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Introduction: Holography

SBH =
Ac3

4Gℏ

Most prominent example of the 
 Holographic Principle:  

The AdS/CFT Correspondence



AdS/CFT

Condensed Matter Physics 

(Superconductivity,  

Optics, …) 
Quantum Information 

(Entanglement entropy, 
Quantum 

Complexity,…)

Hydrodynamics

But, our world is clearly  
Not AdS!

For many astrophysical  
purposes, the universe is  

well approximated by 
Flat spacetimes 

Complexity in 
Flatspace 

holography?



Outline of the rest of talk: 

Quantum Computational Complexity: General Notion 

Complexity in AdS/CFT Holography: 2d CFT Revisited 

BMS_3 in Flat Space Holography 

Complexity in Flat Holography 

• Limiting approach: From CFT to BMS 

• Intrinsic Analysis    

Summary and Discussions



Complexity in AdS/CFT Holography 



Quantum Computational Complexity

The notion of computational complexity is borrowed from quantum information. [Nielsen et al 2006, 2007] 

 Describes the minimum number of operations (gates) to reach from one reference state  to the target 

state . [Watrous  2008] 

For discrete system: an extremal circuit consisting of quantum gates starting from  to . 

For field theories: a geodesic distance in the manifold of unitary (group) operators.  

Also characterises quantum chaos and grows linearly with time in chaotic systems, and responds to 

perturbations distinctly. [See Dymarsky’s talk and later talks today] 

Similarity with the behaviour of the volume behind the event horizon of a black hole.

|ψR⟩

|ψT⟩

|ψR⟩ |ψT⟩



Complexity in Holography

Conjectured primarily in the context of AdS/CFT. [Nice review in Chapman, Policastro 2021] 

New addition to the holographic dictionary through AdS/CFT, connecting several aspects of black hole 

physics, e.g. the interior and information processing inside the black hole. 

• Complexity=Volume (CV) [Stanford, Susskind 2014] 

• Complexity=Action (CA) [Brown, Roberts, Susskind, Swingle, Zhao  2015] 

• Complexity= Geometric action [Caputa, Megan 2018, Erdmenger et al 2020] 

There have been different notions of complexity and successful applications in many condensed matter and 

quantum field theories. 

Very little progress in extending the computation of holographic complexity for non-Lorentz invariant field 

theories.



Complexity for 2d CFT: Review

The symmetry generators for 2d CFTs give two copies of the Virasoro algebra.

 

Group elements of Virasoro  :    diffeos on  ,  from central extension. 

 : conformal transformations in 2d ( ). 

Geometric notion of Nielsen’s complexity defines an extremised path (geodesic) in the manifold of 

the group transformations from  to . 

Use infinitesimal symmetry transformations as gates, . 

Group elements are related by instantaneous group velocities:    

                     

               [also for Kac-Moody ]                                                [Caputa, Magan 2018; Erdmenger, Gerberhagen, Weigel 2020 ]                                              

[ℒm, ℒn] = (m − n)ℒm+n +
c

12
(n3 − n)δm+n,0, [ℒ̄m, ℒ̄n] = (m − n)ℒ̄m+n +

c̄
12

(n3 − n)δm+n,0 .

( f(σ), 𝔞) f(σ) 𝕊1 𝔞 ∈ ℝ

σ → f(σ) σ ∈ 𝕊1

|ψR⟩ |ψT⟩

|ψT⟩ = Uf(T) |ψR⟩

f(t + dt, σ) = eϵ(t,σ)dt ⋅ f(t, σ)

 Circuit complexity functional  = Geometric action on Virasoro co-adjoint orbit



Circuit Complexity for Virasoro: More Details  
[Caputa, Magan 2018; Erdmenger, Gerberhagen, Weigel 2020 ]

,   is the time to reach from  to . Unitary representations of the group elements:  . 

Decomposing in terms of infinitesimal transformations ;  initial state is the reference 

state . 

In 2d CFT, the conserved energy-momentum tensor  is used to write the gates,   . 

  describes the infinite symmetry transformations applying at a given time, denotes time-dependent group 

velocity. 

Choice of cost function:  

Density matrix  is obtained from the initial density matrix . 

 Complexity functional:  

 gives total cost of a constructed path from  to  in the group manifold in terms of group element  .

|ψT⟩ = Uf(T) |ψR⟩ T |ψR⟩ |ψT⟩ Uf

Uf(T) = Uϵ(T)Uϵ(T−dt) . . . Uϵ(dt)1

Uf(t=0) = 1

T(σ) Q(t) =
1

2π ∫ dσ ϵ(t, σ) T(σ)

ϵ(t, σ)

ℱ = | tr[ρ(t)Q(t)] | = |⟨ψR |U†
f (t) Q(t) Uf(t) |ψR⟩ |

ρ(t) = U(t)ρ0U†(t) ρ0 = |ψR⟩⟨ψR |

C[ f ] = ∫ dtℱ =
1

2π ∫ dt∫ dσ ϵ(t, σ)⟨ψR |U†(t)T(σ)U(t) |ψR⟩ .

C[ f ] |ψR⟩ |ψT⟩ f(t)



Transformed current  is written in terms of inverse diffeomorphism :   . 

. 

Thus, group velocity:  [  resembles Maurer-Cartan form for Virasoro]. 

Choose  (CFT primaries). 
The contribution due to the central extension modifies the cost function:

 [  is the central extension of the Maurer-Cartan form]. 

        Complexity functional=Geometric action 

Minimise  in terms of the group path  and solve the equations of motion.  
The solution gives the optimal circuit, and we put it back to  to find the complexity value. 

Simplest solution: [Caputa, Magan 2018]

U†
f T Uf F F(t, f(t, σ)) = σ

U†
f TUf = F′ 2T(F) +

c
12

{F, σ}

ϵ(t, σ) =
∂f(t, F(t, σ))

∂t
= −

·F(t, σ)
F′ (t, σ)

= θ . θ

|ψR⟩ = |h, h̄⟩

ℱ = cβ(t) + ∫ dσ ϵ(t, σ)⟨ψR |U†(t)T(σ)U(t) |ψR⟩ . β(t)

C[ f ] f(t, σ)
C[ f ]

·f
f′ 

= const, C[ f ](t) ∝ |h −
c

24
| t .

Circuit Complexity for Virasoro: More Details  
[Caputa, Magan 2018; Erdmenger, Gerberhagen, Weigel 2020 ]

C[F] = ∫ dσ dt [−j0(F) ·FF′ +
c

48π

·F
F′ ( F′ ′ ′ 

F′ 

− 2( F′ ′ 

F′ 
)

2

)]



BMS and Flat Space Holography



BMS  in Flatspace Holography

 Symmetry plays an important role in nature. 
 Symmetries at the boundary of the spacetime are given by Asymptotic Symmetry Groups (ASG). 
 The asymptotic symmetry of AdS_3 is enhanced to two copies of infinite dimensional Virasoro 
algebra. [Brown, Henneaux 1986] 
 ASG of asymptotic flat spacetimes at the null boundary ( ) is Bondi-Metzner-Sachs (BMS) 
group. [Bondi, Burg, Metzner 1962, Sachs 1962] 
 For Minkowski spacetime in bulk dimensions D=3, the dual field theory lives on its null boundary in 
d=2, and the ASG is BMS_3, also declared to be the symmetry of the dual field theory. [Bagchi, 
2010] 
 BMS group is also important for Soft graviton / Asymptotic symmetry correspondence, Symmetries 
on the black hole horizon. [Hawking, Perry, Strominger 2016].

ℐ±



 BMS in Flatspace holography

BMS group is infinite-dimensional in bulk dimension $D=3,4$. 

We concentrate on the asymptotic symmetry of 3D bulk flat spacetime, 

the BMS_3 algebra 

           

           

The structure on null boundary  is . 

Here,  generates supertranslations: angle dependent translations on 

the null direction 

 generates super-rotations: Diffeomorphisms on  at null boundary 

For Einstein gravity,  [Barnich, Compere 2007] 

We call the dual BMS_3 invariant field theory in 2d boundary as BMSFT.

[Ln, Lm] = (n − m)Lm+n +
cL

12
δn+m,0(n3 − n)

[Ln, Mm] = (n − m)Mm+n +
cM

12
δn+m,0(n3 − n), [Mn, Mm] = 0.

ℐ+ IR × 𝕊1

Mn

Ln 𝕊1

cL = 0, cM =
3
G

Penrose Diagram of Minkowski  
Spacetime



Flat space holography from AdS/CFT

The asymptotic symmetry algebra for AdS_3 are given by 2 copies of the Virasoro algebra. 

                            ,  

                               

Here,  is the AdS radius and  is Newton's constant.                                                

Next, we take the limit.  [Bagchi 2010] 

The contracted generators  generate BMS_3 algebra, the asymptotic symmetry algebra of 3D flat 

spacetime. 

The central terms for BMS_3 become  and . 

The  limit corresponds to the flat space limit on bulk AdS spacetime.  [Bagchi, Fareghbal ’12] 

The flat space limit in the bulk corresponds to taking Ultra Relativistic (UR) limit (also known as Carrollian limit) 

on the boundary dual field theory. 

[ℒn, ℒm] = (n − m)ℒn+m +
c

12
δn+m,0(n3 − n) [ℒ̄n, ℒ̄m] = (n − m)ℒ̄n+m +

c̄
12

δn+m,0(n3 − n)

[ℒn, ℒ̄m] = 0, c = c̄ =
3l
2G

l G

Ln = ℒn − ℒ̄−n, Mn = ϵ(ℒn + ℒ̄−n), and ϵ =
1
l

→ 0

Ln, Mn

cL = c − c̄ = 0 cM = ϵ(c + c̄) = 3
G

ϵ → 0



BMS Invariant (Carrollian Conformal) Field Theories 
Carrollian limit : . 

Relativistic CFT    Carrollian CFT (CCFT). [Bagchi, Mehra, Nandi 2019, Bagchi, Basu, Mehra, Nandi 2020] 

The (pseudo) Riemannian structure fails on the null surface as the metric degenerates and the light cone 

closes up: emergence of Carrollian Structure. [Levy-Leblond 1965, Sengupta 1966] 

CCFTs live on the null manifold (event horizon,  of the asymptotically flat spacetimes), non-Lorentzian in 

nature. 

BMS group and Carrollian Conformal Group are isomorphic. . 

For dual field theory in 2d, isomorphism arises between the Carrollian and the Galilean limit of relativistic CFTs.  

The Galilean limit is the opposite to the UR limit and here  and the light cone opens up. 

This is the Non-Relativistic (NR) limit realised in terms of spacetime contraction as: . 

The isomorphism between NR and UR limit exists only in 2d, as only one of the directions (spatial or time) gets 

contracted. (We use this isomorphism during our calculation.)

xi → xi, t → ϵt, ϵ → 0 Then ,
v
c

=
1
c

x
t

→ ∞, ⟹ c → 0

Carrollian limit

ℐ±

BMSd+1 = CCFTd

c → ∞

xi → ϵxi, t → t, ϵ → 0



Light Cones opening/collapsing due to Galilean/Carrollian limits [Pic: 
Bagchi,Banerjee, Muraki 2022]



Circuit Complexity in BMS_3 



Circuit Complexity: From CFT_2 to BMS_3

The structure on , for 3d asymptotically flat spacetime, is .  

 Elements are denoted by ( ):  

Take both holomorphic and anti-holomorphic contributions to the complexity calculation for 2d CFT. 

Start with the cost functional defined for CFT_2:  

Take the Non-Relativistic (NR) limit:  

 are the BMS_3 stress tensors, and on the cylinder:  

Choice: BMS primaries in the highest weight representation: . 

 BMS primaries:  . . 

 in the NR limit  

Due to the structure of the cost function, only  modes contribute while taking the trace. 

ℐ+ IR × 𝕊1

BMS3 = Diff(S1)

Super-rotation

⋉ Vec(S1)

Supertranslation

. f, c1, α, c2 f(σ + 2π) = f(σ) + 2π, f′ (σ) > 0, α(σ + 2π) = α(σ) .

C1 = ∫ dt ℱ =
1

2π ∫ dt∫ dσ ϵ(t, σ)⟨ψR U†(t)( T + T̄ ) U(t) ψR⟩ .

T1 = Tc + T̄c, T2 = lim
ϵ→0

ϵ(Tc − T̄c)

T1, T2 T1(t, σ) = ∑
n

(Ln − inσMn)e−int +
cL

12
, T2(t, σ) = ∑

n

Mne−int +
cM

12

|ψR⟩ = |Δ, ξ⟩

L0 |Δ, ξ⟩ = Δ |Δ, ξ⟩, M0 |Δ, ξ⟩ = ξ |Δ, ξ⟩ Ln |Δ, ξ⟩ = Mn |Δ, ξ⟩ = 0 ∀ n > 0

|ψR⟩ = |h, h̄⟩ NR

limit
|Δ, ξ⟩ (Lp = ℒp + ℒ̄p, Mp = ϵ (ℒp − ℒ̄p), ϵ → 0)

L0



BMS Complexity : From the limit
Inverse diffeomorphism   , Group velocity:  

Generators of BMS_3 in terms of conserved currents :  

Under the finite BMS_3 transformations ,  the currents transform as, 

 [Only, this contributes!] 

     ,   .  

Contribution due to central term: (Maurer-cartan extension for BMS_3):  

 

Circuit complexity functional for BMS_3= geometric (co-adjoint orbit) action of BMS_3 [from the limiting analysis] 

 No contributions from the super-transaltions in the complexity calculation!!

F : F(t, f(t, σ)) = σ ϵ(τ, σ) = −
·F(τ, σ)

F′ (τ, σ)

Ln = −
1

2π ∫
2π

0
dσeinσj(σ), Mn = −

1
2π ∫

2π

0
dσeinσp(σ)

σ̃ = F(σ), t̃ = tF′ (σ) + α(σ)

U†
f (t)j(σ)Uf(t) = j̃( f ) = F′ 

2(σ)(∂F p(F)α(F) + 2∂Fα(F)p(F) −
c2

24π
∂3

Fα(F)) + F′ 
2(σ)j(F) −

c1

24π
{F, σ}

U†
f (t)p(σ)Uf(t) = p̃( f ) = F′ (σ)2p(F) −

c2

24π
{F, σ} where,  c1 = − 2πcL, c2 = − 2πcM

C2 =
1

2π ∫ dt∫ dσ (−
·F

F′ ) [( c1

48π ) ( F′ ′ 

F′ )
′ 

] .

C = C1 + C2 = −
1

2π ∫ dt dσ [ ·FF′ j0(F) +
c1

48π

·F′ ′ 

F′ 

+ ·FF′ (∂F p0(F)α(F) + 2∂Fα(F)p0(F) −
c2

24π
∂3

Fα(F))]



Complexity in 2d BMSFT (Refined Intrinsic Analysis)
Take contributions from both super-translation and super-rotation generators. 

   two different 

instantaneous velocities corresponding   (diffeomorphism) and  (supertranslations). 

Find the group velocities from BMS_3  transformations: , So that: . 

For two infinitesimally close points in the path of the circuit:  

Expanding in the first order, . 

Finally, add the contribution due to Maurer-Cartan extension for BMS_3 to write the complexity functional

 

The BMS complexity functional  Geometric Action for BMS_3. [Bhattacharya, Nandi 2023] 

Extremizing  and solving with the periodicity conditions: simple optimal path:  . 

And, 

C = ∫ dtℱ =
1

2π ∫ dt∫ dσ [ϵL(t, σ)⟨ψR |U†(t)j(σ)U(t) |ψR⟩ + ϵM(t, σ)⟨ψR |U†(t)p(σ)U(t) |ψR⟩], (ϵL, ϵM) =

f(t, σ) α(t, σ)

σ → f(σ), t → tf′ (σ) + α(σ) (σ, t) ( f1,α1) (σ1, t1)
( f2,α2) (σ2, t2)

(f(t + dt, σ), α(t + dt, σ)) = e(ϵL(t,σ),ϵM(t,σ))dt ( f(t, α), α(t, σ))

ϵL(t, σ) =
∂f(t, F(t, σ))

∂t
= −

·F(t, σ)
F′ (t, σ)

, ϵM(t, σ) = ·α(t, F) + α(t, F)(
·F′ 

F′ 

−
·FF′ ′ 

F′ 2 )

C[F] =
1

2π ∫ dt dσ[ − ·FF′ [∂F p0(F)α(F) + 2∂Fα(F)p0(F) −
c2

24π
∂3

Fα(F) + j0(F)] −
c1

48π

·F′ ′ 

F′ 

+ ( ·α(F) + α(F)(
·F′ 

F′ 

−
·FF′ ′ 

F′ 2 ))(F′ (σ)2p0(F) −
c2

24π
{F, σ})] .

≠

C[F] f(σ, t) = σ + a1t, α = a3(t)

C[T] = a1 j0T + p0(a3(T ) − a3(0)), j0 = |Δ −
c1

24π
| , p0 = |ξ −

c2

24π
| .



Summary and Conclusions
For Direct product groups (Virasoro,Kac Moody) “Complexity functional= Geometric Action” holds [Caputa, Megan 2018, 
Erdmenger et al 2020]. 

Starting from two copies of the Virasoro algebra, it is possible to reach BMS_3 algebra, the asymptotic symmetry algebra for 
3d asymptotically flat spacetimes using the Carrollian limit. 

From the limiting perspective Complexity functional resembles the geometric action for BMS_3 group. 

 However, the limit fails to capture contributions from super-translations while deriving BMS complexity from its relativistic 
Virasoro counterpart.  

From the intrinsic analysis (using symmetry transformations), we found that the proposal “Complexity functional=Geometric 
Action” is not true for semi-direct product groups, e.g BMS_3. [And also Warped Conformal Symmetry group 
[Bhattacharyya, Katoch, Roy 2022]] 

Our analysis for BMS circuit complexity functional matches with the deformed geometric action (by addition of Hamiltonian) 
of BMS_3 [Merbis, Reigler 2019] only if the group velocity  is set to zero. 

The simplest solution for the optimal path in BMS complexity matches with solutions to gravitational saddle points with 
constant orbit representatives  in  [Merbis, Reigler 2019] and Flat Space Cosmologies [FSC]s.

ϵM

j0, p0



Future Directions

Loads of things to explore in  
Carrollian/BMS Field Theories

Fubini-Study construction  
(Work in process with 

Bhattacharyya) Other notions of complexity 
(Krylov, Spread…) for BMSFT

Higher dimensional  
generalisation



Thank you for your attention!


