Temperature dependence of Lanczos coefficients and integrability

Nick Angelinos University of Kentucky
Quantum Information in Quantum Field Theory and Cosmology, BIRS
June 8, 2023

Outline

Introduction

Krylov space and iteration algorithm

Lanczos coefficients as dynamical variables

Krylov space

In recent years, Krylov space methods have emerged as a new way to understand complexity, operator growth and chaos.

Krylov space

In recent years, Krylov space methods have emerged as a new way to understand complexity, operator growth and chaos.

Krylov complexity is a measure of operator complexity; it measures the "average position" of an operator within the subspace in which it can evolve.

Krylov space

In recent years, Krylov space methods have emerged as a new way to understand complexity, operator growth and chaos.

Krylov complexity is a measure of operator complexity; it measures the "average position" of an operator within the subspace in which it can evolve.

The exponent of Krylov complexity bounds the exponent of OTOC

$$
\lambda_{\text {отос }} \leq \lambda_{K} .
$$

Parker, Cao, Avdoshkin, Scaffidi, Altman 2019

Krylov space

Lanczos coefficients b_{n}, obtained from the iteration algorithm, encode chaotic behavior. Linear growth of $b_{n} \sim n$ is an indicator of chaos.

Today's goal

The b_{n} can be obtained from the 2-point function $C(t)=\langle A(t), A(0)\rangle$.

Today's goal

The b_{n} can be obtained from the 2-point function $C(t)=\langle A(t), A(0)\rangle$.

If $C(t)$ is a thermal 2-point function, the b_{n} depend on β.

Today's goal

The b_{n} can be obtained from the 2-point function $C(t)=\langle A(t), A(0)\rangle$.

If $C(t)$ is a thermal 2-point function, the b_{n} depend on β.
We will show that $b_{n}(\beta)$ satisfy a completely integrable (non-linear) system of equations.

Outline

Introduction

Krylov space and iteration algorithm

Lanczos coefficients as dynamical variables

Krylov space

Consider a Hamiltonian H and an operator A

$$
A(t)=e^{-i H t} A e^{i H t}=\sum_{n=0}^{\infty} \frac{(-i t)^{n} \mathcal{L}^{n}}{n!} A
$$

where we defined the "super-operator" \mathcal{L} (Liouvillian)

$$
\mathcal{L} A \equiv[H, A] .
$$

Krylov space

Consider a Hamiltonian H and an operator A

$$
A(t)=e^{-i H t} A e^{i H t}=\sum_{n=0}^{\infty} \frac{(-i t)^{n} \mathcal{L}^{n}}{n!} A,
$$

where we defined the "super-operator" \mathcal{L} (Liouvillian)

$$
\mathcal{L} A \equiv[H, A] .
$$

Under time-evolution, $A(t)$ remains inside the Krylov space

$$
\mathbb{K}=\operatorname{span}\left\{A, \mathcal{L} A, \mathcal{L}^{2} A, \mathcal{L}^{3} A, \ldots\right\} .
$$

Inner product

We now want to construct an orthonormal basis for \mathbb{K}.

Inner product

We now want to construct an orthonormal basis for \mathbb{K}.

We equip the space of operators with an inner product

$$
\langle A \mid B\rangle=\operatorname{tr}\left(A^{\dagger} \rho_{1} B \rho_{2}\right)
$$

Inner product

We now want to construct an orthonormal basis for \mathbb{K}.
We equip the space of operators with an inner product

$$
\langle A \mid B\rangle=\operatorname{tr}\left(A^{\dagger} \rho_{1} B \rho_{2}\right) .
$$

We require that ρ_{1}, ρ_{2} commute with H and that the inner product is semi-positive definite and non-degenerate.

Lanczos algorithm

We obtain an orthonormal basis for \mathbb{K} using the Lanczos algorithm.
Lanczos algorithm
Let $O_{0}=A$.
For $n=0,1,2, \ldots$:

$$
\begin{gathered}
a_{n}=\frac{\left\langle O_{n}\right| \mathcal{L}\left|O_{n}\right\rangle}{\left\langle O_{n} \mid O_{n}\right\rangle}, \quad b_{n-1}^{2}=\frac{\left\langle O_{n} \mid O_{n}\right\rangle}{\left\langle O_{n-1} \mid O_{n-1}\right\rangle}, \\
O_{n+1}=\mathcal{L} O_{n}-a_{n} O_{n}-b_{n-1}^{2} O_{n-1} \\
A_{n}=O_{n} / \sqrt{\left\langle O_{n} \mid O_{n}\right\rangle}
\end{gathered}
$$

Lanczos algorithm

We obtain an orthonormal basis for \mathbb{K} using the Lanczos algorithm.
Lanczos algorithm
Let $O_{0}=A$.
For $n=0,1,2, \ldots$:

$$
\begin{gathered}
a_{n}=\frac{\left\langle O_{n}\right| \mathcal{L}\left|O_{n}\right\rangle}{\left\langle O_{n} \mid O_{n}\right\rangle}, \quad b_{n-1}^{2}=\frac{\left\langle O_{n} \mid O_{n}\right\rangle}{\left\langle O_{n-1} \mid O_{n-1}\right\rangle} \\
O_{n+1}=\mathcal{L} O_{n}-a_{n} O_{n}-b_{n-1}^{2} O_{n-1} \\
A_{n}=O_{n} / \sqrt{\left\langle O_{n} \mid O_{n}\right\rangle}
\end{gathered}
$$

The set of operators $\left\{A_{0}, A_{1}, A_{2}, \ldots\right\}$ is called the Krylov basis. The sequences a_{n}, b_{n} are called Lanczos coefficients.

Representation of Liouvillian

The representation of \mathcal{L} in Krylov space written in Krylov basis is, by construction, tridiagonal

$$
\begin{gathered}
\mathcal{L} A_{n}=\sum L_{n m} A_{m}, \\
L=\left(\begin{array}{ccccc}
a_{0} & b_{0} & 0 & 0 & \cdots \\
b_{0} & a_{1} & b_{1} & 0 & \cdots \\
0 & b_{1} & a_{2} & b_{2} & \cdots \\
0 & 0 & b_{2} & a_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
\end{gathered}
$$

Some comments

Krylov space depends only on the choice of operator A.

Some comments

Krylov space depends only on the choice of operator A.
Krylov basis, Lanczos coefficients and representation L of Liouvillian depend on choice of inner product.

Outline

Introduction
 Krylov space and iteration algorithm
 Lanczos coefficients as dynamical variables

Euclidean time-evolution

If the inner product depends on a parameter, the Krylov basis and Lanczos coefficients also inherit dependence on that parameter.

Euclidean time-evolution

If the inner product depends on a parameter, the Krylov basis and Lanczos coefficients also inherit dependence on that parameter.

Consider the inner product

$$
\langle A \mid B\rangle_{\tau} \equiv\langle A(\tau) \mid B\rangle=\operatorname{tr}\left(A^{\dagger} e^{\tau H} \rho_{1} B e^{-\tau H} \rho_{2}\right)
$$

Euclidean time-evolution

If the inner product depends on a parameter, the Krylov basis and Lanczos coefficients also inherit dependence on that parameter.

Consider the inner product

$$
\langle A \mid B\rangle_{\tau} \equiv\langle A(\tau) \mid B\rangle=\operatorname{tr}\left(A^{\dagger} e^{\tau H} \rho_{1} B e^{-\tau H} \rho_{2}\right)
$$

The Lanczos coefficients acquire time-dependence: $a_{n}(\tau), b_{n}(\tau)$. Their evolution is governed by a system of completely integrable non-linear equations.
Dymarsky, Gorsky 2019

Toda chain

Toda chain equations in Lax form

$$
\frac{d}{d \tau} L=[B, L], \quad B=L_{+}-L_{-}
$$

Completely integrable, with the following independent integrals of motion

$$
H_{k}=\operatorname{tr}\left(L^{k}\right)
$$

Explicitly, the equations read

$$
\begin{aligned}
\frac{d}{d \tau} b_{n} & =b_{n}\left(a_{n+1}-a_{n}\right) \\
\frac{d}{d \tau} a_{n} & =2\left(b_{n}^{2}-b_{n-1}^{2}\right)
\end{aligned}
$$

Temperature dependence

We now consider temperature-dependent inner product (i.e. Wightmann product)

$$
\langle A \mid B\rangle \equiv \operatorname{tr}\left(A^{\dagger} e^{-\beta H / 2} \rho B e^{-\beta H / 2} \rho\right)
$$

Temperature dependence

We now consider temperature-dependent inner product (i.e. Wightmann product)

$$
\langle A \mid B\rangle \equiv \operatorname{tr}\left(A^{\dagger} e^{-\beta H / 2} \rho B e^{-\beta H / 2} \rho\right)
$$

Now the Lanczos coefficients acquire temperature dependence $b_{n}(\beta)$.

Temperature dependence

We now consider temperature-dependent inner product (i.e. Wightmann product)

$$
\langle A \mid B\rangle \equiv \operatorname{tr}\left(A^{\dagger} e^{-\beta H / 2} \rho B e^{-\beta H / 2} \rho\right)
$$

Now the Lanczos coefficients acquire temperature dependence $b_{n}(\beta)$.

Simplification: Assume that $A \in \operatorname{im}(\mathcal{L})$, and let $\operatorname{dim}(\mathbb{K})=2 N$.

Representation of $\{H, \cdot\}$

The representation of the operator $\mathcal{J}=\{H, \cdot\}$ in the Krylov space is

$$
\mathcal{J} A_{n}=\sum_{m=0}^{2 N-1} J_{n m} A_{m}
$$

Representation of $\{H, \cdot\}$

The representation of the operator $\mathcal{J}=\{H, \cdot\}$ in the Krylov space is

$$
\mathcal{J} A_{n}=\sum_{m=0}^{2 N-1} J_{n m} A_{m}
$$

The matrix J satisfies the Lax equation

$$
\frac{d}{d \beta} J=[B, J], \quad B=J_{+}-J_{-} .
$$

This looks similar to Toda, however J is not tridiagonal.

Even-odd decoupling

The matrix J seemingly has too many parameters $\left(O\left(N^{2}\right)\right)$. We expect $O(N)$ parameters.

Even-odd decoupling

The matrix J seemingly has too many parameters $\left(O\left(N^{2}\right)\right)$. We expect $O(N)$ parameters.

Since $\left\langle A_{2 n+1}(\beta) \mid A_{2 m}\left(\beta^{\prime}\right)\right\rangle=0$, we can write

$$
J=J_{\text {even }} \oplus J_{\text {odd }} .
$$

Better, but we still have $O\left(N^{2}\right)$ parameters.

Relation between L, J

Consider the representation L of $\mathcal{L}=[H, \cdot]$. We saw earlier that this is a tridiagonal matrix.

Relation between L, J

Consider the representation L of $\mathcal{L}=[H, \cdot]$. We saw earlier that this is a tridiagonal matrix.

The identity

$$
[H,\{H, \cdot\}]=\{H,[H, \cdot]\}
$$

can be written as

$$
[\mathcal{L}, \mathcal{J}]=0 \Longrightarrow[L, J]=0
$$

Integrability

Now $[L, J]=0$ can be used to determine all entries of J in terms of the diagonal entries of J and b_{n}. This reduces the independent parameters to $4 N$.

Integrability

Now $[L, J]=0$ can be used to determine all entries of J in terms of the diagonal entries of J and b_{n}.
This reduces the independent parameters to $4 N$.
The independent integrals of motion are

$$
\begin{array}{ll}
\mathcal{I}_{k}=\operatorname{tr}\left(J_{\text {even }}^{k}\right), & k=1,2, \ldots, N \\
\mathcal{M}_{k}=\operatorname{tr}\left(L^{2 k}\right), & k=1,2, \ldots, N
\end{array}
$$

We have $4 N$-dimensional phase-space and $2 N$ integrals of motion, so this is a fully integrable system.

Toda chain

Can we relate these equations to Toda chain?

Toda chain

Can we relate these equations to Toda chain?

Use Lanczos algorithm to tridiagonalize $J_{\text {even }}$ (and $J_{o d d}$):

$$
J_{\text {even }}=C \tilde{J}_{\text {even }} C^{T}, \quad C C^{T}=C^{T} C=1
$$

Toda chain

Can we relate these equations to Toda chain?
Use Lanczos algorithm to tridiagonalize $J_{\text {even }}$ (and $J_{\text {odd }}$):

$$
J_{\text {even }}=C \tilde{J}_{\text {even }} C^{T}, \quad C C^{T}=C^{T} C=1
$$

Now $\tilde{J}_{\text {even }}$ satisfies Toda equations

$$
\frac{d}{d \beta} \tilde{J}_{\text {even }}=\left[\tilde{B}_{\text {even }}, \tilde{J}_{\text {even }}\right], \quad \tilde{B}_{\text {even }}=\tilde{J}_{\text {even }}^{+}-\tilde{J}_{\text {even }}^{-} .
$$

Toda chain

Can we relate these equations to Toda chain?
Use Lanczos algorithm to tridiagonalize $J_{\text {even }}$ (and $J_{\text {odd }}$):

$$
J_{\text {even }}=C \tilde{J}_{\text {even }} C^{T}, \quad C C^{T}=C^{T} C=1
$$

Now $\tilde{J}_{\text {even }}$ satisfies Toda equations

$$
\frac{d}{d \beta} \tilde{J}_{\text {even }}=\left[\tilde{B}_{\text {even }}, \tilde{J}_{\text {even }}\right], \quad \tilde{B}_{\text {even }}=\tilde{J}_{\text {even }}^{+}-\tilde{J}_{\text {even }}^{-} .
$$

In this basis, we have 2 decoupled Toda chains $J_{\text {even }}, J_{\text {odd }}$.

Outlook and future directions

- We formulated the temperature dependence of Lanczos coefficients as a fully integrable Hamiltonian system (two decoupled Toda chains).

Outlook and future directions

- We formulated the temperature dependence of Lanczos coefficients as a fully integrable Hamiltonian system (two decoupled Toda chains).
- Potential as a powerful numerical or analytical tool.

Outlook and future directions

- We formulated the temperature dependence of Lanczos coefficients as a fully integrable Hamiltonian system (two decoupled Toda chains).
- Potential as a powerful numerical or analytical tool.
- Temperature dependence of Lanczos coefficients can be solved as an initial value problem.

Outlook and future directions

- We formulated the temperature dependence of Lanczos coefficients as a fully integrable Hamiltonian system (two decoupled Toda chains).
- Potential as a powerful numerical or analytical tool.
- Temperature dependence of Lanczos coefficients can be solved as an initial value problem.
- Given a 2 pf at $\beta=0$, we can calculate the 2 pf at finite β.

Outlook and future directions

- We formulated the temperature dependence of Lanczos coefficients as a fully integrable Hamiltonian system (two decoupled Toda chains).
- Potential as a powerful numerical or analytical tool.
- Temperature dependence of Lanczos coefficients can be solved as an initial value problem.
- Given a 2 pf at $\beta=0$, we can calculate the 2 pf at finite β.
- Study scaling of b_{n} with n as β is varied.

