

Quantum Information Theory in Quantum Field Theory and Cosmology @ BIRS, June 8, 2023

Krylov complexity and chaos in quantum mechanics

Ryota Watanabe (Kyoto U)

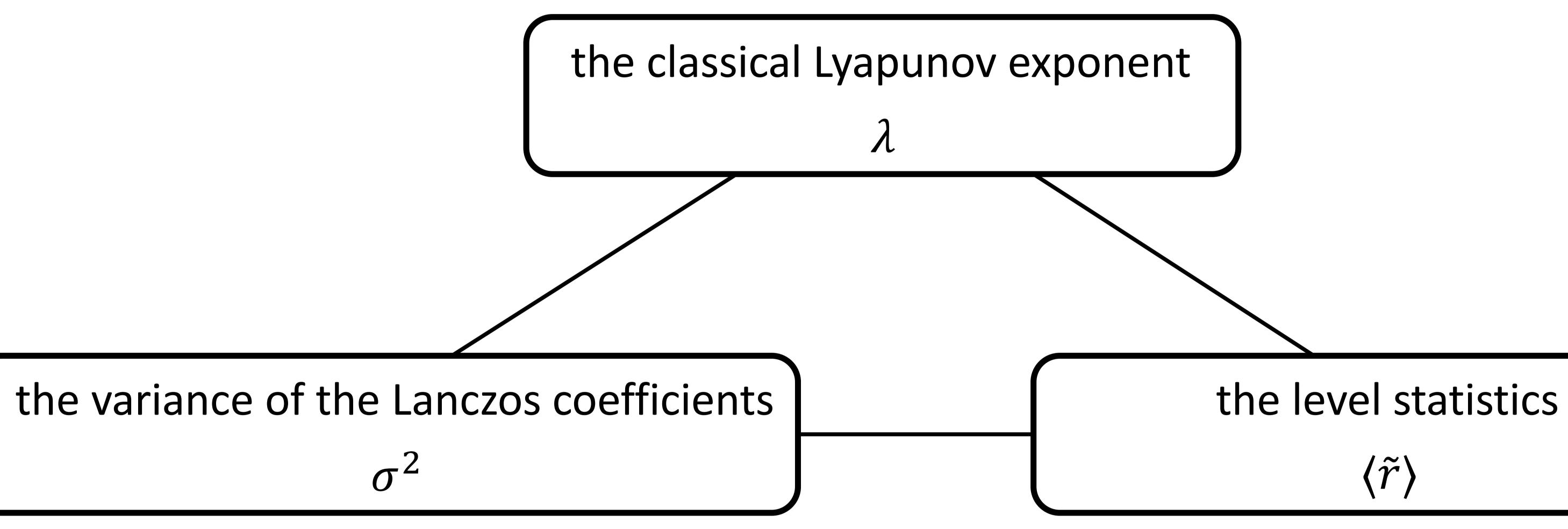
based on [2305.16669] with Koji Hashimoto (Kyoto U), Keiju Murata (Nihon U), Norihiro Tanahashi (Chuo U)

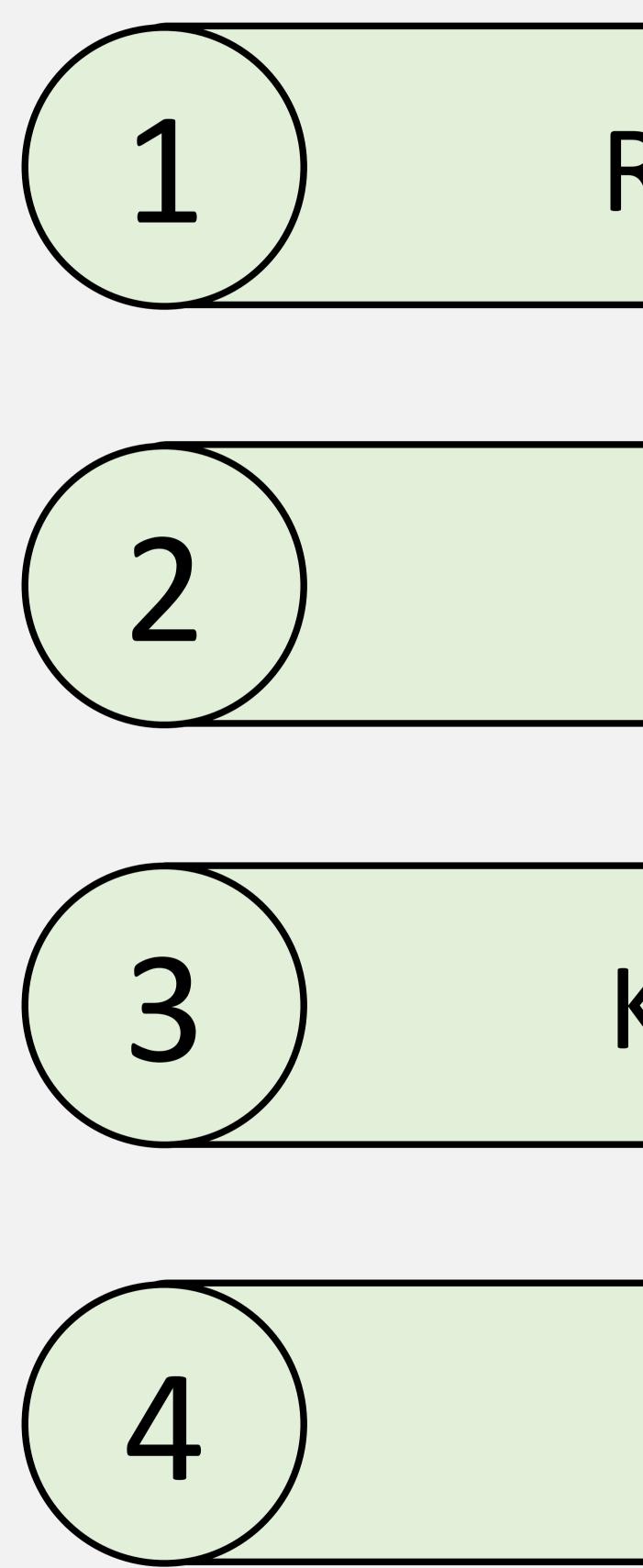
How should we characterize quantum chaos? **Can complexity measure quantum chaos?**

• In the stadium billiard system, we find a significant correlation between...

• The variance of the Lanczos coefficients can be a measure of quantum chaos.

• Similar results were confirmed for the Sinai billiard.



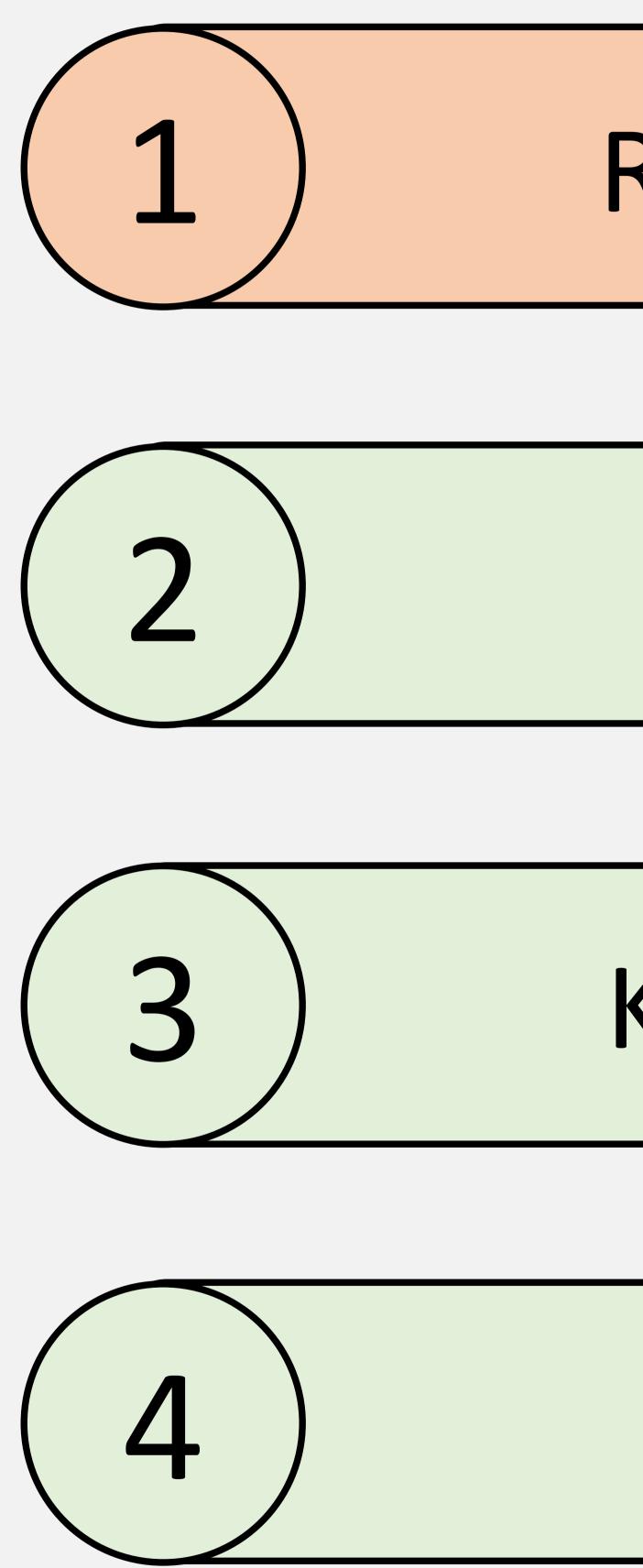


Outline

Review on classical/quantum chaos (3 slides)

Review on Krylov complexity (6 slides)

Krylov complexity and chaos in QM (9 slides)



Outline

Review on classical/quantum chaos (3 slides)

Review on Krylov complexity (6 slides)

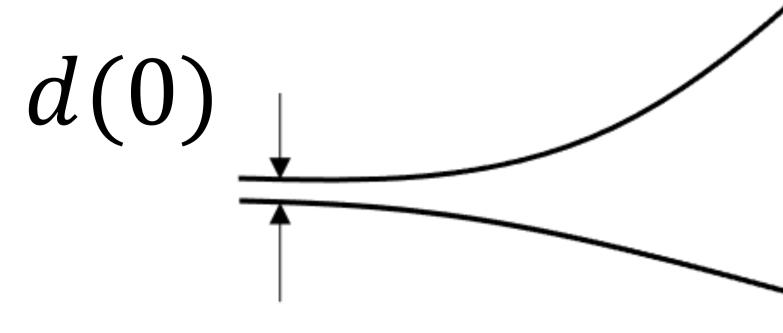
Krylov complexity and chaos in QM (9 slides)

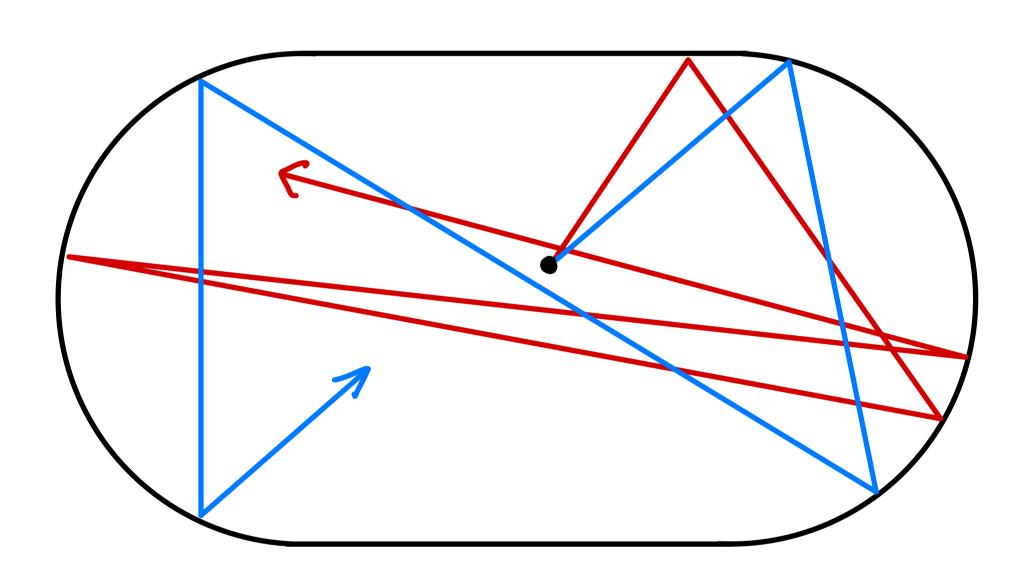
Classical Chaos: Lyapunov exponent

Unpredictable complex motion in deterministic nonlinear dynamical systems e.g.) stadium billiard, Sinai billiard, double pendulum, ...

Sensitive dependence on initial conditions

Exponential divergence of trajectories in the phase space: The Lyapunov exponent λ measures chaoticity.





 $d(t) \sim \exp(\lambda t) d(0)$

Quantum chaos: Spectral statistics

- - P(s) =
- - P(S)

a random matrix ensemble. [Bohigas, Giannoni, Schmit 1984]

The adjacent energy level spacings: S_n =

Wigner-Dyson statistics (chaotic systems)

$$a_{\beta}s^{\beta}e^{-b_{\beta}s^{2}}$$

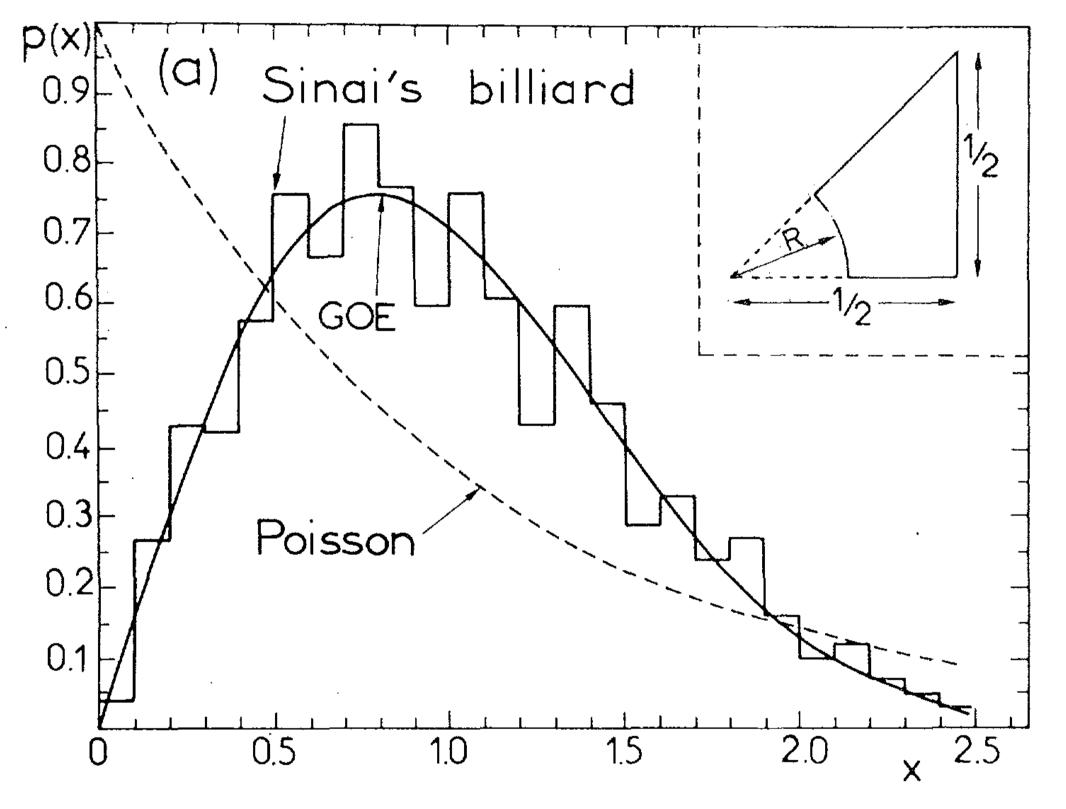
 $\beta = 1$ (GOE), 2 (GUE), 4 (GSE) $a_{\mathcal{B}}, b_{\mathcal{B}}$: constants

Poisson statistics (non-chaotic systems) [Berry, Tabor 1977]

 $= e^{-3}$

For chaotic systems, quantum energy spectra show the same fluctuation as

$$= E_{n+1} - E_n$$



[Bohigas, Giannoni, Schmit 1984]

Characterization of the spectral statistics

The average $\langle \tilde{r} \rangle$ of the ratio of consecutive spacings

$$\tilde{r}_n \equiv \frac{\min(s_n, s_{n-1})}{\max(s_n, s_{n-1})}$$

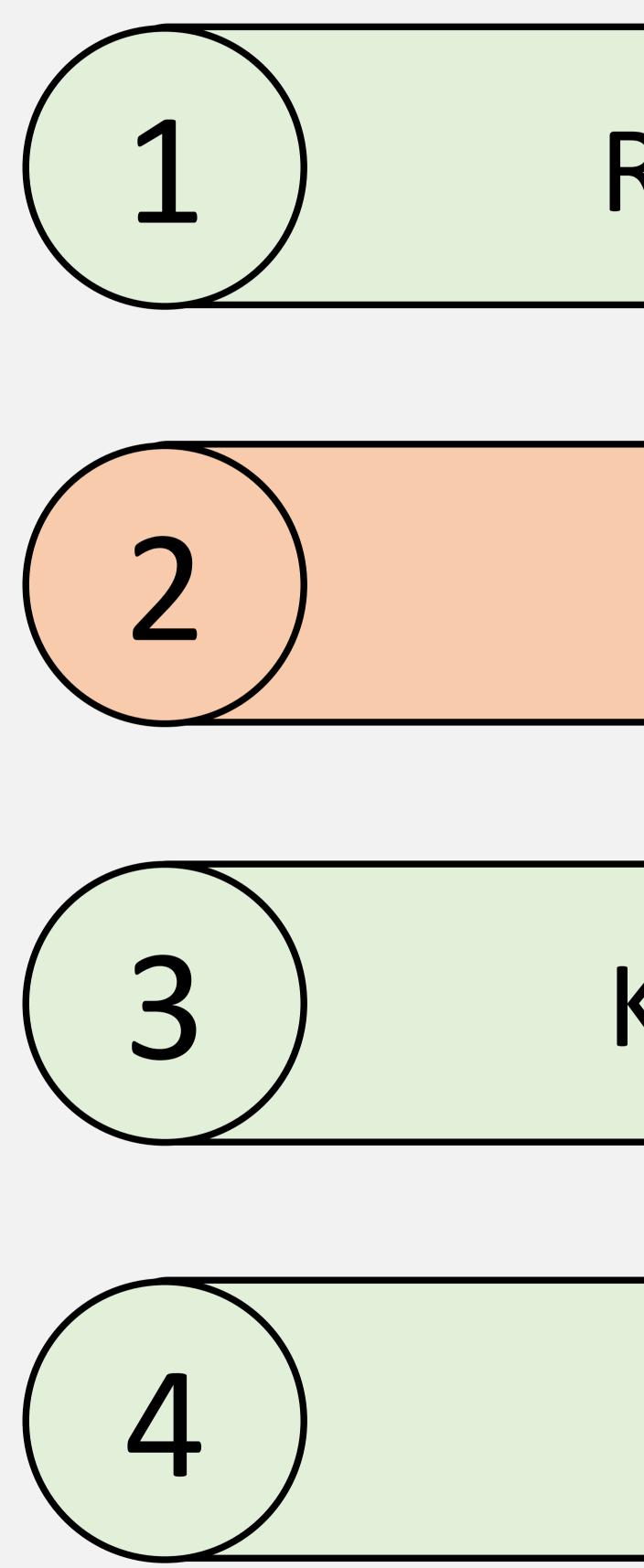
takes the following values depending on the spectral statistics:

$$\langle \tilde{r} \rangle = \begin{cases} 2\ln 2 - 1 \approx 0.3 \\ 4 - 2\sqrt{3} \approx 0.53 \\ 2\frac{\sqrt{3}}{\pi} - \frac{1}{2} \approx 0.60 \\ \frac{32}{15}\frac{\sqrt{3}}{\pi} - \frac{1}{2} \approx 0.60 \end{cases}$$

[Oganesyan, Huse 2007] [Atas, Bogomolny, Giraud, Roux 2013]

$$(s_n = E_{n+1} - E_n)$$

38629 Poisson 3590 GOE 0266GUE 67617 GSE



Outline

Review on classical/quantum chaos (3 slides)

Review on Krylov complexity (6 slides)

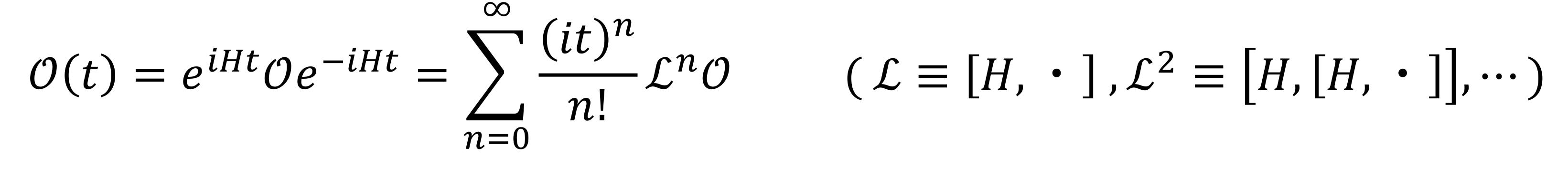
Krylov complexity and chaos in QM (9 slides)

is defined as follows:

- Introduce an inner product in the operator space: $(A|B) \equiv Tr(A^{\dagger}B)$ 1. Lanczos algorithm (next slide): $\{\mathcal{L}^n \mathcal{O}\} \rightarrow \text{orthonormal basis } \{\mathcal{O}_n\}_{n=0}^{D_{\mathcal{O}}-1}$ 2. 3. Re-expand the Heisenberg operator as $\mathcal{O}(t) = \sum_{n=1}^{\infty} i^n \varphi_n(t) \mathcal{O}_n$ 4. Krylov complexity $C_{\mathcal{O}}(t) \equiv \sum_{n=1}^{D_{\mathcal{O}}-1} n |\varphi_n(t)|^2$ n=1

Krylov operator complexity

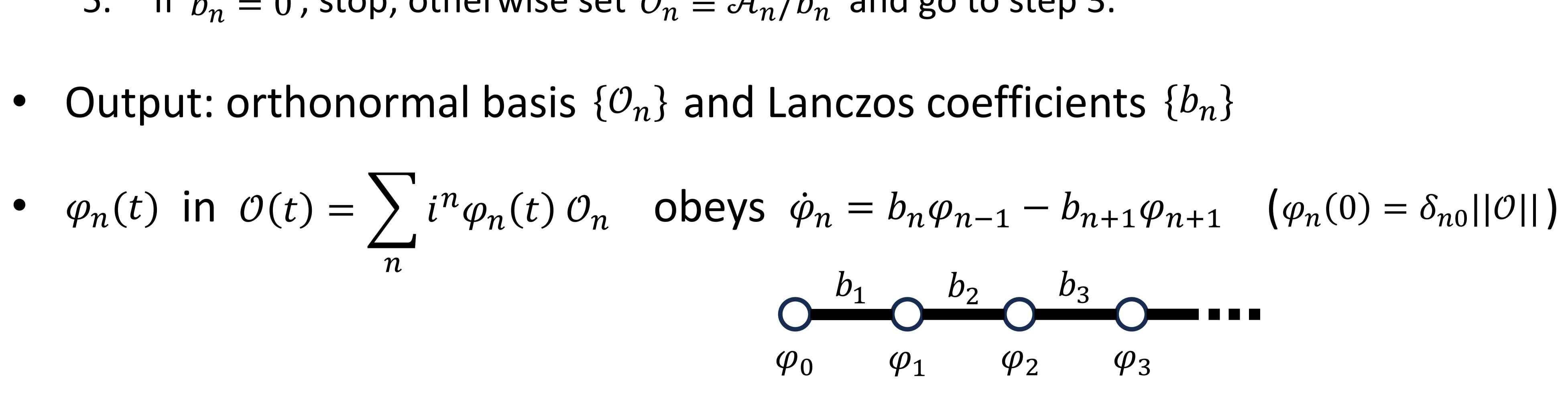
The Krylov operator complexity for a Heisenberg operator



[Parker, Cao, Avdoshkin, Scaffidi, Altman 2018]

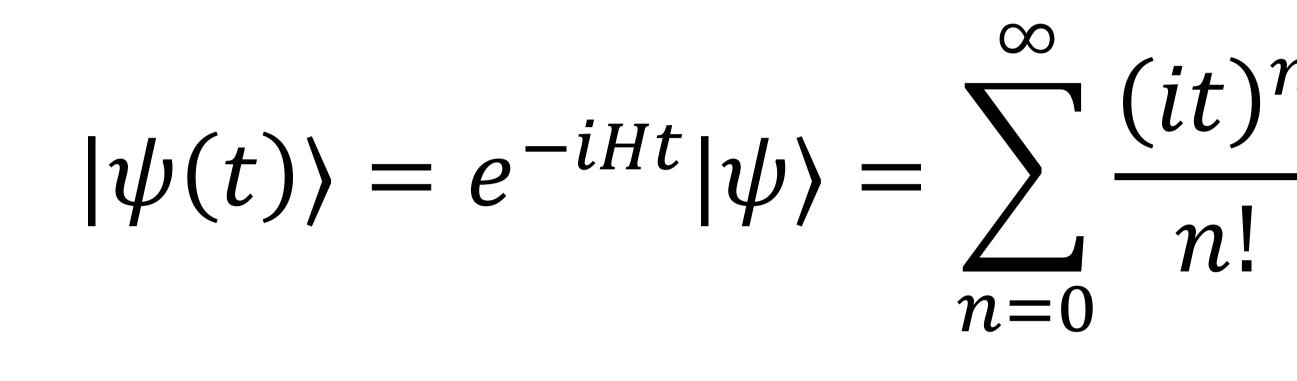
- 1. Let $b_0 \equiv 0$ and $\mathcal{O}_{-1} \equiv 0$
- 2. $\mathcal{O}_0 \equiv \mathcal{O}/||\mathcal{O}||$, where $||\mathcal{O}|| \equiv \sqrt{(\mathcal{O}|\mathcal{O})}$
- 3. For $n \ge 1$: $\mathcal{A}_n \equiv \mathcal{LO}_{n-1} b_{n-1}\mathcal{O}_{n-2}$
- 4. Set $b_n \equiv ||\mathcal{A}_n||$
- 5. If $b_n = 0$, stop; otherwise set $\mathcal{O}_n \equiv \mathcal{A}_n/b_n$ and go to step 3.

Lanczos algorithm for operators [Parker, Cao, Avdoshkin, Scaffidi, Altman 2018] The Lanczos algorithm (Gram-Schmidt orthogonalization for $\{\mathcal{L}^n \mathcal{O}\}$)



is defined as follows:

Krylov state complexity [Balasubramanian, Caputa, Magan, Wu 2022] The Krylov state complexity (spread complexity) for a Schrödinger state



- 2. Re-expand the Schrödinger state as $|\psi(t)\rangle = \sum_{n=0}^{D_{\psi}-1} \psi_n(t)|K_n\rangle$ 3. Krylov complexity $C_{\psi}(t) \equiv \sum_{n=0}^{D_{\psi}-1} n|\psi_n(t)|^2$ $\eta = 1$

$$\frac{1}{2}^{n}H^{n}|\psi\rangle$$

Lanczos algorithm (next slide): $\{H^n | \psi \} \rightarrow \text{orthonormal basis } \{|K_n \}\}_{n=0}^{D_{\psi}-1}$ (There are two kinds of Lanczos coefficients a_n , b_n in this case)

- 1. $b_0 \equiv 0$, $|K_{-1}\rangle \equiv 0$ 2. $|K_0\rangle \equiv |\psi\rangle$, $a_0 \equiv \langle K_0|H|K_0\rangle$ 3. For $n \ge 1$: $|\mathcal{A}_n| \equiv (H - a_{n-1})|K_{n-1}| - b_{n-1}|K_{n-2}|$
- 4. Set $b_n \equiv \sqrt{\langle \mathcal{A}_n | \mathcal{A}_n \rangle}$
- 5. If $b_n = 0$, stop; otherwise set $|K_n\rangle \equiv |\mathcal{A}_n\rangle/b_n$ and go to step 3.

• $\psi_n(t)$ in $|\psi(t)\rangle$

Lanczos algorithm for states

The Lanczos algorithm (Gram-Schmidt orthogonalization for $\{H^n|\psi\}$)

$$|\psi\rangle = \sum_{n=0}^{D_{\psi}-1} \psi_n(t) |K_n\rangle$$
 obeys $i\dot{\psi}$

• Output: orthonormal basis $\{|K_n\rangle\}$ and Lanczos coefficients $\{a_n, b_n\}$

 $\psi_n = a_n \psi_n + b_{n+1} \psi_{n+1} + b_n \psi_{n-1} \quad (\psi_n(0) = \delta_{n0})$

[Balasubramanian, Caputa, Magan, Wu 2022]

- For finite-dimensional systems, the Lanczos algorithm must terminate.
- For operators in some spin models, [Rabinovici, Sánchez-Garrido, Shir, Sonner 2021, 2022]
- if the system is non-chaotic, the Lanczos coefficient b_n behaves erratically.
- if the system is chaotic, the Lanczos coefficient b_n behaves less erratically.
- They measured the magnitude of the erratic behavior of b_n by

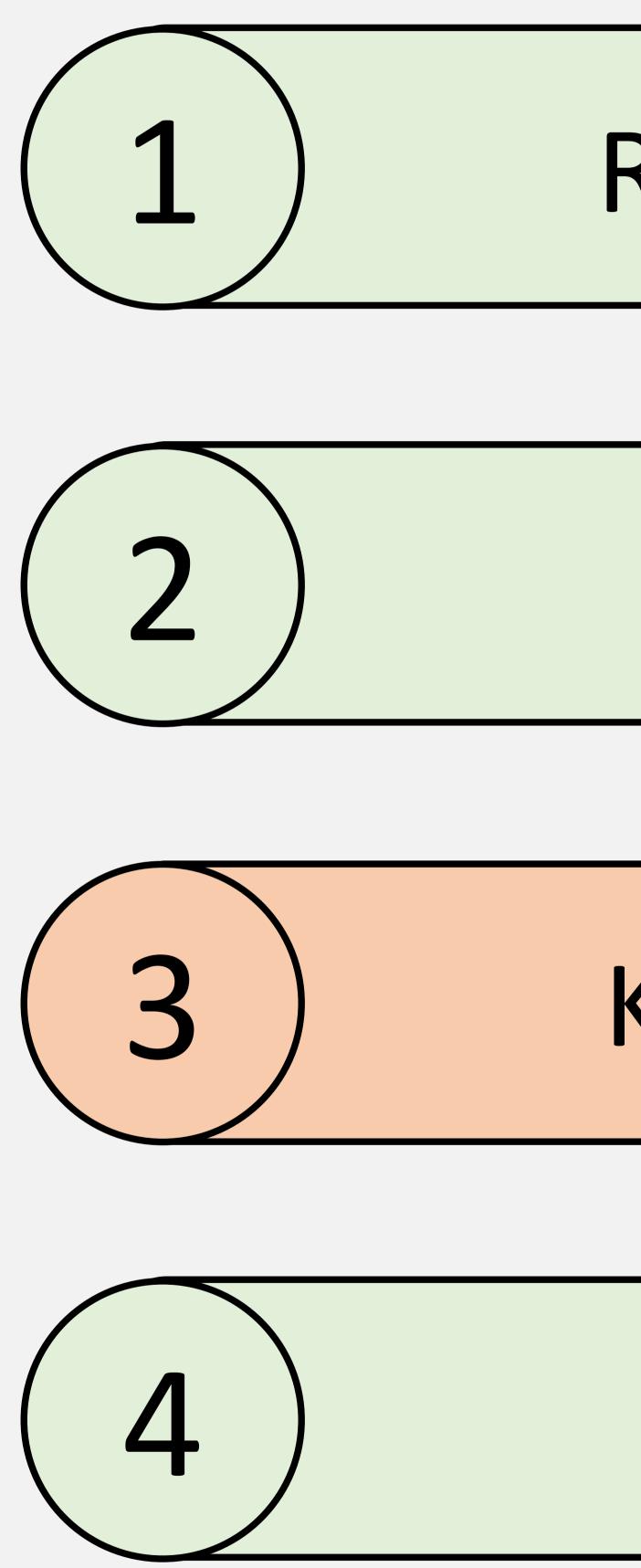
- What about quantum systems that have classical counterparts?
- How about for quantum states? σ_a^2

Lanczos coefficients and chaoticity

 $\sigma^2 \equiv \operatorname{Var}(x_i) = \langle x^2 \rangle - \langle x \rangle^2,$

$$x_i \equiv \ln\left(\frac{b_{2i-1}}{b_{2i}}\right)$$

$$\begin{aligned} & \mathcal{L}_{i} \equiv \operatorname{Var}\left(x_{i}^{(a)}\right), \quad x_{i}^{(a)} \equiv \ln\left(\frac{a_{2i-1}}{a_{2i}}\right) \\ & \mathcal{L}_{i} \equiv \operatorname{Var}\left(x_{i}^{(b)}\right), \quad x_{i}^{(b)} \equiv \ln\left(\frac{b_{2i-1}}{b_{2i}}\right) \end{aligned}$$



Outline

Review on classical/quantum chaos (3 slides)

Review on Krylov complexity (6 slides)

Krylov complexity and chaos in QM (9 slides)

Krylov complexity in quantum mechanics

- We regularize the Hilbert space by considering only a finite number N_{\max} of levels and ignoring the others.
- Using the energy eigenstates as a basis, represent the operator as a matrix:

- Perform the Lanczos algorithm and calculate the Krylov complexity.

- A quantum mechanical system with the Hamiltonian
 - $H = p_1^2 + p_2^2 + V(x, y)$

 $\mathcal{O}_{mn} \equiv \langle m | \mathcal{O} | n \rangle, \quad H | n \rangle = E_n | n \rangle$ $m, n = 1, \cdots, N_{\max}$

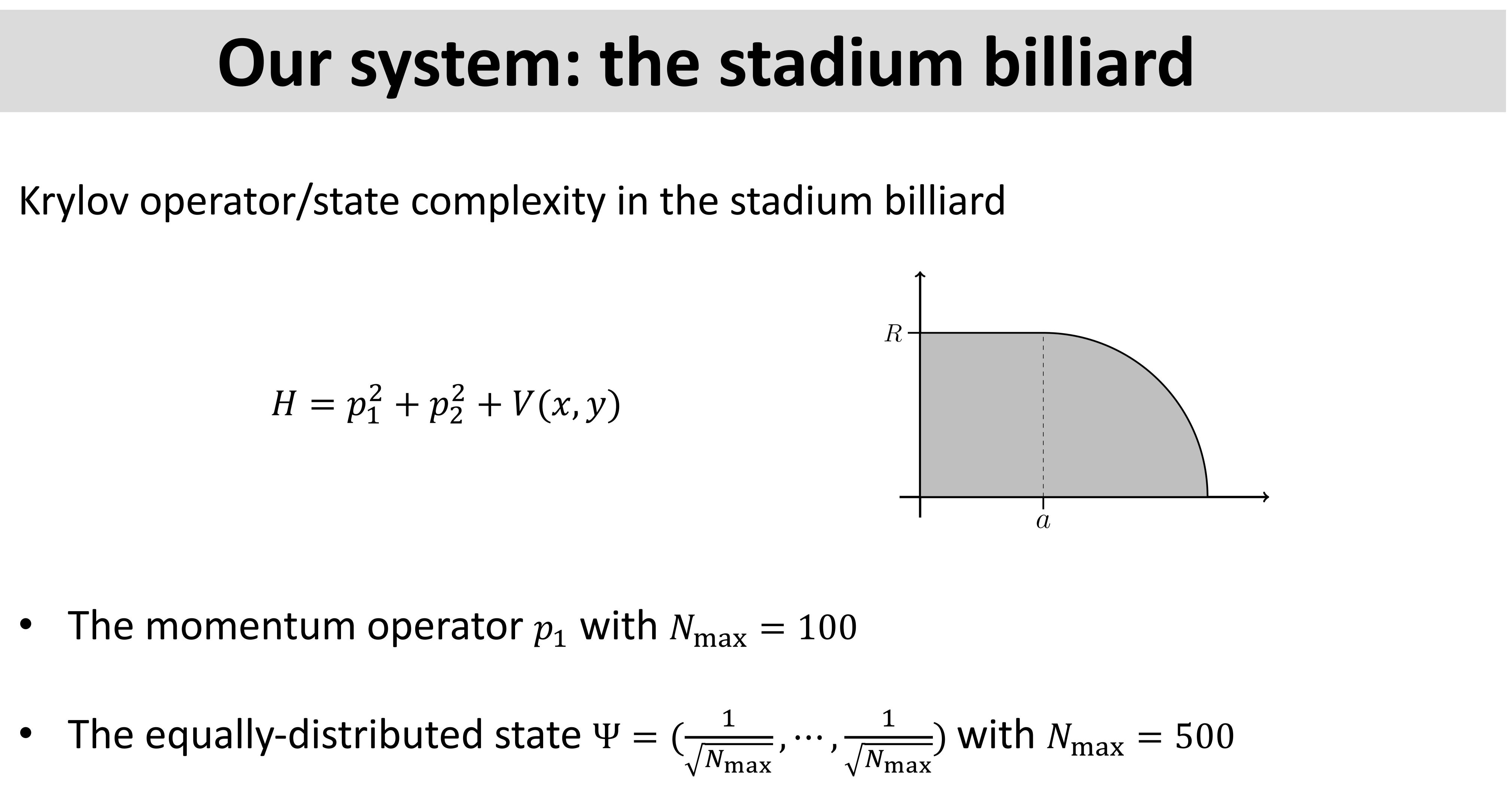
• For states, complexity can be calculated in the similar way.

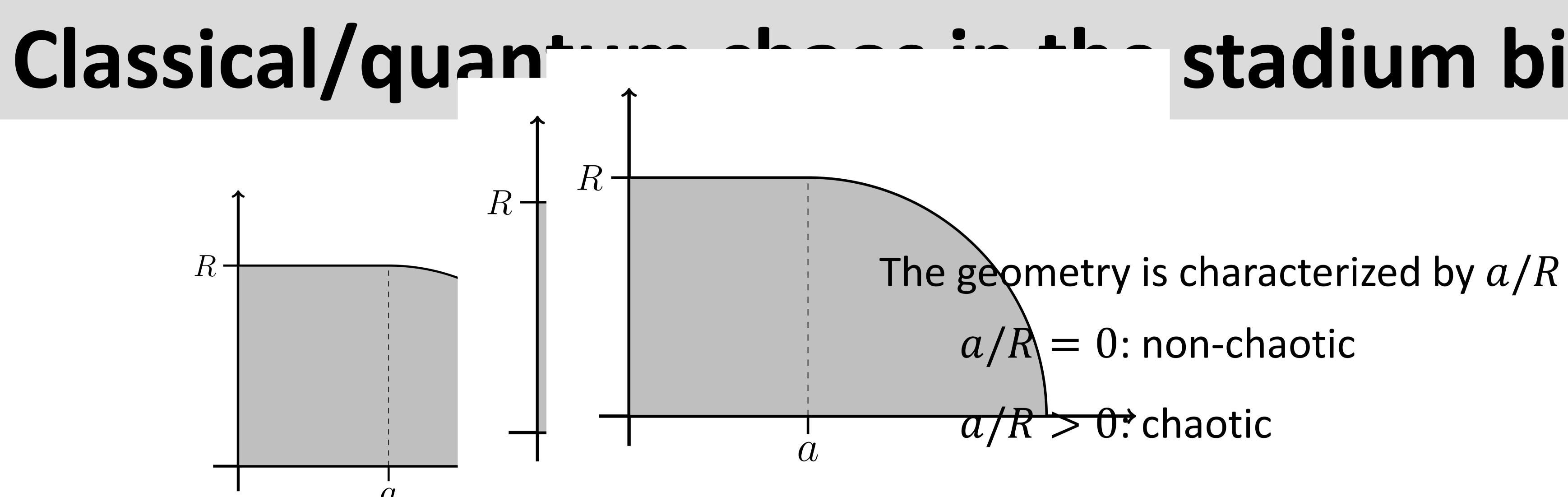
Our system: the stadium billiard

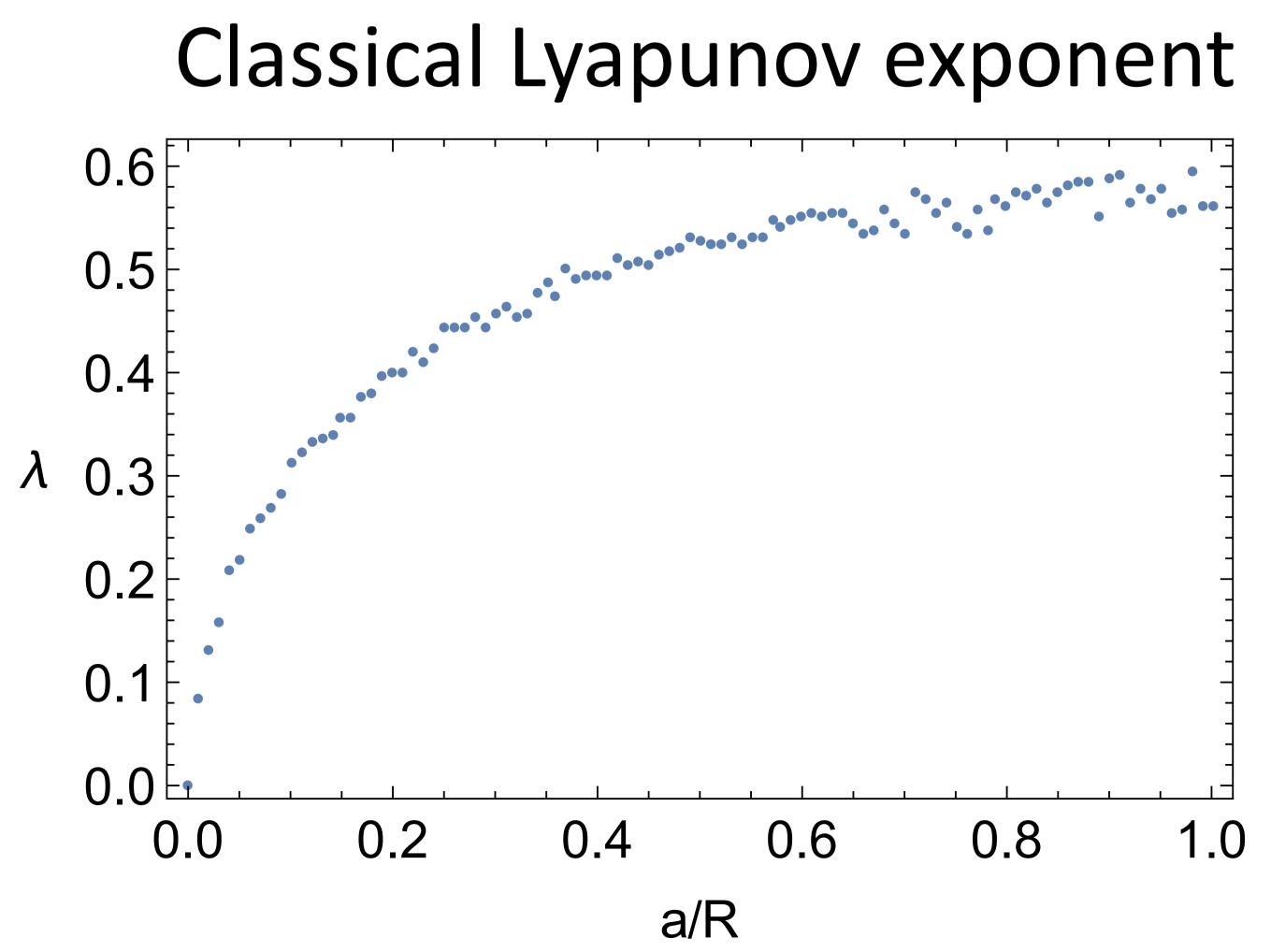
Krylov operator/state complexity in the stadium billiard

 $H = p_1^2 + p_2^2 + V(x, y)$

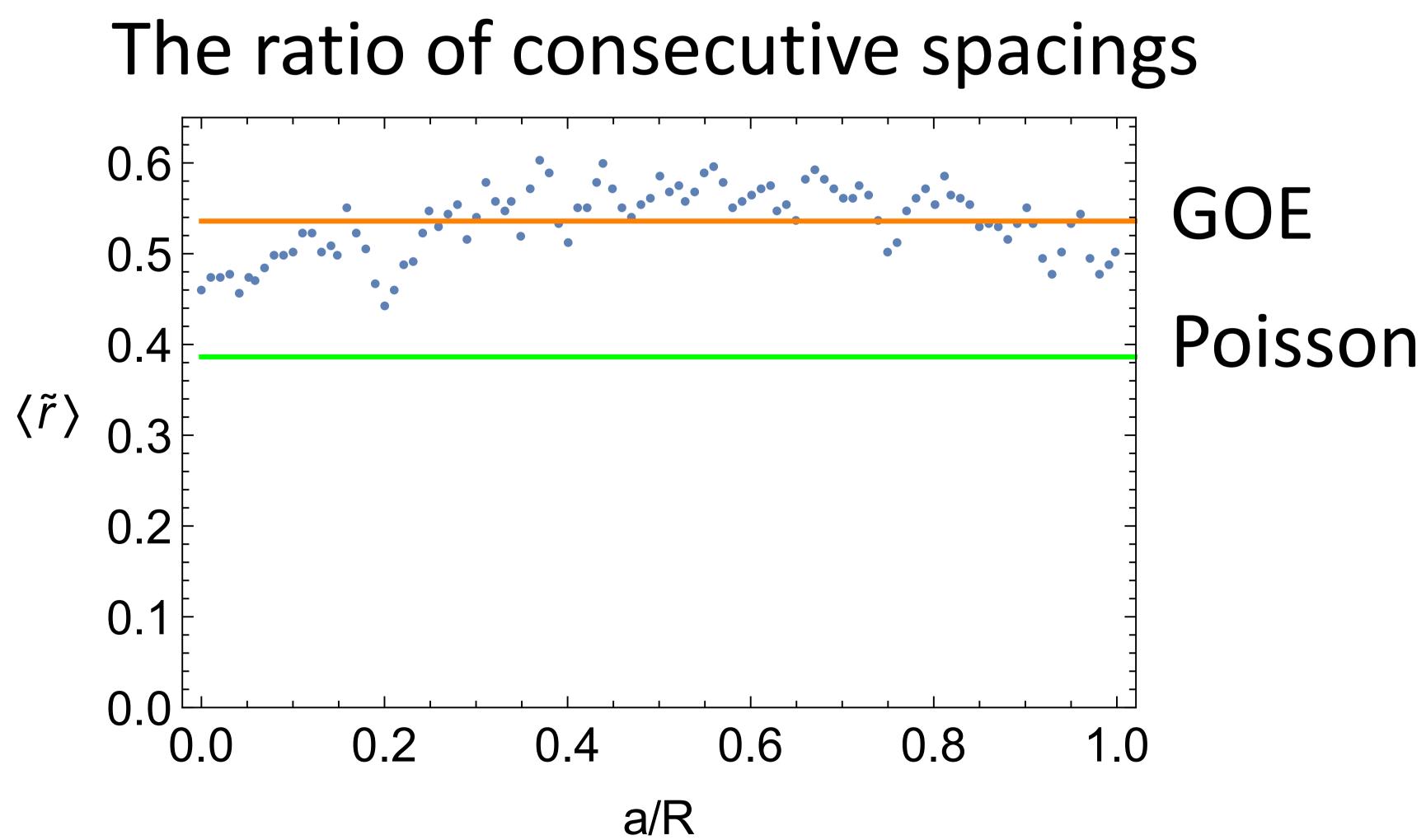
• The momentum operator p_1 with $N_{max} = 100$

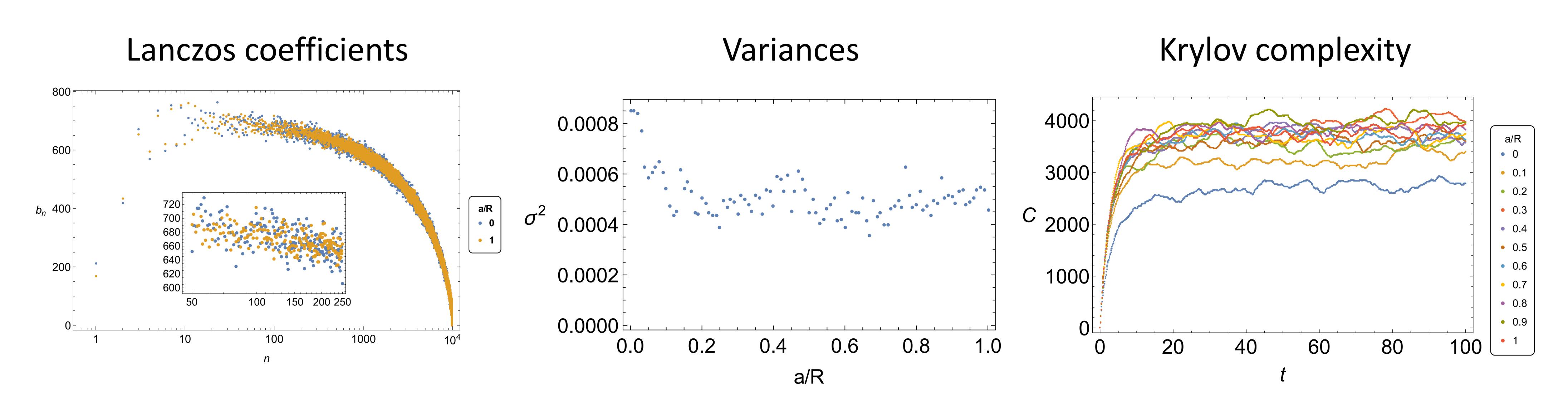






Stadium billiard

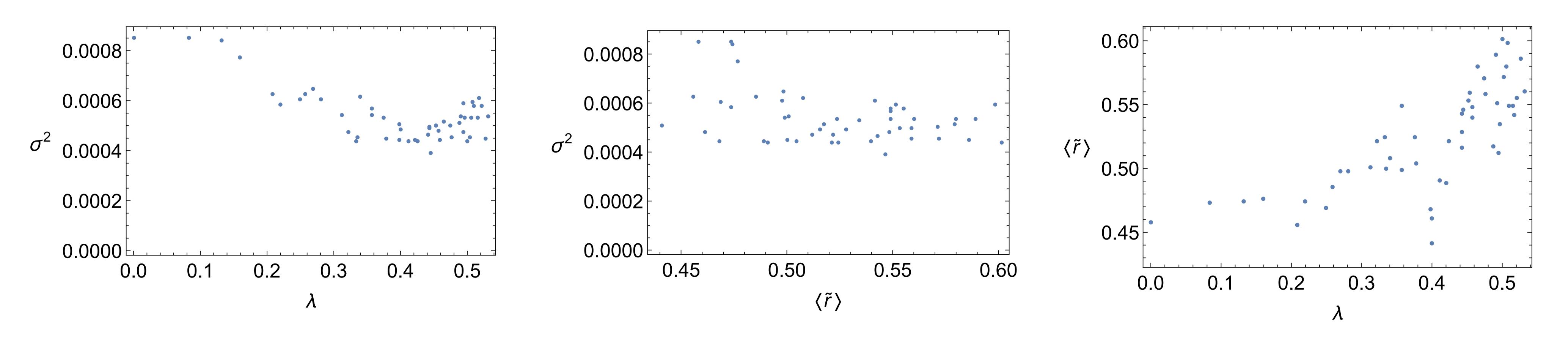


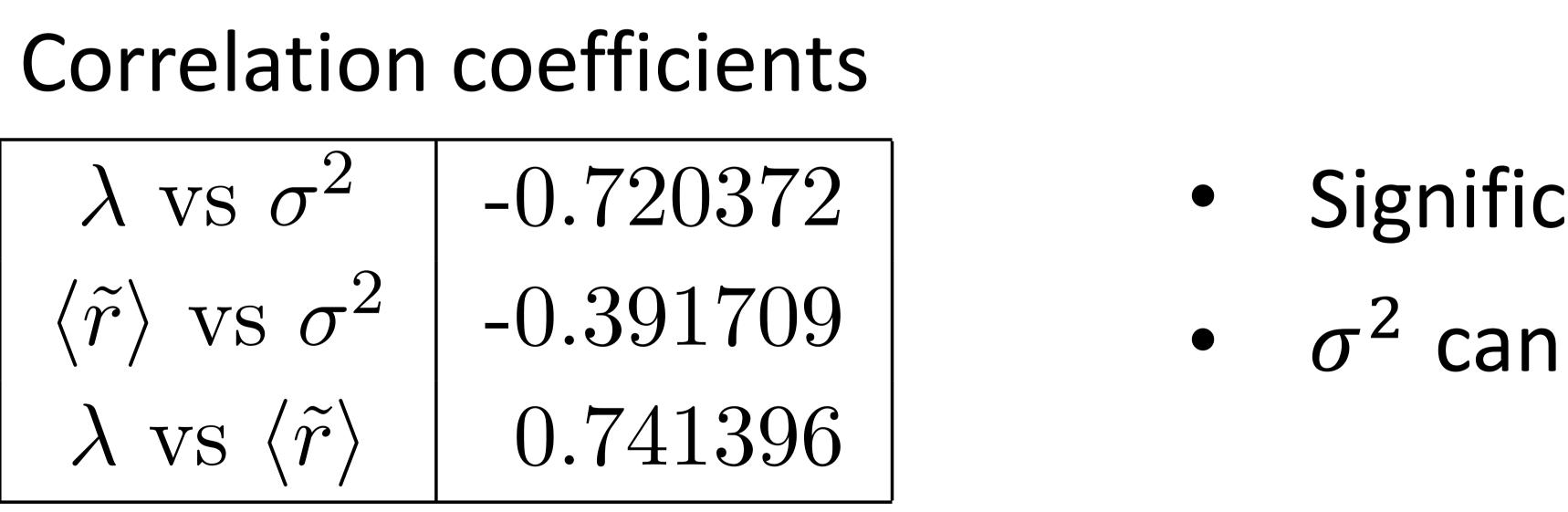


Krylov operator complexity

 $\sigma^2 \equiv \operatorname{Var}(x_i) = \langle x^2 \rangle - \langle x \rangle^2, \qquad x_i \equiv \ln\left(\frac{b_{2i-1}}{b_{2i}}\right)$

The variance becomes larger in the non-chaotic regime compared to the chaotic regime. The Krylov complexity does not grow exponentially.





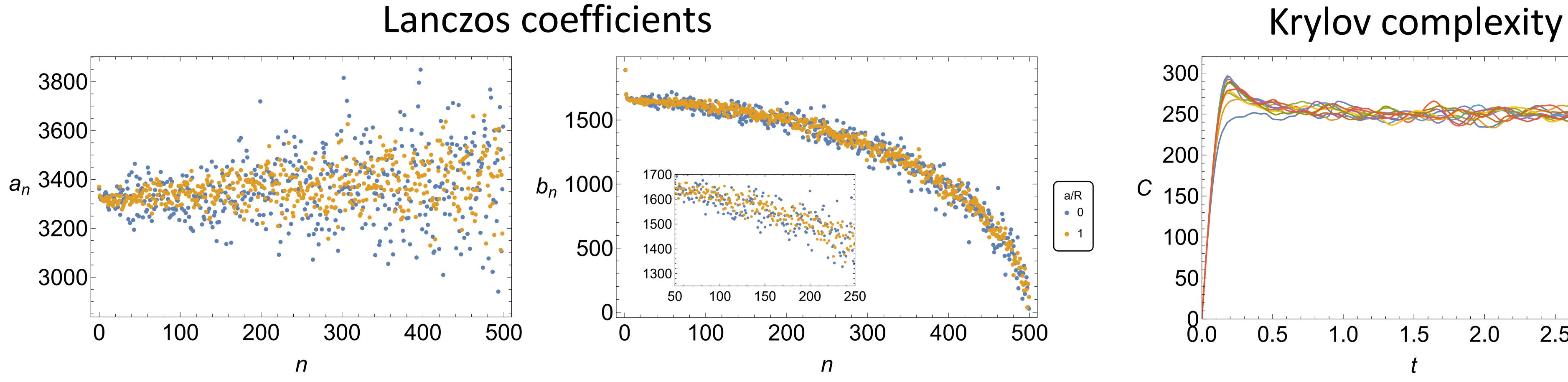
Correlation in the stadium billiard

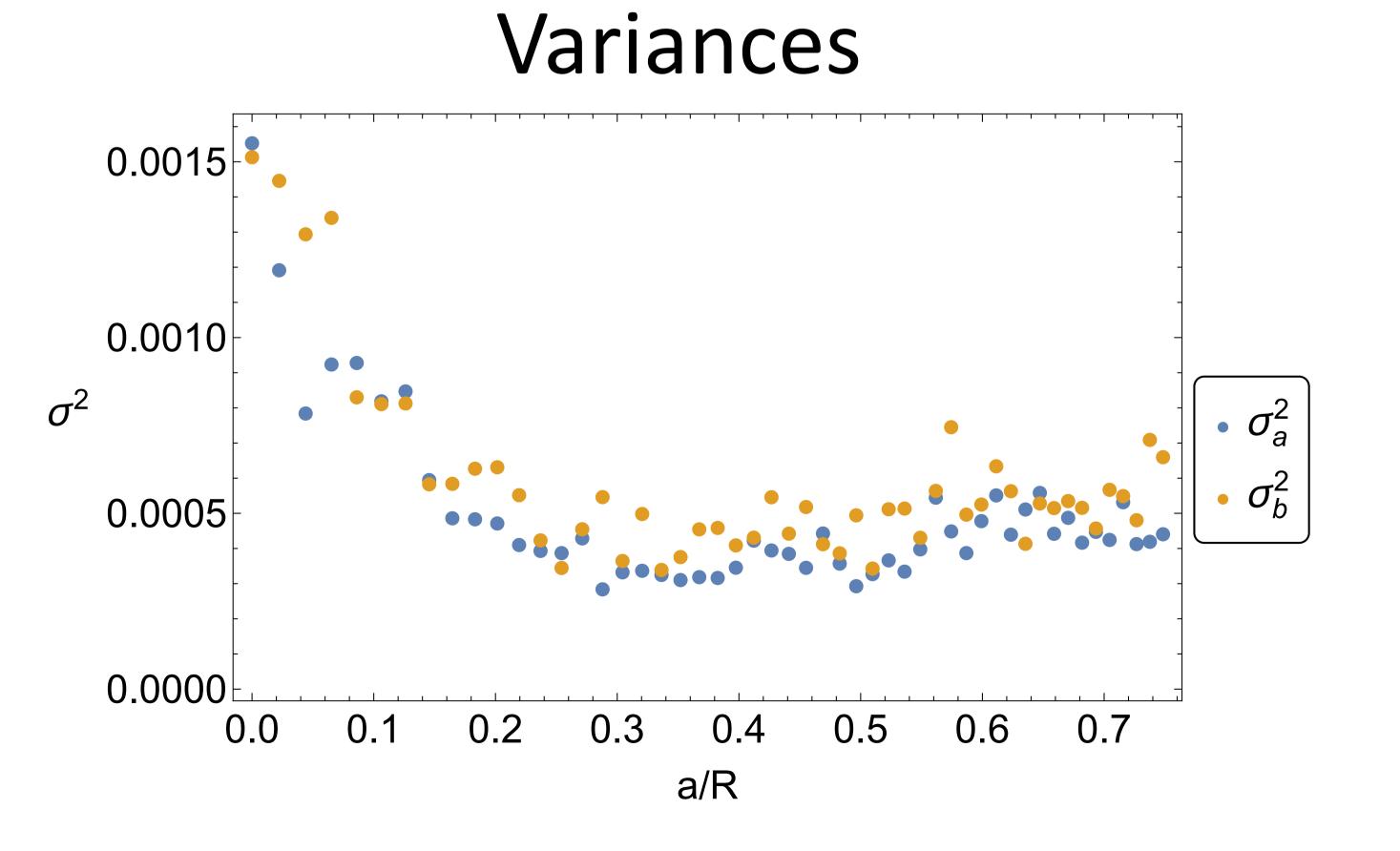
Correlation coefficients between data A an

• Significant correlations exist among σ^2 , λ , and $\langle \tilde{r} \rangle$. • σ^2 can be a measure of quantum chaos.

$$\operatorname{\mathsf{nd}} B \equiv \frac{\operatorname{E}[(A - \operatorname{E}[A])(B - B)]}{\sqrt{\operatorname{E}[(A - \operatorname{E}[A])^2]\operatorname{E}[(B - B)]}}$$

 $\mathbb{E}[B])$ $- E[B])^{2}$





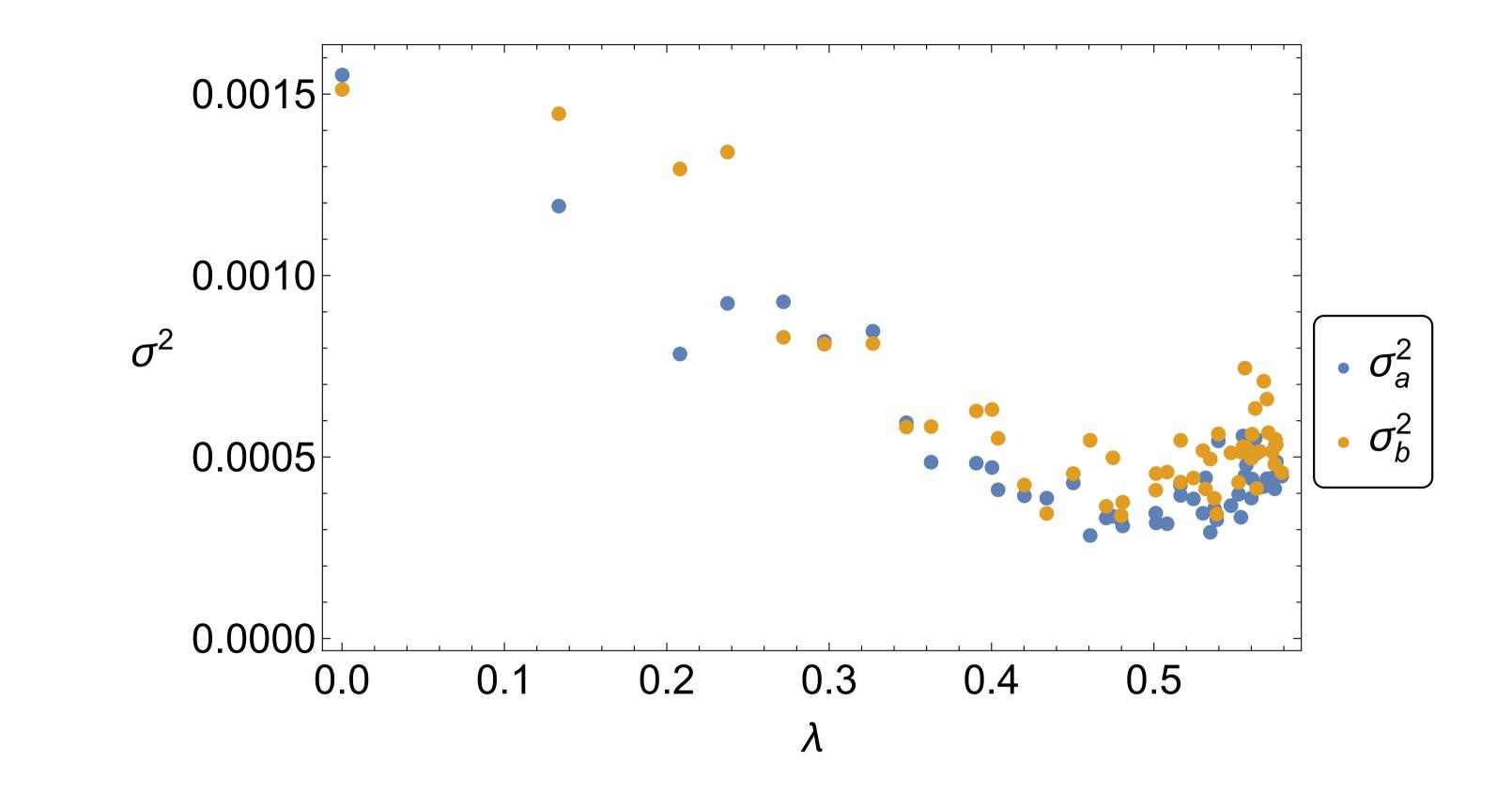
Krylov state complexity

- The variance becomes larger in the non-chaotic regime compared to the chaotic regime.
- The Krylov complexity does not grow exponentially.

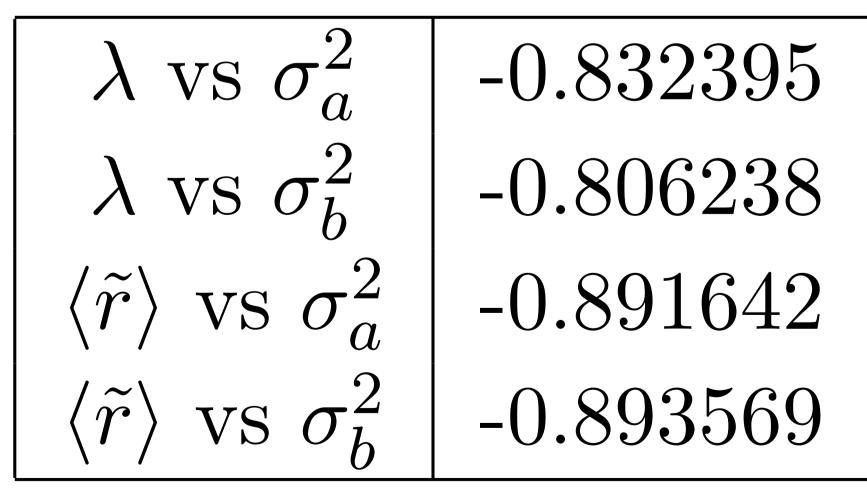
The peak value of Krylov state complexity depends on a/R.

The peak behavior [Balasubramanian, Caputa, Magan, Wu 2022] [Erdmenger, Jian, Xian 2023]

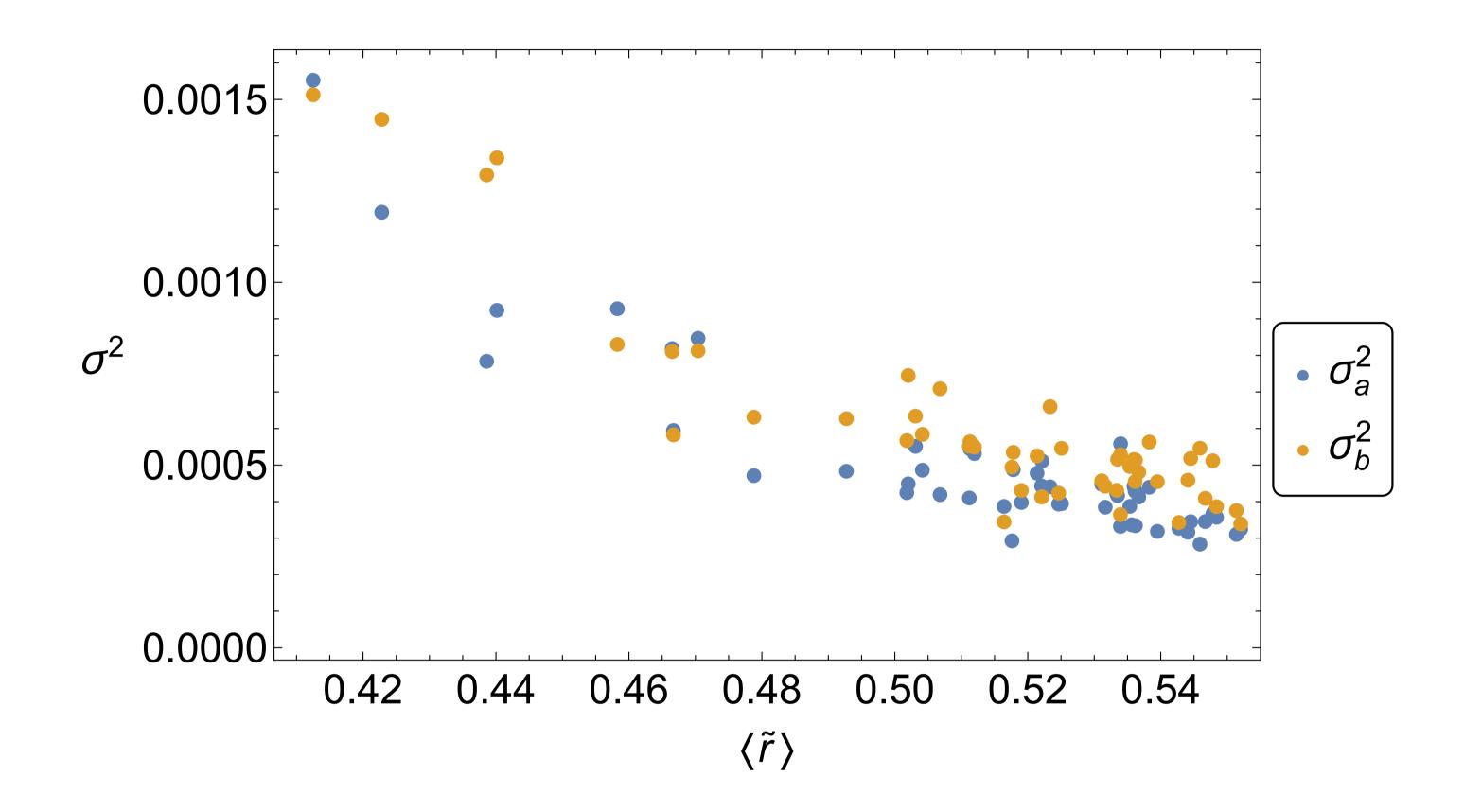
a / R ____ [— 0.3 ____ 0 4 — 0.5 — 0.6 - 0.7 **—** 0.8 0.9 2.0 2.5 .5



Correlation coefficients

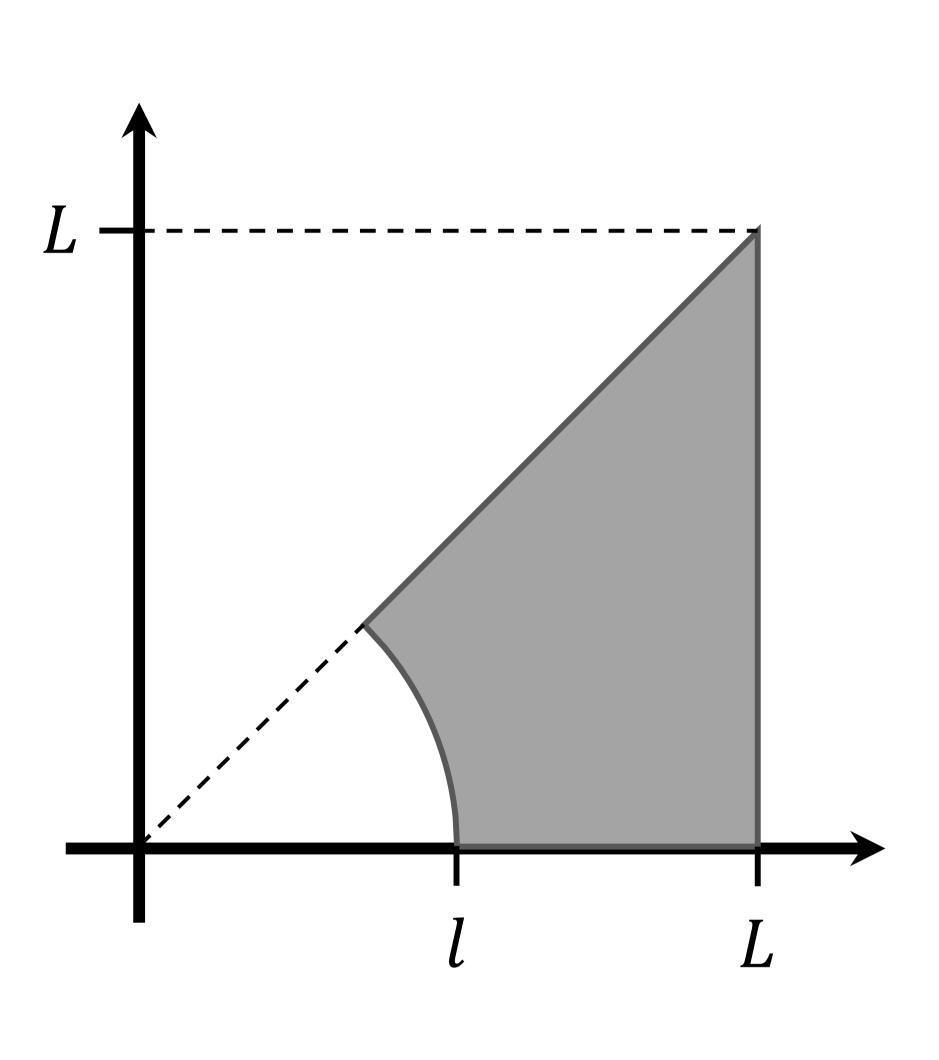


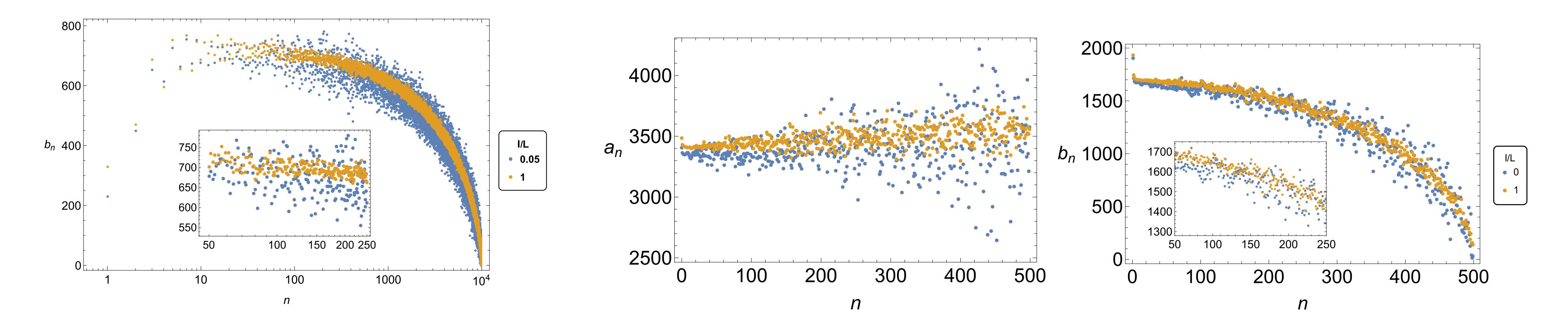
Correlation in the stadium billiard



• A clear correlation exists between $\sigma_{a,b}^2$, λ , and $\langle \tilde{r} \rangle$. • $\sigma_{a,b}^2$ can be a measure of quantum chaos.

How about another billiard system?



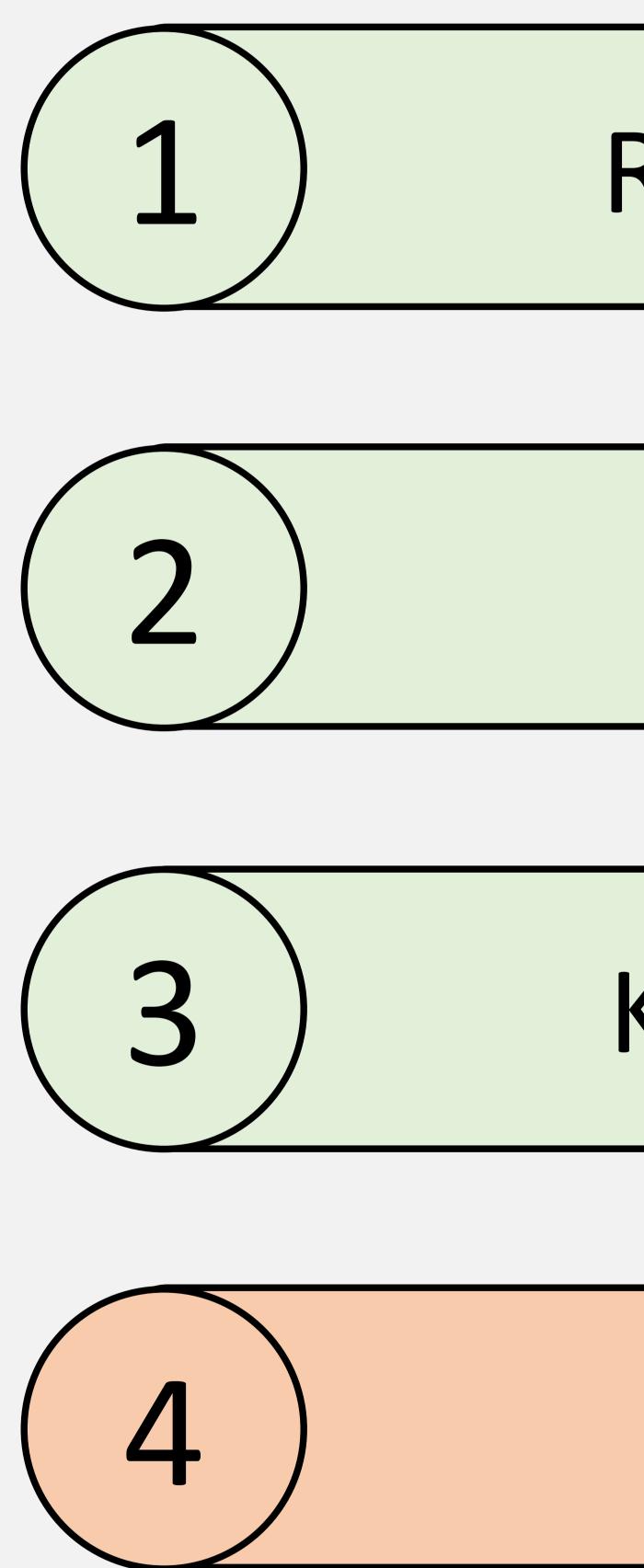


Universality: the Sinai billiard

- •

Again, the variance of Lanczos coefficients becomes larger in the non-chaotic regime compared to the chaotic regime.

The result may be universal for generic quantum mechanics.

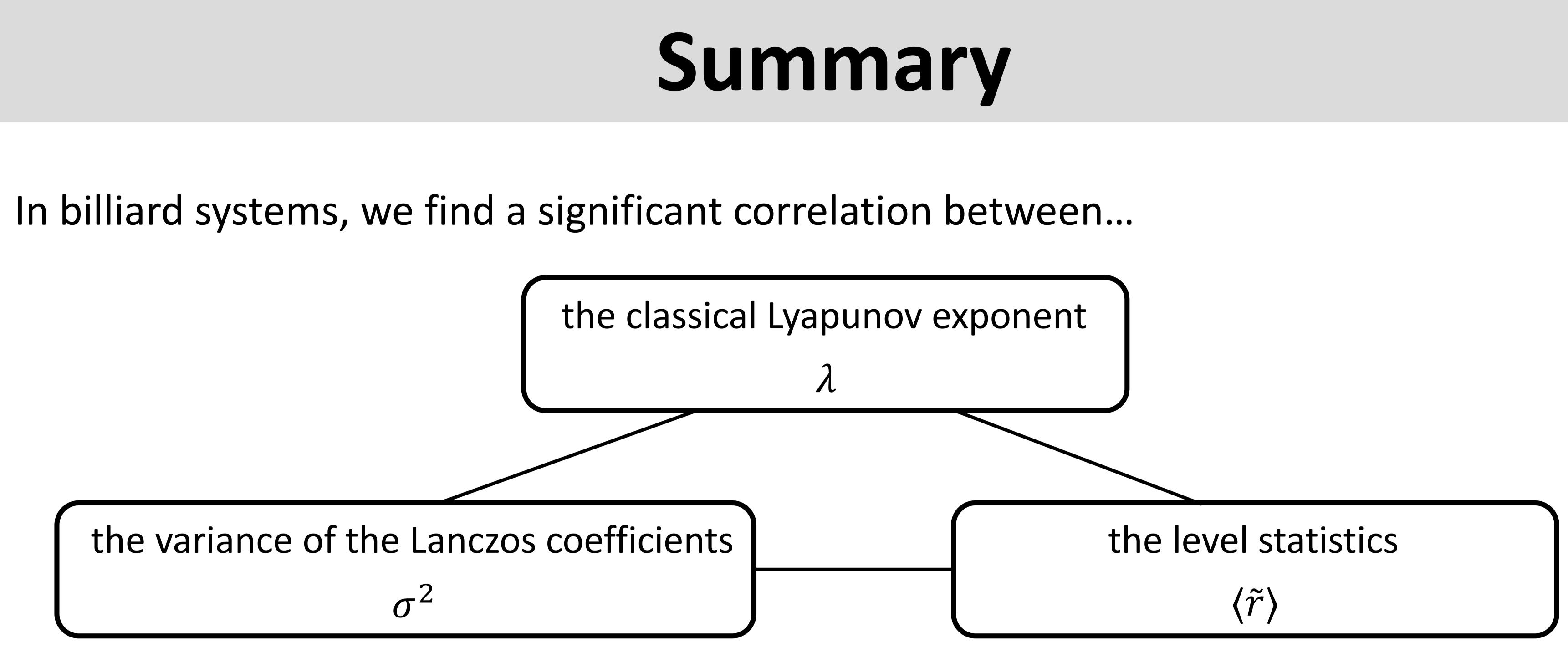


Outline

Review on classical/quantum chaos (3 slides)

Review on Krylov complexity (6 slides)

Krylov complexity and chaos in QM (9 slides)

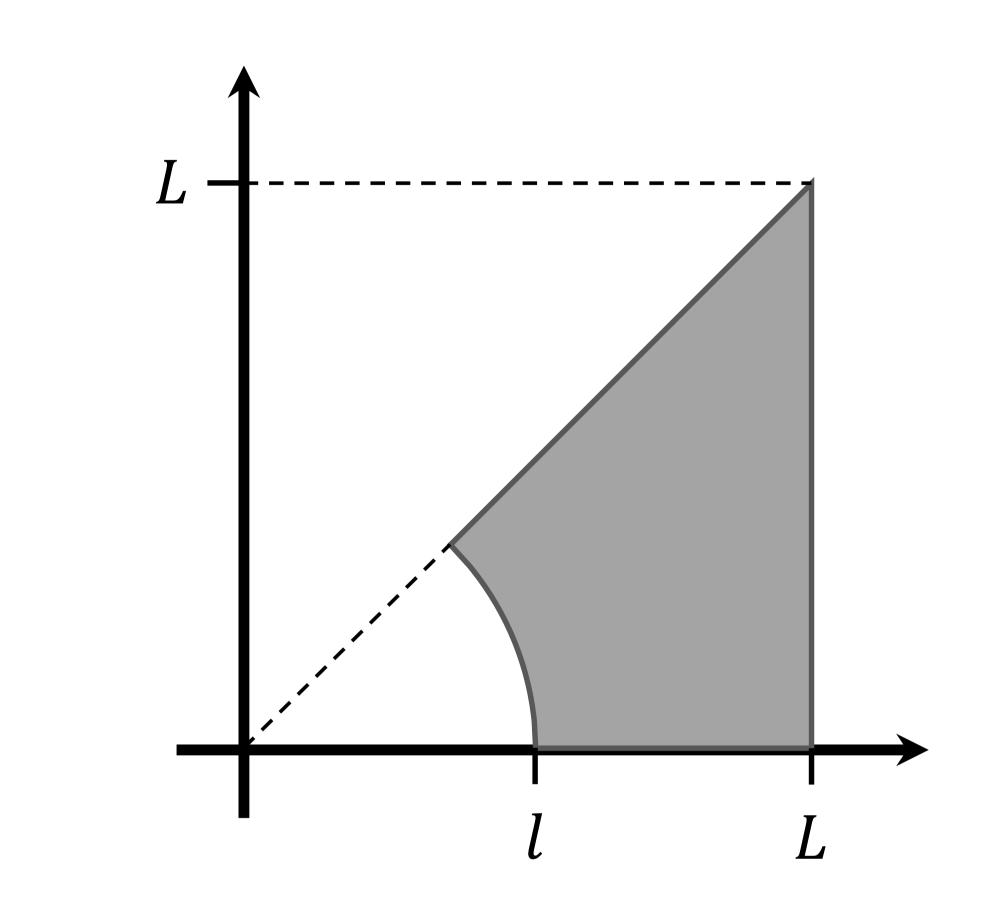


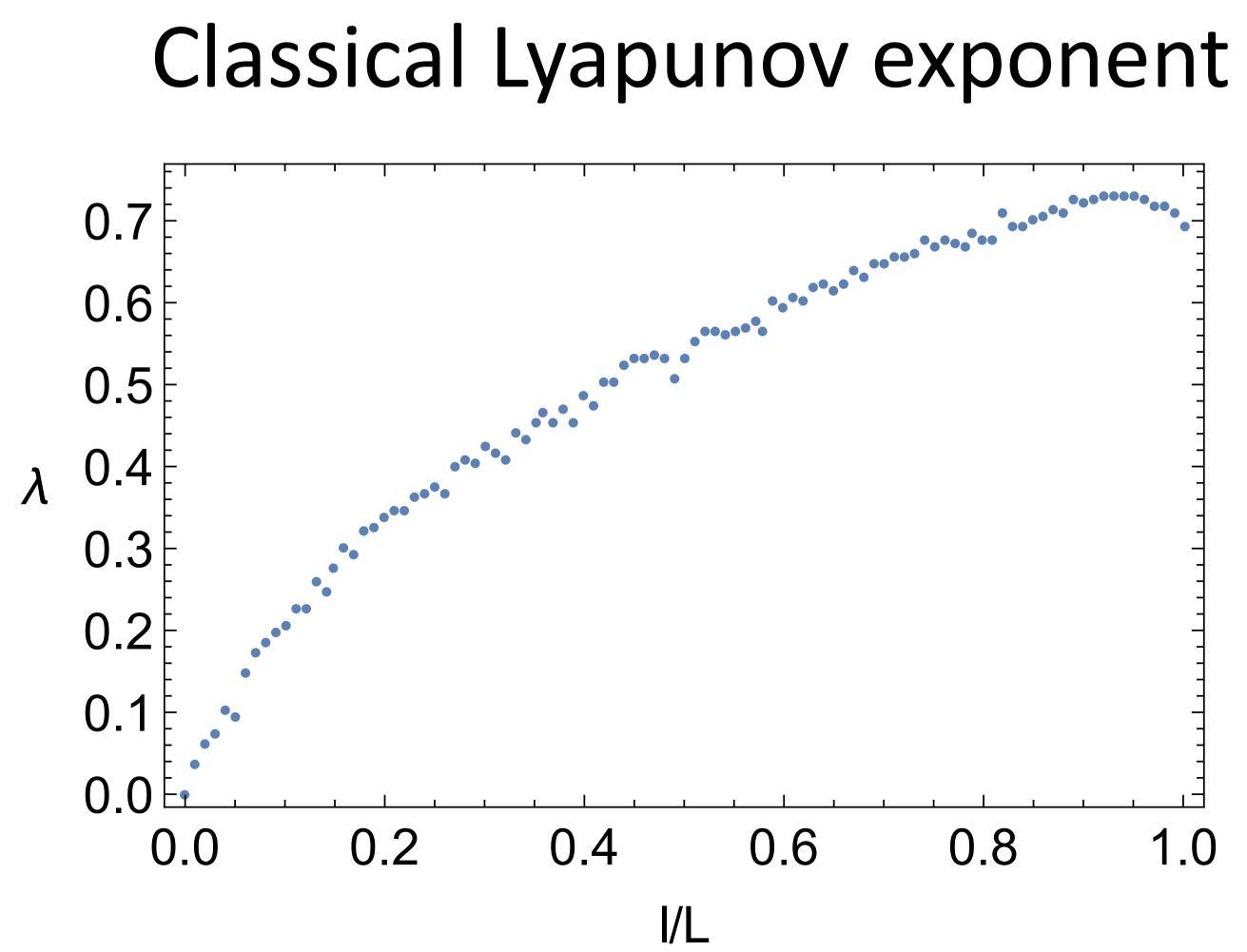
• The variance of the Lanczos coefficients can be a measure of quantum chaos.

Other quantum mechanical systems?

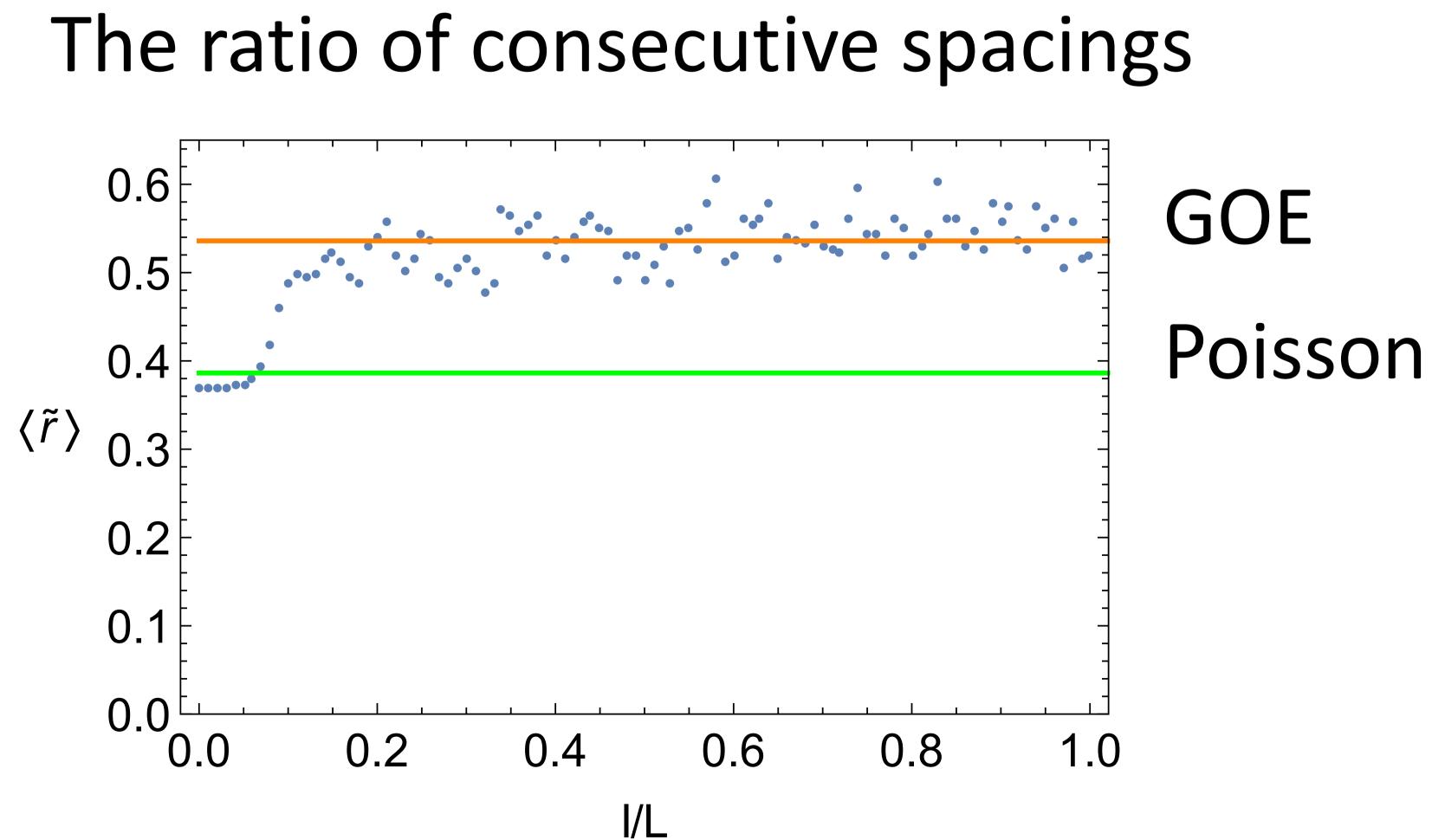
Holographic interpretation of the Krylov complexity?

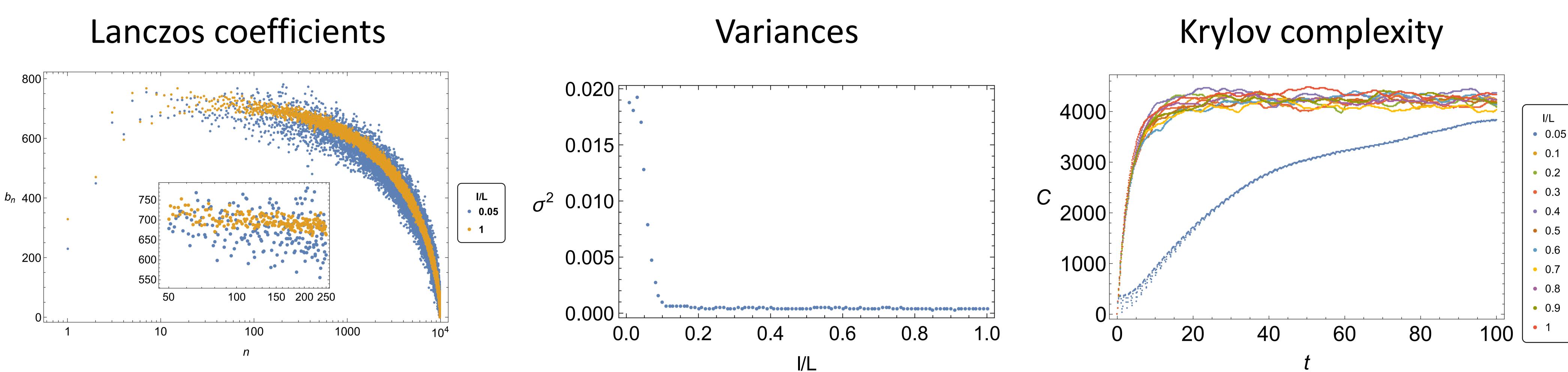
Classical/quantum chaos in the Sinai billiard





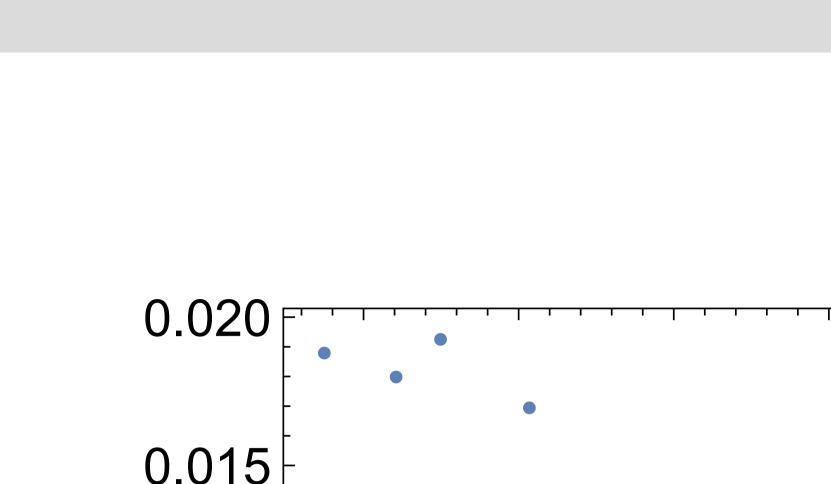
The geometry is characterized by l/Ll/L = 0: non-chaotic $l/L \gtrsim 0$: chaotic

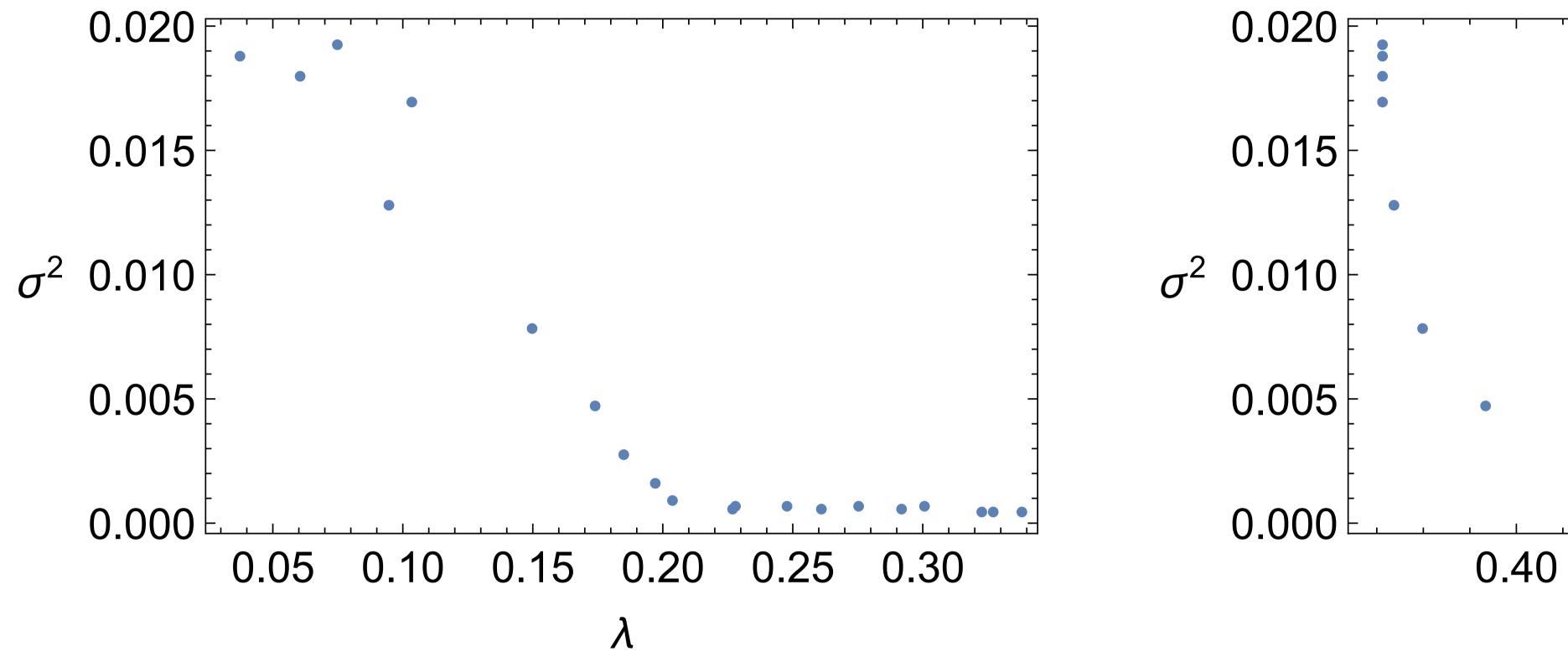




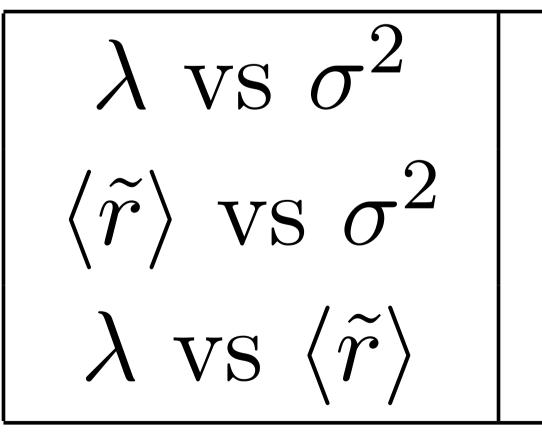
The variance becomes larger in the non-chaotic regime compared to the chaotic regime. The Krylov complexity does not grow exponentially.

Krylov operator complexity



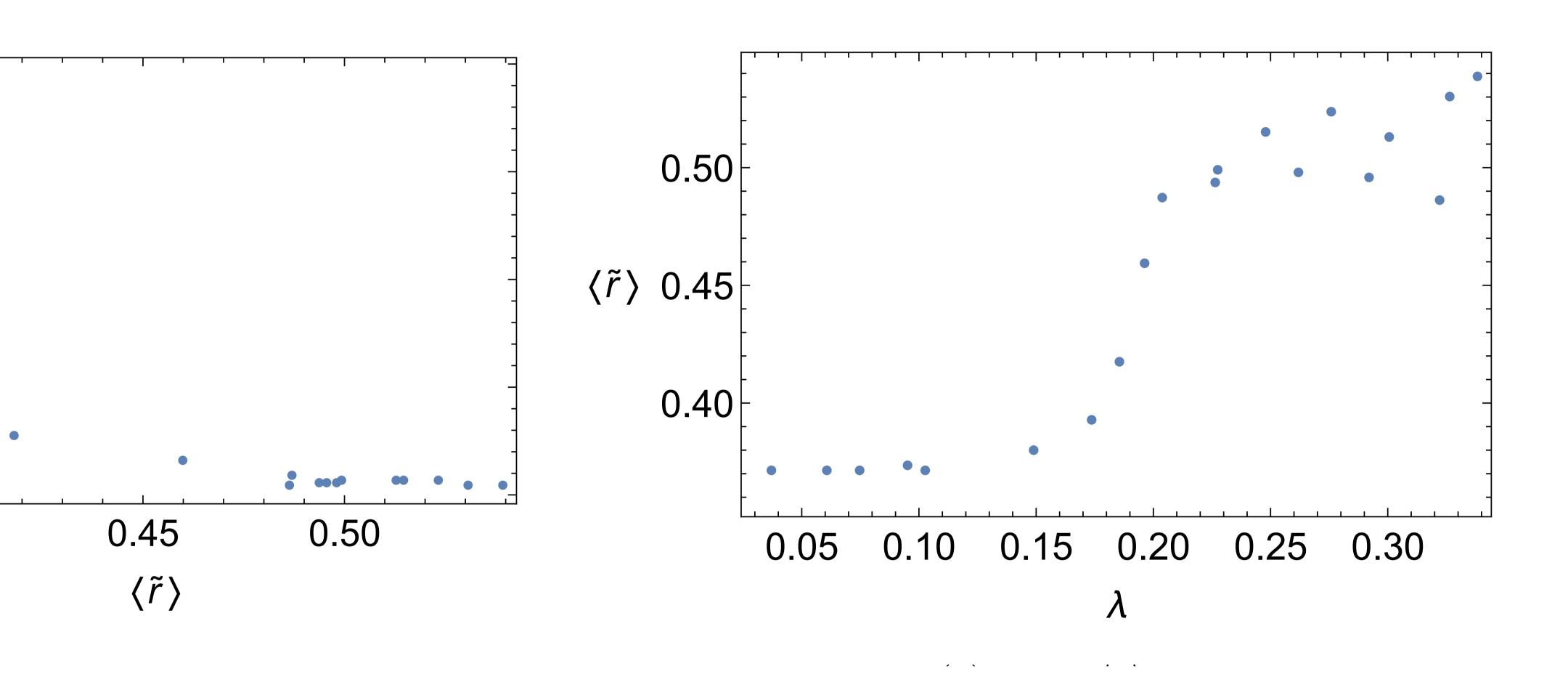


Correlation coefficients

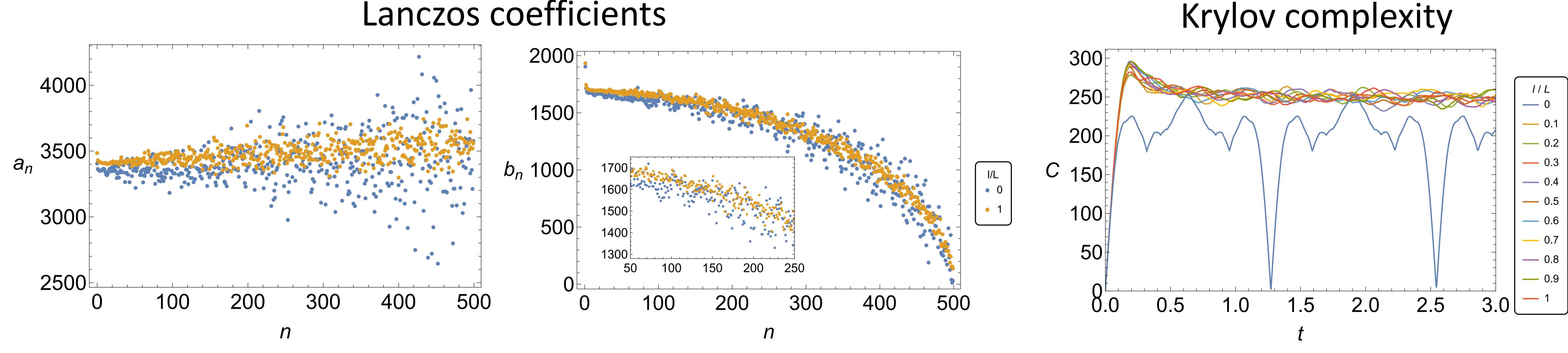


Correlation in the Sinai billiard

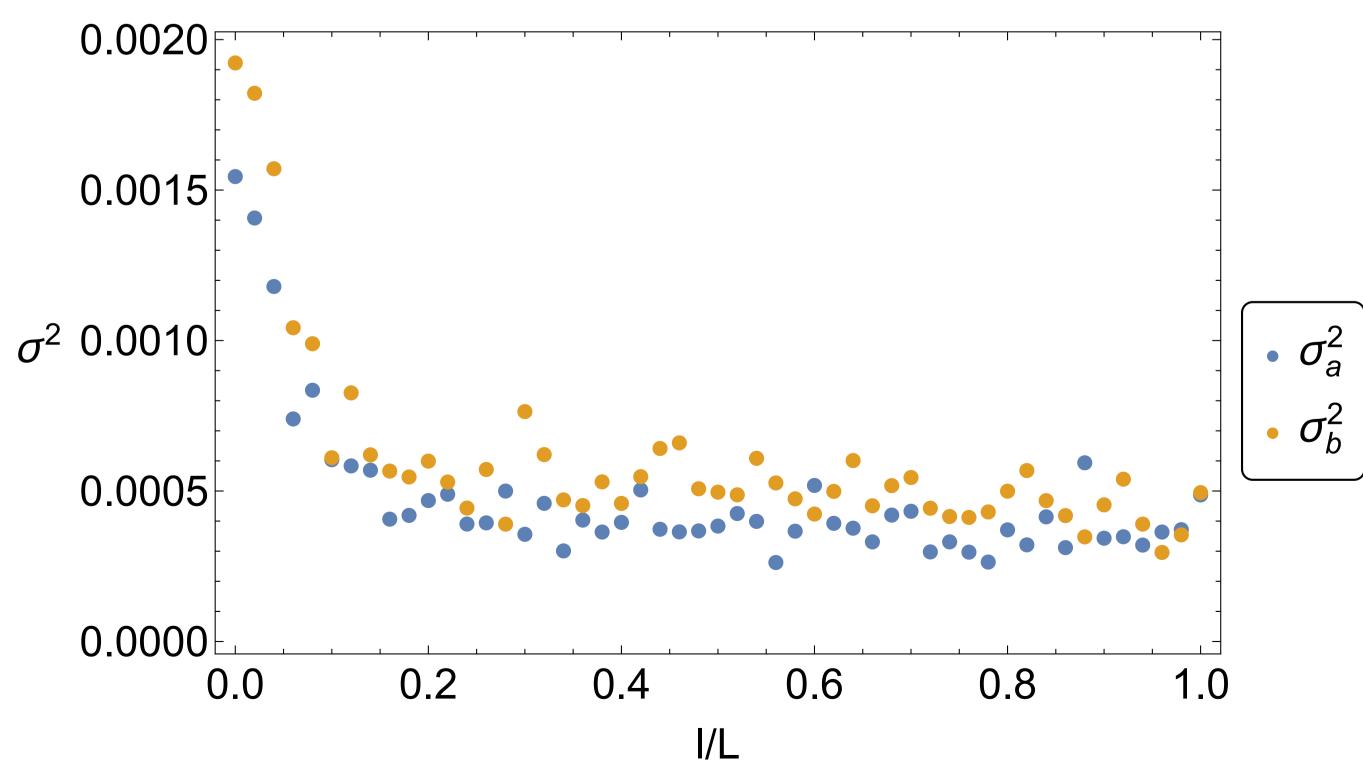
-0.899970-0.8727230.924828



• A clear correlation exists between σ^2 , λ , and $\langle \tilde{r} \rangle$. • σ^2 can be a measure of quantum chaos.



Variances

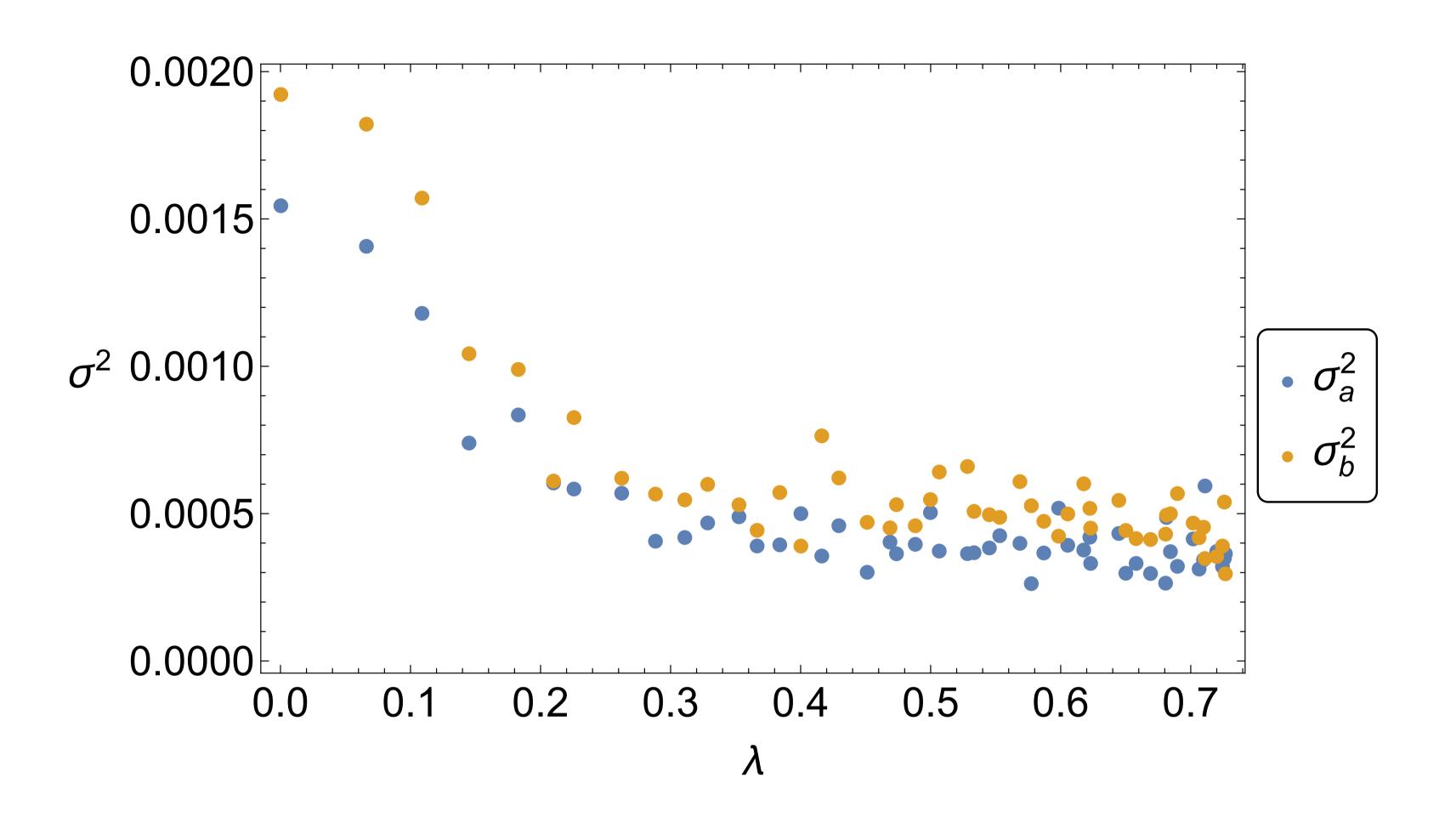


Krylov state complexity

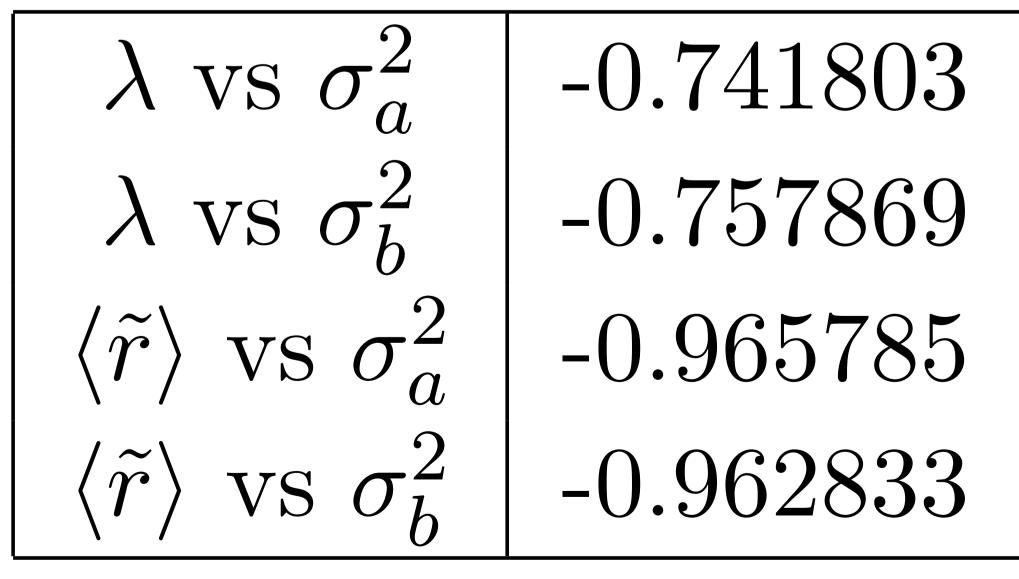
Lanczos coefficients

- The variance becomes larger in the non-chaotic regime compared to the chaotic regime.

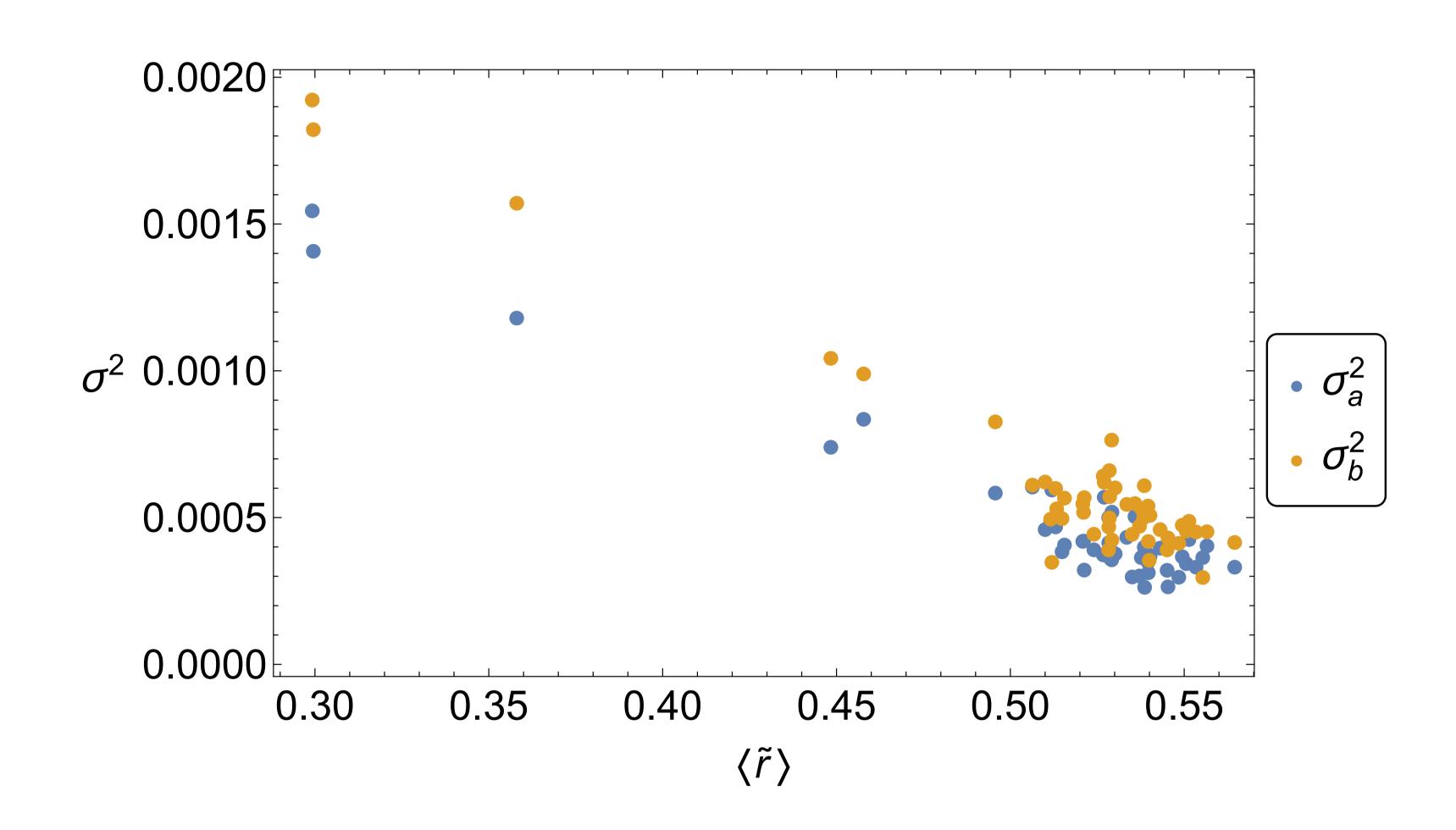
- The Krylov complexity does not grow exponentially.
- The peak value of Krylov state complexity depends on a/R.



Correlation coefficients

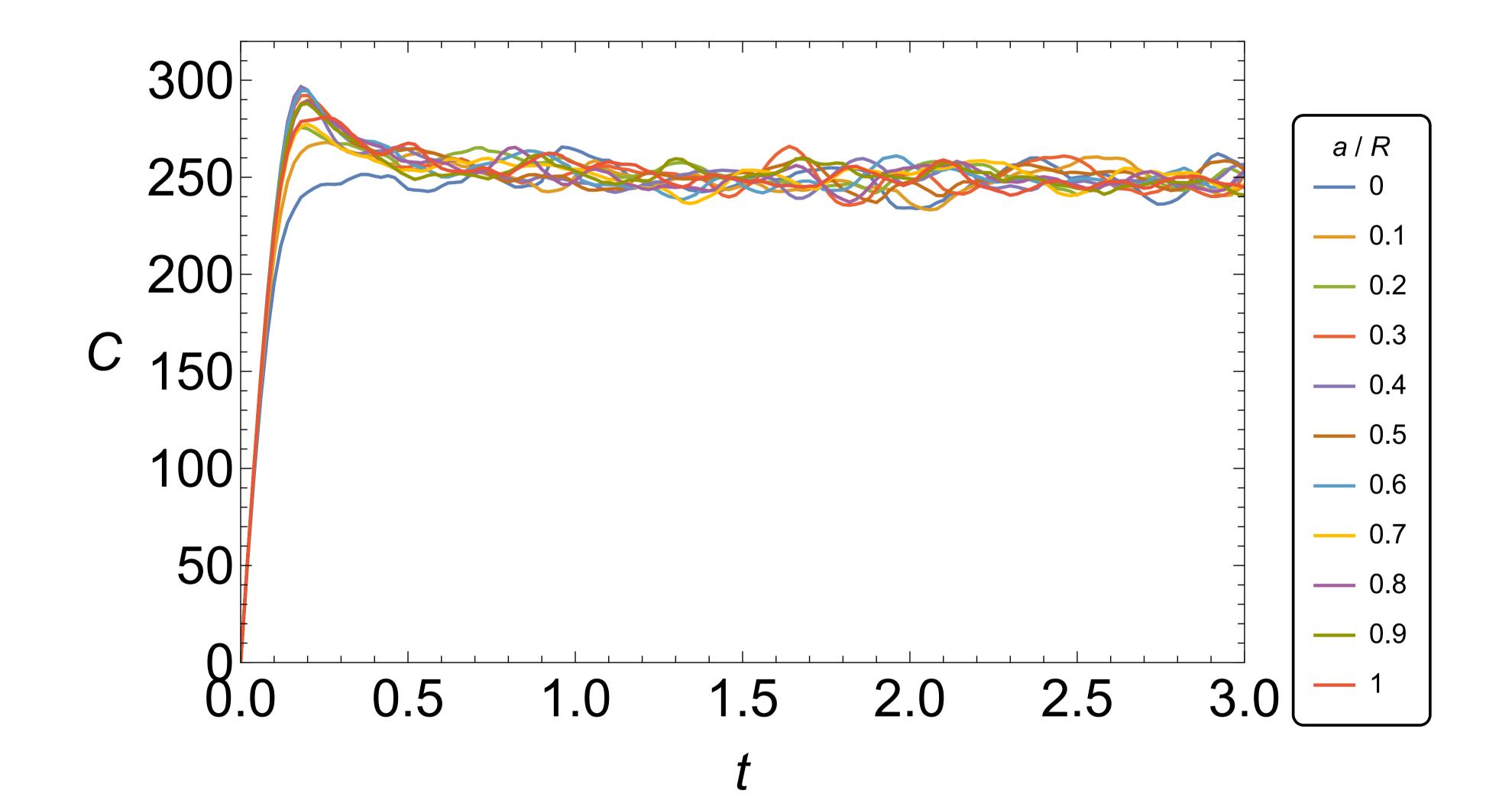


Correlation in the Sinai billiard

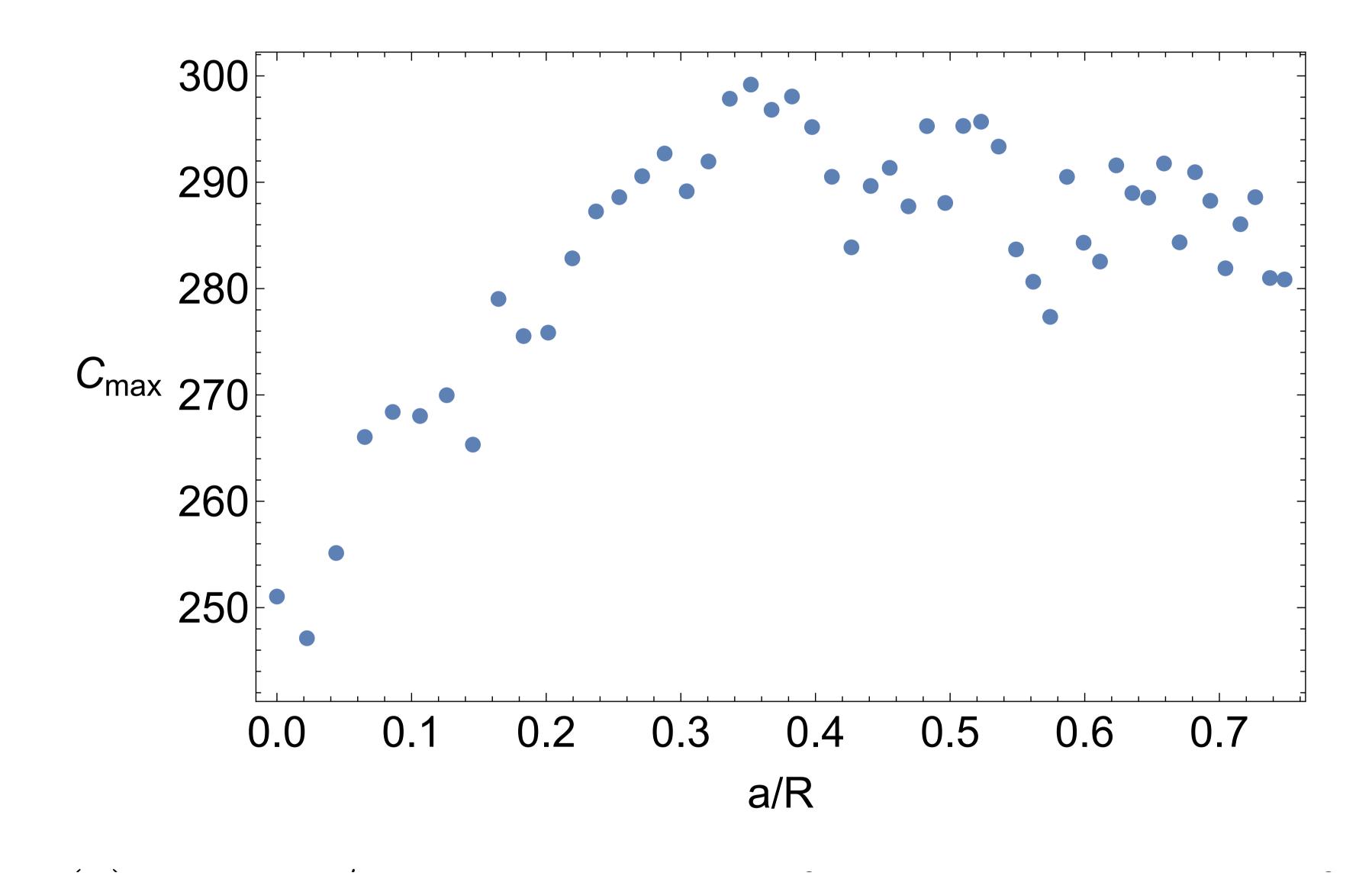


• A clear correlation exists between $\sigma_{a,b}^2$, λ , and $\langle \tilde{r} \rangle$. • $\sigma_{a,b}^2$ can be a measure of quantum chaos.

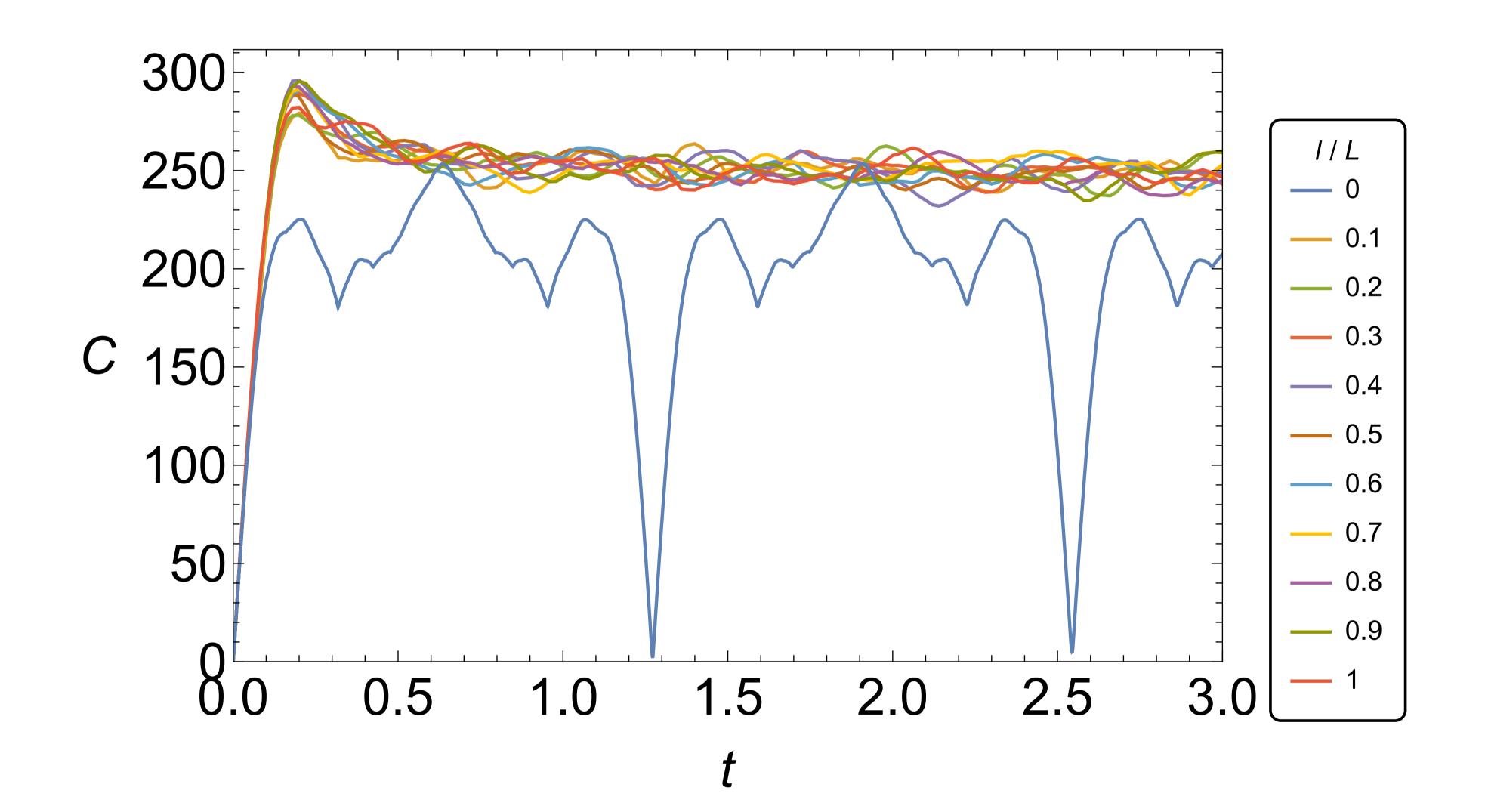
The peak value of Krylov state complexity



Stadium billiard



The peak value of Krylov state complexity



Sinai billiard

