi^{i}, \phi^{j}\right\}=0, \forall \phi^{j}
$$

First class constraints generate gauge transformations:
For any phase space function $f(q, p)$

$$
\left\{f, \phi^{i}\right\}=\delta^{(i)} f=\text { gauge transformation due to } \phi^{i}
$$

Constraints and Gauge Transformations

First class constraints generate gauge transformations:
For any phase space function $f(q, p)$

$$
\left\{f, \phi^{i}\right\}=\delta f=\text { gauge transf. }
$$

Constraints and Gauge Transformations

First class constraints generate gauge transformations:

For any phase space function $f(q, p)$

$$
\left\{f, \phi^{i}\right\}=\delta f=\text { gauge transf. }
$$

Example: $\nabla \cdot \mathbf{E}=0$ in Maxwell eqs. is actually a first class constraint:

$$
\begin{aligned}
\delta A_{\mu}=\{A_{\mu}(x), \underbrace{\int d^{4} y\left(\Phi(y) \frac{\partial E^{\nu}(y)}{\partial y^{\nu}}\right)}_{\text {smearing with } \Phi}\} & =\int d^{4} y \Phi(y) \frac{\partial}{\partial y^{\nu}}\left\{A_{\mu}(x), E^{\nu}(y)\right\} \\
& =\int d^{4} y \Phi(y) \delta_{\mu}^{\nu} \frac{\partial}{\partial y^{\nu}} \delta(x-y) \\
& =-\int d^{4} y \frac{\partial \Phi(y)}{\partial y^{\nu}} \delta_{\mu}^{\nu} \delta(x-y)=-\partial_{\mu} \Phi=\delta A_{\mu}
\end{aligned}
$$

and thus under gauge transformation generated by $\nabla \cdot \mathbf{E}=0$, we get

$$
A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \Phi
$$

Dirac Observables

(Dirac) Observable: a function $O(q, p)$ which is invariant under gauge transformations

$$
\left\{O, \phi^{i}\right\}=\delta^{(i)} O=0
$$

Dirac Observables

(Dirac) Observable: a function $O(q, p)$ which is invariant under gauge transformations

$$
\left\{0, \phi^{i}\right\}=\delta^{(i)} O=0
$$

Example: E in EM is a Dirac observable!

$$
\begin{aligned}
\delta E^{\mu}=\left\{E^{\mu}(x), \int d^{4} y\left(\Phi(y) \frac{\partial E^{\nu}(y)}{\partial y^{\nu}}\right)\right\} & =\int d^{4} y \Phi(y) \frac{\partial}{\partial y^{\nu}}\left\{E^{\mu}(x), E^{\nu}(y)\right\} \\
& =0
\end{aligned}
$$

What is the Problem of Time?

Gravity and the problem of time

GR Hamiltonian

It turns out that the vacuum GR or GR+matter is a totally constrained system:

$$
H=\int d^{3} x\left(N \mathcal{H}+N^{a} \mathcal{D}_{a}+\lambda^{i} \mathcal{G}_{i}\right)
$$

where

- H: Hamiltonian constraint (Ist class)
- \mathcal{D}_{a} : Diffeomorphism constraint (Ist class)
- \mathcal{G}_{i} : Diffeomorphism constraint (Ist class)
- N, N^{a}, λ^{i} : Lagrange multipliers
- There is no zero Hamiltonian
- H is nothing but a sum of Ist class constraints!
- Generally covariant (diffeomorphism-invariant) system
- time reparametrization invariant

Time Evolution in GR: Pure Gauge

For any function f, time evolution in GR is

$$
\begin{aligned}
\dot{f}=\{f, H\} & =\left\{f, \int d^{3} y\left(N \mathcal{H}+N^{a} \mathcal{D}_{a}\right)\right\} \\
& =\underbrace{\int d^{3} y(N \underbrace{\{f, \mathcal{H}\}}_{\delta^{(\mathcal{H}} f}+N^{a} \underbrace{\left\{f, \mathcal{D}_{a}\right\}}_{\delta(\mathcal{D}) f}}_{\delta f=\text { gauge transformation! }})
\end{aligned}
$$

Time Evolution in GR: Pure Gauge

For any function f, time evolution in GR is

$$
\begin{aligned}
\dot{f}=\{f, H\} & =\left\{f, \int d^{3} y\left(N \mathcal{H}+N^{a} \mathcal{D}_{a}\right)\right\} \\
& =\underbrace{\int d^{3} y(N \underbrace{\{f, \mathcal{H}\}}_{\delta^{(\mathcal{H})} f}+N^{a} \underbrace{\left\{f, \mathcal{D}_{a}\right\}}_{\delta^{(\mathcal{D})} f})}_{\delta f=\text { gauge transformation! }}
\end{aligned}
$$

For a Dirac observable 0 , by definition

$$
\dot{O}=\{O, H\}=\delta O=0
$$

Time Evolution in GR: Pure Gauge

The Problem of Time

In canonical GR (even with matter)

- All observables are constant of motion!
- There is no time evolution
- This is carried over to the quantum regime
- This is because t in GR is a pure gauge parameter: $t \rightarrow T(t)$ yields the same physics

For a Dirac observable 0 , by definition

$$
\dot{O}=\{O, H\}=\delta O=0
$$

Table of Contents

What is the Problem of Time?

Constrained systems

Gravity and the problem of time

Resolving the Problem of Time

General Idea

Built on top of the works by Rovelli [PRD 42, 2638 (1990)], Page \& Wootters [PRD 27, 2885 (I983)], Gambini \& Pullin [PRD 79, 04।50।(R) (2009)]

General Idea

Built on top of the works by Rovelli [PRD 42, 2638 (1990)], Page \& Wootters [PRD 27, 2885 (I983)], Gambini \& Pullin [PRD 79, 04I50।(R) (2009)]
I. Relational evolution: we don't have access to t, we measure relations between physical objects

General Idea

Built on top of the works by Rovelli [PRD 42, 2638 (1990)], Page \& Wootters [PRD 27, 2885 (I983)], Gambini \& Pullin [PRD 79, 04I50। (R) (2009)]
I. Relational evolution: we don't have access to t, we measure relations between physical objects

- Measured quantity $Q(t)$, clock quantity $T(t)$; Evolution of one vs another: $Q(T)$

General Idea

Built on top of the works by Rovelli [PRD 42, 2638 (1990)], Page \& Wootters [PRD 27, 2885 (I983)], Gambini \& Pullin [PRD 79, 04I50।(R) (2009)]
I. Relational evolution: we don't have access to t, we measure relations between physical objects

- Measured quantity $Q(t)$, clock quantity $T(t)$; Evolution of one vs another: $Q(T)$
- Use Dirac observables parametrized by t, called evolving constants of motion

General Idea

Built on top of the works by Rovelli [PRD 42, 2638 (1990)], Page \& Wootters [PRD 27, 2885 (I983)], Gambini \& Pullin [PRD 79, 04।50।(R) (2009)]
I. Relational evolution: we don't have access to t, we measure relations between physical objects

- Measured quantity $Q(t)$, clock quantity $T(t)$; Evolution of one vs another: $Q(T)$
- Use Dirac observables parametrized by t, called evolving constants of motion

2. Conditional probability

$$
\begin{aligned}
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{P\left(Q=Q_{0} \cap T=T_{0}\right)}{P\left(T=T_{0}\right)} & =\frac{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{q}(t) \hat{\mathcal{P}}_{T_{0}}(t)\right]}{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{T_{0}}(t)\right]} \\
& =\frac{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{q}(t) \hat{\mathcal{P}}_{T_{0}}(t) \hat{\rho} \hat{\mathcal{P}}_{T_{0}}(t)\right]}{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{T_{0}}(t) \hat{\rho}\right]}
\end{aligned}
$$

- $\hat{\mathcal{P}}_{T_{0}}(t)$ projector onto the subspace of eigenstates of \hat{T} with eigenvalue T_{0}
- $\hat{\mathcal{P}}_{q}(t)$ projector onto the subspace of eigenstates of \hat{Q} with eigenvalue Q_{0}

The Model [R. Gambini, S. Rastgoo, J. Roberts, in preparation]

- FLRW Universe

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

The Model [R. Gambini, S. Rastgoo, J. Roberts, in preparation]

- FLRW Universe

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

- Gravity sector canonical variables: $c=\gamma \dot{a}$ and $|p|=a^{2}$

The Model [R. Gambini, S. Rastgoo, J. Roberts, in preparation]

- FLRW Universe

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

- Gravity sector canonical variables: $c=\gamma \dot{a}$ and $|p|=a^{2}$
- Volume of the Universe: $V=|p|^{3 / 2}$

The Model [R. Gambini, S. Rastgoo, J. Roberts, in preparation]

- FLRW Universe

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

- Gravity sector canonical variables: $c=\gamma \dot{a}$ and $|p|=a^{2}$
- Volume of the Universe: $V=|p|^{3 / 2}$
- Two scalar matter fields ϕ_{1}, ϕ_{2} with momenta $p_{\phi_{1}}, p_{\phi_{2}}$

The Model [R. Gambini, S. Rastgoo, J. Roberts, in preparation]

- FLRW Universe

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

- Gravity sector canonical variables: $c=\gamma \dot{a}$ and $|p|=a^{2}$
- Volume of the Universe: $V=|p|^{3 / 2}$
- Two scalar matter fields ϕ_{1}, ϕ_{2} with momenta $p_{\phi_{1}}, p_{\phi_{2}}$
- The Hamiltonian (constraint) of the system

$$
\mathcal{C}=\underbrace{-\frac{6}{\gamma^{2}} c^{2} \sqrt{|p|}}_{\text {gravity }}+\underbrace{\frac{8 \pi G}{|p|^{\frac{3}{2}} \sum_{i=1}^{2} p_{\phi_{i}}^{2}}}_{\text {matter }}
$$

The Model [R. Gambini, S. Rastgoo, J. Roberts, in preparation]

- FLRW Universe

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

- Gravity sector canonical variables: $c=\gamma \dot{a}$ and $|p|=a^{2}$
- Volume of the Universe: $V=|p|^{3 / 2}$
- Two scalar matter fields ϕ_{1}, ϕ_{2} with momenta $p_{\phi_{1}}, p_{\phi_{2}}$
- The Hamiltonian (constraint) of the system

$$
\mathcal{C}=\underbrace{-\frac{6}{\gamma^{2}} c^{2} \sqrt{|p|}}_{\text {gravity }}+\underbrace{\frac{8 \pi G}{|p|^{\frac{3}{2}} \sum_{i=1}^{2} p_{\phi_{i}}^{2}}}_{\text {matter }}
$$

- Algebra

$$
\{c, p\}=\frac{8 \pi G \gamma}{3}, \quad\left\{\phi_{i}, p_{\phi_{j}}\right\}=\delta_{i j}
$$

Dirac Observables

EoM of the system

$$
\begin{aligned}
\dot{c} & =\{c, N C\}=-\frac{8 \pi G N}{\gamma} \frac{\operatorname{sgn}(p)}{\sqrt{|p|}}\left[c^{2}+\frac{4 \pi \gamma^{2} G}{|p|^{2}} \sum_{i} p_{\phi_{i}}^{2}\right], \\
\dot{p} & =\{p, N C\}=\frac{32 \pi G N}{\gamma} c \sqrt{|p|}, \\
\dot{\phi}_{i} & =\left\{\phi_{i}, N C\right\}=16 \pi G N \frac{p_{\phi_{i}}}{|p|^{\frac{3}{2}}}, \quad i=1,2, \\
\dot{p}_{\phi_{i}} & =\left\{p_{\phi_{i}}, N C\right\}=0, \quad i=1,2 .
\end{aligned}
$$

Dirac Observables

EoM of the system

$$
\begin{aligned}
\dot{c} & =\{c, N C\}=-\frac{8 \pi G N}{\gamma} \frac{\operatorname{sgn}(p)}{\sqrt{|p|}}\left[c^{2}+\frac{4 \pi \gamma^{2} G}{|p|^{2}} \sum_{i} p_{\phi_{i}}^{2}\right], \\
\dot{p} & =\{p, N C\}=\frac{32 \pi G N}{\gamma} c \sqrt{|p|}, \\
\dot{\phi}_{i} & =\left\{\phi_{i}, N C\right\}=16 \pi G N \frac{p_{\phi_{i}}}{|p|^{\frac{3}{2}}}, \quad i=1,2, \\
\dot{p}_{\phi_{i}} & =\left\{p_{\phi_{i}}, N C\right\}=0, \quad i=1,2 .
\end{aligned}
$$

Remember: O is Dirac observable if $\{\mathrm{O}, \mathcal{C}\}=0$ so we get two Dirac observables

$$
O_{1}=p_{\phi_{1}}, \quad O_{2}=p_{\phi_{2}}
$$

Dirac Observables

EoM of the system

$$
\begin{aligned}
\dot{c} & =\{c, N C\}=-\frac{8 \pi G N}{\gamma} \frac{\operatorname{sgn}(p)}{\sqrt{|p|}}\left[c^{2}+\frac{4 \pi \gamma^{2} G}{|p|^{2}} \sum_{i} p_{\phi_{i}}^{2}\right], \\
\dot{p} & =\{p, N C\}=\frac{32 \pi G N}{\gamma} c \sqrt{|p|}, \\
\dot{\phi}_{i} & =\left\{\phi_{i}, N C\right\}=16 \pi G N \frac{p_{\phi_{i}}}{|p|^{\frac{3}{2}}}, \quad i=1,2, \\
\dot{p}_{\phi_{i}} & =\left\{p_{\phi_{i}}, N C\right\}=0, \quad i=1,2 .
\end{aligned}
$$

Remember: O is Dirac observable if $\{\mathrm{O}, \mathcal{C}\}=0$ so we get two Dirac observables

$$
O_{1}=p_{\phi_{1}}, \quad O_{2}=p_{\phi_{2}}
$$

The algebra $\left\{\phi_{i}, \phi_{\phi_{j}}\right\}=\delta_{i j}$, so we define the momenta conjugate to O_{i} as

$$
\Pi_{1}=-\phi_{1}, \quad \Pi_{2}=-\phi_{2},
$$

so that

$$
\left\{O_{i}, \Pi_{j}\right\}=\delta_{i j}, \quad i, j=1,2
$$

Dirac Observables

Now O_{i} look like positions and Π_{i} as momenta \Longrightarrow new Dirac observable mimicking L_{z}

$$
O_{3}=L_{3}=O_{1} \Pi_{2}-O_{2} \Pi_{1}
$$

Dirac Observables

Now O_{i} look like positions and Π_{i} as momenta \Longrightarrow new Dirac observable mimicking L_{z}

$$
O_{3}=L_{3}=O_{1} \Pi_{2}-O_{2} \Pi_{1}
$$

Finally, using EoM, we can get

$$
\frac{d \ln \left(|p|^{\frac{3}{2}}\right)}{d \phi_{2}}=\frac{3}{\gamma} \frac{c p}{p_{\phi_{2}}} \Rightarrow \ln \left(|p|^{\frac{3}{2}}\right)=\frac{3}{\gamma} c p \frac{\phi_{2}}{p_{\phi_{2}}}+C
$$

since C is a constant, it is a Dirac observable

$$
C=O_{4}=\ln (|p|)-\frac{2}{\gamma} c p \frac{\phi_{2}}{p_{\phi_{2}}}=\beta \sqrt{\left(O_{1}^{2}+O_{2}^{2}\right)} \frac{\Pi_{2}}{O_{2}}
$$

Evolving Constants of Motion

- Define a global time parameter

$$
t=\frac{\phi_{\mathrm{I}}}{p_{\phi_{1}}}
$$

Evolving Constants of Motion

- Define a global time parameter

$$
t=\frac{\phi_{\mathrm{I}}}{p_{\phi_{1}}}
$$

- Construct the first evolving constant of motion

$$
E_{1}(t):=p_{\phi_{1}} \phi_{2}=O_{2} \Pi_{1}-O_{1} \Pi_{2}+O_{1} O_{2} t=: T
$$

Evolving Constants of Motion

- Define a global time parameter

$$
t=\frac{\phi_{\mathrm{I}}}{p_{\phi_{1}}}
$$

- Construct the first evolving constant of motion

$$
E_{1}(t):=p_{\phi_{1}} \phi_{2}=O_{2} \Pi_{1}-O_{1} \Pi_{2}+O_{1} O_{2} t=: T
$$

- Acts as our physical time

Evolving Constants of Motion

- Define a global time parameter

$$
t=\frac{\phi_{\mathrm{I}}}{p_{\phi_{1}}}
$$

- Construct the first evolving constant of motion

$$
E_{1}(t):=p_{\phi_{1}} \phi_{2}=O_{2} \Pi_{1}-O_{1} \Pi_{2}+O_{1} O_{2} t=: T
$$

- Acts as our physical time
- Entirely made from matter

Evolving Constants of Motion

- Define a global time parameter

$$
t=\frac{\phi_{\mathrm{I}}}{p_{\phi_{1}}}
$$

- Construct the first evolving constant of motion

$$
E_{1}(t):=p_{\phi_{1}} \phi_{2}=O_{2} \Pi_{1}-O_{1} \Pi_{2}+O_{1} O_{2} t=: T
$$

- Acts as our physical time
- Entirely made from matter
- Construct another evolving constant of motion; acts as evolving observable

$$
E_{2}(t):=p_{\phi_{1}} p_{\phi_{2}} \ln (|p|)=\beta \sqrt{O_{1}^{2}+O_{2}^{2}}\left(O_{2} \Pi_{1}+O_{1} O_{2} t\right)
$$

Evolving Constants of Motion

- Define a global time parameter

$$
t=\frac{\phi_{\mathrm{I}}}{p_{\phi_{1}}}
$$

- Construct the first evolving constant of motion

$$
E_{1}(t):=p_{\phi_{1}} \phi_{2}=O_{2} \Pi_{1}-O_{1} \Pi_{2}+O_{1} O_{2} t=: T
$$

- Acts as our physical time
- Entirely made from matter
- Construct another evolving constant of motion; acts as evolving observable

$$
E_{2}(t):=p_{\phi_{1}} p_{\phi_{2}} \ln (|p|)=\beta \sqrt{O_{1}^{2}+O_{2}^{2}}\left(O_{2} \Pi_{1}+O_{1} O_{2} t\right)
$$

- Acts as the evolving observable

Evolving Constants of Motion

- Define a global time parameter

$$
t=\frac{\phi_{\mathrm{I}}}{p_{\phi_{1}}}
$$

- Construct the first evolving constant of motion

$$
E_{1}(t):=p_{\phi_{1}} \phi_{2}=O_{2} \Pi_{1}-O_{1} \Pi_{2}+O_{1} O_{2} t=: T
$$

- Acts as our physical time
- Entirely made from matter
- Construct another evolving constant of motion; acts as evolving observable

$$
E_{2}(t):=p_{\phi_{1}} p_{\phi_{2}} \ln (|p|)=\beta \sqrt{O_{1}^{2}+O_{2}^{2}}\left(O_{2} \Pi_{1}+O_{1} O_{2} t\right)
$$

- Acts as the evolving observable
- Made out of gravitational (spacetime) DoF; volume of the universe

Evolving Constants of Motion

- Define a global time parameter

$$
t=\frac{\phi_{\mathrm{I}}}{p_{\phi_{\mathrm{l}}}}
$$

- Construct the first evolving constant of motion

$$
E_{1}(t):=p_{\phi_{1}} \phi_{2}=O_{2} \Pi_{1}-O_{1} \Pi_{2}+O_{1} O_{2} t=: T
$$

- Acts as our physical time
- Entirely made from matter
- Construct another evolving constant of motion; acts as evolving observable

$$
E_{2}(t):=p_{\phi_{1}} p_{\phi_{2}} \ln (|p|)=\beta \sqrt{O_{1}^{2}+O_{2}^{2}}\left(O_{2} \Pi_{1}+O_{1} O_{2} t\right)
$$

- Acts as the evolving observable
- Made out of gravitational (spacetime) DoF; volume of the universe
- Classical algebra

$$
\left\{E_{1}(t), E_{2}(t)\right\}=\beta \sqrt{O_{1}^{2}+O_{2}^{2}}\left(O_{1} \Pi_{1}-O_{2} \Pi_{2}+O_{1}^{2} t\right)
$$

Quantization

T has discrete spectrum

$$
\hat{T} \Psi_{m_{T}}\left(O_{1}, O_{2}\right)=m_{T} \Psi_{T}\left(O_{1}, O_{2}\right)
$$

yields an ugly eigenstate

$$
\begin{aligned}
\Psi_{m_{T}, \sqrt{O_{1}^{2}+o_{2}^{2}}}\left(O_{1}, O_{2}\right)= & \frac{1}{\sqrt{2 \pi \hbar}} \sqrt{\frac{\operatorname{sgn}\left(O_{2}\right)}{\sqrt{o_{1}^{2}+o_{2}^{2}}}} \delta\left(\sqrt{O_{1}^{2}+O_{2}^{2}}-\sqrt{o_{1}^{2}+o_{2}^{2}}\right) \times \\
& \exp \left[-\frac{i}{2 \hbar} O_{1}^{2} t\right] \exp \left[\pm \frac{i}{\hbar} m_{T} \tan ^{-1}\left(\frac{O_{1}}{O_{2}}\right) \operatorname{sgn}\left(O_{2}\right)\right]
\end{aligned}
$$

working with quantum clock!

Quantization

T has discrete spectrum

$$
\hat{T} \Psi_{m_{T}}\left(O_{1}, O_{2}\right)=m_{T} \Psi_{T}\left(O_{1}, O_{2}\right)
$$

yields an ugly eigenstate

$$
\begin{aligned}
\Psi_{m_{T}, \sqrt{o_{1}^{2}+o_{2}^{2}}}\left(O_{1}, O_{2}\right)= & \frac{1}{\sqrt{2 \pi \hbar}} \sqrt{\frac{\operatorname{sgn}\left(O_{2}\right)}{\sqrt{o_{1}^{2}+o_{2}^{2}}}} \delta\left(\sqrt{O_{1}^{2}+O_{2}^{2}}-\sqrt{o_{1}^{2}+o_{2}^{2}}\right) \times \\
& \exp \left[-\frac{i}{2 \hbar} O_{1}^{2} t\right] \exp \left[\pm \frac{i}{\hbar} m_{T} \tan ^{-1}\left(\frac{O_{1}}{O_{2}}\right) \operatorname{sgn}\left(O_{2}\right)\right]
\end{aligned}
$$

working with quantum clock!

- Small o_{1}, o_{2} : eigenvalues of \hat{O}_{1} and \hat{O}_{2}

Quantization

E_{2} has continuous spectrum

$$
\hat{E}_{2} \Psi_{e_{2}}\left(O_{1}, O_{2}\right)=e_{2} \Psi_{e_{2}}\left(O_{1}, O_{2}\right)
$$

yields another ugly eigenstate

$$
\Psi_{e_{2}, O_{2}}\left(O_{1}, O_{2}\right)=\frac{1}{\sqrt{2 \pi \beta \hbar o_{2}}} \frac{\delta\left(O_{2}-o_{2}\right)}{\left(O_{1}^{2}+O_{2}^{2}\right)^{\frac{1}{4}}} \exp \left(-\frac{i}{2 \hbar}\left(O_{1}^{2} t \mp \frac{2 e_{2} \tanh ^{-1}\left(\frac{O_{1}}{\sqrt{O_{1}^{2}+O_{2}^{2}}}\right)}{\beta O_{2}}\right)\right)
$$

Probability

Conditional probability of $E_{2} \in\left[e_{2}^{(I)}, e_{2}^{(2)}\right]$ given that $T=m_{T}$ is expressed as

$$
P\left(E_{2} \in\left[e_{2}^{(1)}, e_{2}^{(2)}\right] \mid T=m_{T}\right)=\frac{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{e_{2}}(t) \hat{\mathcal{P}}_{m_{T}}(t) \hat{\rho} \hat{\mathcal{P}}_{m_{T}}(t)\right]}{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{m_{T}}(t) \hat{\rho}\right]}
$$

Probability

Conditional probability of $E_{2} \in\left[e_{2}^{(I)}, e_{2}^{(2)}\right]$ given that $T=m_{T}$ is expressed as

$$
P\left(E_{2} \in\left[e_{2}^{(1)}, e_{2}^{(2)}\right] \mid T=m_{T}\right)=\frac{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{e_{2}}(t) \hat{\mathcal{P}}_{m_{T}}(t) \hat{\rho} \hat{\mathcal{P}}_{m_{T}}(t)\right]}{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{m_{T}}(t) \hat{\rho}\right]}
$$

- Projection operator for \hat{E}_{2}

$$
\hat{\mathcal{P}}_{e_{2}^{(0)}}(t)=\int_{e_{2}^{(0)}-\Delta e_{2}}^{e_{2}^{(0)}+\Delta e_{2}} d e_{2} \int_{-\infty}^{\infty} d o_{2}\left|e_{2}, o_{2}, t\right\rangle\left\langle e_{2}, o_{2}, t\right|
$$

Probability

Conditional probability of $E_{2} \in\left[e_{2}^{(1)}, e_{2}^{(2)}\right]$ given that $T=m_{T}$ is expressed as

$$
P\left(E_{2} \in\left[e_{2}^{(1)}, e_{2}^{(2)}\right] \mid T=m_{T}\right)=\frac{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{e_{2}}(t) \hat{\mathcal{P}}_{m_{T}}(t) \hat{\rho} \hat{\mathcal{P}}_{m_{T}}(t)\right]}{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{m_{T}}(t) \hat{\rho}\right]}
$$

- Projection operator for \hat{E}_{2}

$$
\hat{\mathcal{P}}_{e_{2}^{(0)}}(t)=\int_{e_{2}^{(0)}-\Delta e_{2}}^{e_{2}^{(0)}+\Delta e_{2}} d e_{2} \int_{-\infty}^{\infty} d o_{2}\left|e_{2}, o_{2}, t\right\rangle\left\langle e_{2}, o_{2}, t\right|
$$

- Projection operator for \hat{T}

$$
\hat{\mathcal{P}}_{m_{T}^{(0)}}(t)=\int_{-\infty}^{\infty} d o_{1} \int_{-\infty}^{\infty} d o_{2}\left|m_{T}^{(0)}, \sqrt{o_{1}^{2}+o_{2}^{2}}, t\right\rangle\left\langle m_{T}^{(0)}, \sqrt{o_{1}^{2}+o_{2}^{2}}, t\right|
$$

Probability

Conditional probability of $E_{2} \in\left[e_{2}^{(1)}, e_{2}^{(2)}\right]$ given that $T=m_{T}$ is expressed as

$$
P\left(E_{2} \in\left[e_{2}^{(1)}, e_{2}^{(2)}\right] \mid T=m_{T}\right)=\frac{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{e_{2}}(t) \hat{\mathcal{P}}_{m_{T}}(t) \hat{\rho} \hat{\mathcal{P}}_{m_{T}}(t)\right]}{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{m_{T}}(t) \hat{\rho}\right]}
$$

- Density operator $\hat{\rho}=\left|\psi_{\rho}\right\rangle\left\langle\psi_{\rho}\right|$ with

$$
\begin{aligned}
\left|\psi_{\rho}\right\rangle= & \int_{-\infty}^{\infty} d O_{1} \int_{-\infty}^{\infty} d O_{2} \Theta\left(O_{1}-o_{1}^{(1)}\right) \Theta\left(o_{1}^{(2)}-O_{1}\right) \times \\
& \Theta\left(O_{2}-o_{2}^{(1)}\right) \Theta\left(o_{2}^{(2)}-O_{2}\right) N_{\rho}\left|O_{1}, O_{2}\right\rangle,
\end{aligned}
$$

Probability: Preliminary Results

Yields

$$
\begin{aligned}
P\left(E_{2} \in\left[e_{2}^{(1)}, e_{2}^{(2)}\right] \mid T=m_{T}\right) \approx & \frac{16 \beta \Delta e_{2} \Delta o_{r}}{\pi\left(\left(o_{r}^{(2)}\right)^{2}-\left(o_{r}^{(1)}\right)^{2}\right)}\left(\frac{o_{r}^{(0)} \cos ^{2}\left(o_{\theta}^{(0)}\right)}{e_{2}^{(0)}-m_{T} \beta o_{r}^{(0)} \cos ^{2}\left(o_{\theta}^{(0)}\right)}\right)^{2} \times \\
& \sin ^{2}\left[\frac{\Delta o_{\theta}}{\hbar}\left(\frac{e_{2}^{(0)}}{\beta o_{r}^{(0)} \cos ^{2}\left(o_{\theta}^{(0)}\right)}-m_{T}\right)\right]
\end{aligned}
$$

where

- $o_{r}^{(0)}$: central value of $O_{r}=O_{1}^{2}+O_{2}^{2}$
- o_{θ} : central value of $O_{\theta}=\tan ^{-1}\left(\frac{O_{1}}{O_{2}}\right)$
- $e_{2}^{(0)}$: central value of E_{2}
- ΔX : interval around X
- β : a constant including G

Probability: Preliminary Results

Summary

- Time is an illusive concept in physics: probably an emergent phenomenon
- Absolute time t in unphysical; we never have access to $i t$, only to relation between physical quantities
- No absolute-time evolution in totally constrained systems (GR+matter)
- On quantum gravity scales, probably time does not exists, it emerges as relations between quantum observables as an approximation
- We can thus take the conditional probability interpretation and use evolving constants of motion to formulate a relational time via physical clocks
- This probability seems to agree with what we know of time
- We studied this in the context of cosmology (preliminary) and will extend the study

Conditional Probability

- Conditional probability (continuous Q, discrete T)

$$
P\left(Q \in\left[q_{1}, q_{2}\right] \mid T=T_{0}\right)=\frac{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{q}(t) \hat{\mathcal{P}}_{T_{0}}(t) \hat{\rho} \hat{\mathcal{P}}_{T_{0}}(t)\right]}{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{T_{0}}(t) \hat{\rho}\right]}
$$

- Interpretation of numerator:
- Ensemble of noninteracting systems with two quantum variables Q and T, each to be measured.
- Each system equipped with a recording device that takes a single snapshot of Q and T at a random unknown value of the ideal time t.
- Take a large number of such systems, initially all in the same quantum state, wait for a "long time" and concludes the experiment.
- Recordings taken by the measurement devices are then collected and analyzed all together.
- Computes how many times $n\left(T=T_{0}, Q \in\left[q_{1}, q_{2}\right]\right)$ each reading with a given value $T=T_{0}, Q \in\left[q_{1}, q_{2}\right]$ occurs
- Take each of those values $n\left(T=T_{0}, Q \in\left[q_{1}, q_{2}\right]\right)$ and divides them by the number of systems in the ensemble; in the limit of infinite systems, a joint probability is given.

Ashtekar formulation

- Tetrad formulation of gravity action

$$
S=\underbrace{\int \text { bulk integral }}_{\text {written in terms of tetrads } \underbrace{}_{\text {gob }}=\eta_{J} e_{a}^{e} e_{b}^{\prime}}+\frac{1}{\gamma} \underbrace{\int \text { boundary term }}_{\text {Hibert-Palatini }}
$$

with $\gamma=$ Barbero-Immirzi parameter

Ashtekar formulation

- Tetrad formulation of gravity action

$$
\mathbf{S}=\underbrace{\int \text { bulk integral }}_{\text {written in terms of tetrads } g_{a b}=\eta_{y} \mathrm{e}_{a}^{\prime} \alpha_{b}^{\prime}}+\frac{\mathrm{l}}{\gamma} \underbrace{\int \text { boundary term }}_{\text {Hilbert-Palatini }}
$$

with $\gamma=$ Barbero-Immirzi parameter

- Decompose into space+time; Legendre transformation:

Ashtekar formulation

- Tetrad formulation of gravity action

$$
\mathbf{S}=\underbrace{\int \text { bulk integral }+\frac{\mathrm{I}}{\gamma} \underbrace{\int \text { boundary term }}_{\text {Hilbert-Palatini }}}_{\text {written in terms of tetrads } g_{a b}=\eta_{\|} \mathrm{e}_{a}^{l} e_{b}^{d}}
$$

with $\gamma=$ Barbero-Immirzi parameter

- Decompose into space+time; Legendre transformation:
- Canonical variables: su(2) Ashtekar connection

$$
A_{a}^{i}=\underbrace{\Gamma_{a}^{i}}_{\text {spin connection }}+\gamma \underbrace{K_{a}^{i}}_{\text {extrinsic curvature }}
$$

Ashtekar formulation

- Tetrad formulation of gravity action

$$
S=\underbrace{\int \text { bulk integral }}_{\text {written in terms of tetrads } g_{a b}=\eta_{\|} \mathrm{e}_{a}^{l} a_{b}^{d}}+\frac{\mathrm{l}}{\gamma} \underbrace{\int \text { boundary term }}_{\text {Hilbert-Palatini }}
$$

with $\gamma=$ Barbero-Immirzi parameter

- Decompose into space+time; Legendre transformation:
- Canonical variables: su(2) Ashtekar connection

$$
A_{a}^{i}=\underbrace{\Gamma_{a}^{i}}_{\text {spin connection }}+\gamma \underbrace{K_{a}^{i}}_{\text {extrinsic curvature }}
$$

- Momenta: inverse triads E_{i}^{a}, where spatial metric is $q_{a b}=\eta_{i j} E_{a}^{i} E_{b}^{j}$

Cosmology

- FLRW Universe

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

with $a(t)=$ scale factor

Cosmology

- FLRW Universe

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

with $a(t)=$ scale factor

- A_{a}^{i} has only one independent component $c=\gamma \dot{a}$

Cosmology

- FLRW Universe

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

with $a(t)=$ scale factor

- A_{a}^{i} has only one independent component $c=\gamma \dot{a}$
- E_{a}^{i} has only one independent component p where $|p|=a^{2}$

Cosmology

- FLRW Universe

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

with $a(t)=$ scale factor

- A_{a}^{i} has only one independent component $c=\gamma \dot{a}$
- E_{a}^{i} has only one independent component p where $|p|=a^{2}$
- Volume of the Universe: $V=|p|^{3 / 2}$

Cosmology

- FLRW Universe

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

with $a(t)=$ scale factor

- A_{a}^{i} has only one independent component $c=\gamma \dot{a}$
- E_{a}^{i} has only one independent component p where $|p|=a^{2}$
- Volume of the Universe: $V=|p|^{3 / 2}$

The Hamiltonian (constraint) of the system

$$
\mathcal{C}=-\frac{6}{\gamma^{2}} c^{2} \sqrt{|p|}
$$

