

Two new quantum information measures in AdS/CFT

Priv. Doz. Dr. René Meyer Lehrstuhl für Theoretische Physik III Institut für Theoretische Physik & Astrophysik Julius Maximilians Universität Würzburg

Topic 1

Symmetry resolved entanglement in AdS₃/CFT₂ Entanglement at fixed subregion charge

S. Zhao, C. Northe, RM, JHEP 2021 (arXiv: 2012.11274) K. Weisenberger, S. Zhao, C. Northe, RM, JHEP 2021 (arXiv: 2108.09210) S. Zhao, C. Northe, K Weisenberger, RM, JHEP 2022 (2202.11111) G. Di Giulio, C. Northe, R. Meyer, H. Scheppach, S. Zhao 2212.09767

$\begin{array}{l} Topic \ 2 \\ \mbox{Berry phases in AdS/CFT and beyond} \end{array}$

EPR pair of spins Wormhole (ER bridge)

Berry phases probe non-factorization of Hilbert space

Berry phase in QM and wormholes **F. S. Nogueira, S. Banerjee, M. Dorband, RM, J. v. d. Brink, J. Erdmenger, PRD 2022** Berry phases in AdS3/CFTs **S. Banerjee, M. Dorband, J. Erdmenger, RM, A.-L. Weigel, 2202.11717**

Quantum Information and AdS/CFT Emergence of holographic space-time from quantum information?

Building up spacetime with quantum entanglement

Mark Van Raamsdonk

Department of Physics and Astronomy, University of British Columbia 6224 Agricultural Road, Vancouver, B.C., V6T 1W9, Canada mav@phas.ubc.ca

Abstract

In this essay, we argue that the emergence of classically connected spacetimes is intimately related to the quantum entanglement of degrees of freedom in a non-perturbative description of quantum gravity. Disentangling the degrees of freedom associated with two regions of spacetime results in these regions pulling apart and pinching off from each other in a way that can be quantified by standard measures of entanglement.

arXiv:1005.3035 [hep-th]

Wormhole (Einstein-Rosen bridge)

Entanglement Entropy in AdS3/CFT2

Minimal length curve (geodesic) anchored at the ends of the entangling interval

$$S(\mathcal{A}) = \frac{\text{Length}(\Sigma[\mathcal{A}])}{4G_3}$$

$$c = \frac{3L}{2G_3} \gg 1$$
L... Curvature Radius of AdS3 space-time
$$For \text{ ground state of 2D CFTs:}$$

$$S(\mathcal{A}) = \frac{c}{2} \log \frac{|v-u|}{2}$$

 ϵ

 $\epsilon \dots$ Short Distance Cutoff

Ryu, Takayanagi 2006 Hubeny-Rangamani-Takayanagi 2007 Holzhey-Larsen-Wilczek 1994, Cardy-Calabrese 2004

Symmetry Resolved Entanglement Entanglement entropy in each charge sector, e.g. U(1) $Q = Q_{\mathcal{A}} \oplus Q_{\mathcal{B}}.$ charge operator Qeigenstate of Q, $[\rho, Q] = 0$. $[\rho_{\mathcal{A}}, Q_{\mathcal{A}}] = 0$. Block decomposition: $\rho_{\mathcal{A}} = \bigoplus_{q} \rho_{\mathcal{A}}(q)$ Symmetry Resolved Renyi and Entanglement Entropy:

$$S_n(q) = \frac{1}{1-n} \log \operatorname{Tr}\left(\frac{\rho_{\mathcal{A}}(q)}{P_{\mathcal{A}}(q)}\right)^n \qquad P_{\mathcal{A}}(q) = \frac{\operatorname{Tr}\rho_{\mathcal{A}}(q)}{\operatorname{Tr}\rho_{\mathcal{A}}} = \operatorname{Tr}\rho_{\mathcal{A}}(q)$$
$$S_1(q) = \lim_{n \to 1} S_n(q) = -\operatorname{Tr}\left(\frac{\rho_{\mathcal{A}}(q)}{P_{\mathcal{A}}(q)}\log\frac{\rho_{\mathcal{A}}(q)}{P_{\mathcal{A}}(q)}\right)$$

Sela, Goldstein PRL 2018

AdS₃ dual to U(1)_k Kac-Moody CFT

3D Einstein-Hilbert gravity

$$S_g = \frac{1}{16\pi G_3} \int d^3x \sqrt{g} \left(R + \frac{2}{L^2} \right)$$

L... Curvature Radius of AdS3 space-time To suppress quantum gravity effects: $c=rac{3L}{2G_3}\gg 1$

- U(1)_k Chern-Simons theory-
- $S_{CS} = \frac{ik}{8\pi} \int A \wedge dA$
- k... Chern-Simons level

Asymptotic symmetry analysis: Boundary theory has U(1)k Kac-Moody symmetry Hilbert space factorizes into gravitational and U(1) part P. Kraus arXiv:hep-th/0609074 S. Zhao, C. Northe, RM, JHEP 2021 (arXiv: 2012.11274) K. Weisenberger, S. Zhao, C. Northe, RM, JHEP 2021 (arXiv: 2108.09210)

Single Interval SREE in AdS₃/CFT₂

Charged twist operator induces flux: Sela, Goldstein PRL 2018

 $\sigma_{n,\mu}(v_2) \quad \tilde{\sigma}_{n,\mu}(v_1)$

 $(\mathcal{R}_1, \mathcal{L}^{(n)}, \mu)$

Wilson line following the Ryu-Takayanagi geodesic

CFT₂ result matches AdS₃ result for c>>1 $S_1(q) = \frac{c}{6}\ell - \frac{1}{2}\log\left(\frac{k\ell}{2\pi}\right) \quad \text{with} \quad \ell = 2\log\frac{|v_1 - v_2|}{\epsilon}$

Equipartiton of entanglement!

Suting Zhao, Christian Northe, RM, JHEP 2021 (arXiv: 2012.11274) Xavier et.al. 2018, Belin, Hung et.al. 2013

Further Checks

 Single interval with uncharged/charged heavy primary insertions

•Two intervals in the ground state

S. Zhao, C. Northe, RM, JHEP 2021 (arXiv: 2012.11274) K. Weisenberger, S. Zhao, C. Northe, RM, JHEP 2021 (arXiv: 2108.09210)

BCFT corrections to SRE

Boundary states change the factorized Hilbert space

Ohmori & Tachikawa 2015, Cardy & Tonni 2016

Choose boundary conditions which preserve conformal symmetry and U(1)

$$T = \overline{T}|_{bdy}$$
 $J = \pm \overline{J}|_{bdy}$

For CFT vacuum:

$$= \frac{q^{L_0-c/24}}{Z_{\alpha\beta}(q)} \quad \text{where } Z_{\alpha\beta}(q) = \operatorname{tr}_A q^{L_0-c/24} \text{ and } q = e^{-2\pi^2/W}$$

Partition function splits into representations \mathcal{H}_i of chiral algebra with characters $\chi_i(q) = \operatorname{tr}_{\mathcal{H}_i} q^{L_0 - c/24}$

 ρ_A

$$Z_{\alpha\beta}(q) = \sum_{i\in\sigma} \mathsf{n}_{\alpha\beta}^{i} \chi_{i}(q) \approx \chi_{\Omega}(\tilde{q}) \underbrace{\times \mathsf{g}_{\alpha}\mathsf{g}_{\beta}}_{\mathsf{S}_{\mathsf{bdy}}^{\alpha\beta} = \mathsf{log}[\mathsf{g}_{\alpha}\mathsf{g}_{\beta}]},$$

Free Boson: Exact equipartition to all orders in UV cutoff G. Di Giulio, C. Northe, RM, H. Scheppach, S. Zhao, arXiv: 2212.09767

Breakdown of Equipartition

SL(3,R) Higher Spin Gravity in 3D: W₃ symmetric CFT Energy-momentum tensor plus Spin 3 current

$$T(z)W(w) = \frac{3W(w)}{(z-w)^2} + \frac{\partial W(w)}{z-w} + \cdots$$

Charged moments for a single interval:

Topological black hole grand canonical partition function Kraus+Perlmutter (2011) Caberdiel+Hartman+Jin (2012)

$$\log \operatorname{Tr} \left(e^{-2\pi n \mathcal{H} + 2\pi i \mu Q_{\mathcal{A}}} \right) = \frac{c\ell}{6n} \left(-\frac{1}{3} \frac{\mu^2}{n^4} + \frac{10}{27} \frac{\mu^4}{n^8} + \cdots \right)$$

Fourier transformation and taking the replica limit yields breakdown of equipartition in SREE at large c.

Suting Zhao, Christian Northe, Konstantin Weisenberger, RM, JHEP 2022, 2202.11111

Berry Phases and Wormholes

- Wormholes relate entanglement and geometry in AdS/CFT (EPR=ER) van Raamsdonk; Maldacena, Susskind
- Wormhole-like structures also in QM systems
 Verlinde
- Mathematical structure: Non-exact symplectic form
- Berry phases for entangled two-qubit system and for wormhole geometries share similar structure
- States with same entanglement differ in Berry phase
- Berry phases related to non-exact symplectic form
- Indicate wormhole-like structures & non-factorization
- May be realized experimentally

F. S. Nogueira, S. Banerjee, M. Dorband, RM, J. v. d. Brink, J. Erdmenger, PRD 2022

S. Banerjee, M. Dorband, J. Erdmenger, RM, A.-L. Weigel, 2202.11717

Nonexact Symplectic Structures & Wormholes

H. Verlinde 2021

If symplectic structure is non-exact:

$$\langle Z(\beta)^n \rangle = Z(\Sigma_n)$$
 $\Sigma_n =$

Berry Phases in Quantum Mechanics

Time-dependent Schrödinger eq.:

$$i\hbar\frac{\partial|\psi\rangle}{\partial t} = H(\lambda(t))|\psi\rangle$$

 $\lambda(t)$ adiabatic parameter

$$|\psi(t)\rangle = U(t) |n(\lambda(t))\rangle$$

 $|n(\lambda(t))\rangle$ instantaneous energy Eigenstates

$$\mathcal{A}_i(\lambda) = -i\langle n|\frac{\partial}{\partial\lambda^i}|n\rangle$$

Berry phase:

$$e^{i\gamma} = \exp\left(-i\oint_C \mathcal{A}_i(\lambda) \, d\lambda^i\right)$$

Review: Lectures by David Tong

Adiabatic theorem:

Berry connection:

Gauge Berry Phase in Bulk Wormhole

$$U_{+}|\mathsf{TFD}\rangle \equiv e^{-\mathrm{i}(H_{L}+H_{R})\delta}|\mathsf{TFD}\rangle$$
$$= \frac{1}{\sqrt{Z}}\sum_{n}e^{-2\mathrm{i}E_{n}\delta}e^{-\frac{\beta}{2}E_{n}}|n\rangle_{L}|n\rangle_{R}^{*}$$

- Boundary times t_L and t_R naturally identified at the boundary
- Further identification at the horizon necessary [H. Verlinde '20]

 $\begin{cases} \text{at } B: \quad t_L = t_R \\ \text{at } H: \quad t_L = 2\delta - t_R \end{cases}$

• δ can be understood as topological phase

$$|\mathsf{TFD}
angle = rac{1}{\sqrt{Z}} \sum_{n} e^{-rac{eta}{2}E_{n}} |n
angle_{L} |n
angle_{R}^{*}$$

F. S. Nogueira, S. Banerjee, M. Dorband, RM, J. v. d. Brink, J. Erdmenger, PRD 2022

Gauge Berry Phase in Bulk Wormhole

CFT side

$$U_{+}|\mathsf{TFD}\rangle = \frac{1}{\sqrt{Z}} \sum_{n} e^{-2\mathrm{i}E_{n}\delta} e^{-\frac{\beta}{2}E_{n}} |n\rangle_{L} |n\rangle_{R}^{*}$$

$$A_{\delta} = i \langle \text{TFD} | U_{+}^{\dagger} \partial_{\delta} U_{+} | \text{TFD} \rangle$$
$$= \frac{2}{Z} \sum_{n} E_{n} e^{-\beta E_{n}}$$

(JT) Gravity side

$$U_-|\mathsf{TFD}
angle\equiv e^{\mathrm{i}(H_L-H_R)\delta}|\mathsf{TFD}
angle=|\mathsf{TFD}
angle$$

Phases generated by proper bulk diffeomorphisms Phase space: $(\delta, H_L + H_R)$ **Non-exact symplectic form** Holonomy measure non-factorization Harlow, Jafferis 2019

Geometric Phase and Operator Algebras

- In bipartite quantum systems, geometric phases can be used to describe the entanglement between the subsystems.
- In this case, the geometric phase provides information about the geometry of state space inaccessible to a local observer.
- In the context of vN algebras, the existence of a trace functional for von Neumann algebras are related to the absence of a geometric phase (2306.00055).
- In particular, the non-vanishing geometric phase of the cyclic and separating vector for a type III algebra provides a geometric interpretation for the absence of the trace.
- In type II algebras, the trace is defined since the cyclic and separating vector has a vanishing geometric phase.
- This was realised in holography for the eternal black hole in terms of the geometric phase of the TFD state [Nogueira et al '21]

S. Banerjee, M. Dorband, J. Erdmenger, A.-L. Weigel, 2306.00055

Conclusions & Outlook

- Symmetry resolved entanglement provides new tests of "extended" AdS₃/CFT₂ correspondence
- First example of breakdown of equipartition at large c
- BCFT corrections to SRE, exact equipartition proof
- Outlook:

Improved understanding of AdS Quantum Gravity as well as strongly interacting physics by symmetry resolution Applications to condensed matter systems **Oblak et.al. (2022)** BCFT corrections on the gravity side

- Non-Factorization due to non-exact symplectic form
- Results in non-zero Berry phase
- Same mathematical structure in QM models
- Berry phase is experimentally measurable
- Route to a better understanding of factorization puzzle (Type III vs. type II operator algebras)