Banff International Research Station

 for Mathematical Innovation and Discovery
2023. 06.6

Gwangju Institute of Science and Technology

Comments on Krylov Complexity in Field Theory

aIXiV > hep-th > arXiv:2212.14702

High Energy Physics - Theory
[Submitted on 30 Dec 2022 (v1), last revised 25 Jan 2023 (this version, v2)]

Krylov Complexity in Free and Interacting Scalar Field Theories with Bounded Power Spectrum

Hugo A. Camargo, Viktor Jahnke, Keun-Young Kim, Mitsuhiro Nishida

Comments on Krylov Complexity in Field Theory

```
ZIWiV > hep-th > arXiv:2212.14702
```

High Energy Physics - Theory
[Submitted on 30 Dec 2022 (v1), last revised 25 Jan 2023 (this version, v2)]

Krylov Complexity in Free and Interacting Scalar Field Theories with Bounded Power Spectrum

Hugo A. Camargo, Viktor Jahnke, Keun-Young Kim, Mitsuhiro Nishida
ar

High Energy Physics - Theory
[Submitted on 29 Dec 2022]

Krylov complexity in quantum field theory, and beyond

 Alexander Avdoshkin Anatoly Dymarsky, Michael Smolkin

A Universal Operator Growth Hypothesis
Daniel E. Parker (UC, Berkeley), Xiangyu Cao (UC, Berkeley), Alexander Avdoshkin (UC, Berkeley), Thomas Scaffidi (UC, Berkeley), Ehud Altman (UC, Berkeley) (Dec 20, 2018)

Published in: Phys.Rev.X 9 (2019) 4, 041017 • e-Print: 1812.08657 [cond-mat.stat-mech]

层 reference search

Comments on Krylov Complexity in Field Theory

- Nick Hunter-Jones: Progress on quantum complexity growth conjectures
- Anthony Munson: Quantum (Un)complexity: A Resource for Quantum Computation
- Poulami Nandi: Complexity and BMS
- Mohsen Alishahiha: One Quantum Complexity
- Bret Underwood: Cosmological Complexity
- Shubho R. Roy: Gravitational Singularities and Holographic Complexity

Quantum (circuit/cumputational/holographic) complexity

A diagnose of quantum chaos

- Khushboo Dixit: Quantum Spread Complexity in Neutrino Oscillations
- Javier Magan: Long times, chaos, and spread complexity
- Keun-Young Kim: Comments on Krylov Complexity in Field Theory
- Anatoly Dymarsky: REVIEW TALK -4 Chaos and complexity through thelens of dynamics in Krylov space
- Hendrik J R Van Zyl: Spread Complexity and Toplogical Transitions in the Kitaev Chain
- Ryota Watanabe: Krylov complexity and chaos in quantum mechanics
- Nikolaos Angelinos: Temperature dependence of Lanczos coefficients and integrability

Quantum complexity

Nick

Complexity

(Computational) complexity [Computer science] quantifying the difficulty of carrying out a task.

Complexity

(Computational) complexity [Computer science] quantifying the difficulty of carrying out a task.

(Circuit) complexity

Quantum Computer ~ Quantum Circuit

Minimal humber of gates for the transformation from the reference to target state

$$
\left|\psi_{T}\right\rangle=U\left|\psi_{R}\right\rangle=g_{n} g_{n-1} \cdots g_{2} g_{1}\left|\psi_{R}\right\rangle
$$

$$
\begin{aligned}
& \qquad \begin{array}{l}
G=d b e \\
G=c e a b \\
G=a b e f a \\
\text { complexity }=3
\end{array}
\end{aligned}
$$

Complexity

"Distance" between two sates?
(inner-product) distance:

$$
d_{A B}=\arccos |\langle B \mid A\rangle| \quad \text { (closest) } 0 \sim \pi / 2 \text { (farthest) }
$$

$$
\text { Are these close or far? } \quad|0000000000\rangle \longrightarrow|0000000001\rangle
$$

Far in the inner-product sense

However, in some sense they are close "easy" or "difficult" transform \downarrow
Need a new distance reflecting this sense: "Complexity distance?"

Complexity

Complexity of quantum states New distance in Hilbert space Spread complexity
For given states $\left|\psi_{T}\right\rangle=U\left|\psi_{R}\right\rangle \quad$ ~How hard (minimal number of gates) from the reference to target state

Complexity of operator (unitary transformation) New distance in Unitary group
For a given operator $U=g_{n} g_{n-1} \cdots g_{2} g_{1} \quad \sim$ minimum number of gates

Relation between two

$$
\left.\mathcal{C}\left(\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle\right)=\min \left\{\mathcal{C}(U)|\forall \hat{U} \in \mathcal{O}, \quad| \psi_{2}\right\rangle=\hat{U}\left|\psi_{1}\right\rangle\right\}
$$

Quantum Chaos

Quantum Chaos

ChatGPT

$\left|\left\{q^{i}(t), p^{j}(0)\right\}_{P B}=\left|\frac{\partial q^{i}(t)}{\partial q^{j}(0)}\right| \sim e^{\lambda t}\right.$
$-\left\langle\left[q^{i}(t), p^{j}(0)\right]^{2}\right\rangle_{\beta}$,
$-\left\langle[V(t), W(0)]^{2}\right\rangle_{\beta} . \quad \sim e^{\lambda t}$
Out-of-time-order correlator (OTOC)

Level spacing statistics

Random Matrix Theory
Thermalization
(ETH, Quantum device) Quantum black holes
Quantum gravity

Quantum chaos is a field of physics that studies the behavior of quantum systems that are classically chaotic. Classically chaotic systems are those that exhibit sensitive dependence on initial conditions, meaning small changes in the initial conditions lead to vastly different outcomes over time.

In quantum mechanics, chaotic behavior can manifest in the statistical properties of the system's energy spectrum or in the time evolution of its wave function. The study of quantum chaos is concerned with understanding how the behavior of the system changes as classical chaos is introduced or increased, and how this behavior can be observed and measured experimentally.

Quantum chaos has applications in various fields, including solid-state physics, quantum computing, and quantum information theory. It has also led to new insights into the fundamental nature of quantum mechanics and the connections between classical and quantum physics.

Quantum chaos and complexity

Midjourney

Comments on Krylov Complexity in Field Theory

Complexity: how much things are complex
Chaos: how fast things get complex
~ fast increase of complexity
*Circuit complexity is not well-defined
"Krylov complexity" is a well-defined concept
proposed as a diagnose of quantum chaos (which is not-well defined)

Entanglement is not enough! Black hole interior?

Krylov complexity in conformal field theory
Anatoly Dymarsky (Kentucky U. and Skoltech), Michael Smolkin (Hebrew U.) (Apr 19, 2021)
Published in: Phys.Rev.D 104 (2021) 8, L081702 • e-Print: 2104.09514 [hep-th]

Comments on Krylov Complexity in Field Theory

Complexity: how much things are complex
Chaos: how fast things get complex
\sim fast increase of complexity
*Circuit complexity is not well-defined
"Krylov complexity" is a well-defined concept
proposed as a diagnose of quantum chaos (which is not-well defined)

Contents

Aleksey Nikolaevich Krylov (1863-1945) Russian naval engineer, applied mathematician and memoirist.

Short Review on Krylov Complexity

- Operator growth
- Krylov space
- Lanczos coefficient
- Krylov complexity

Success in lattice systems

New Series m: Monograph
Lecture Notes in
Physics

The Recursion Method

Application to Many-Body Dynamics

- Too good to be true
- How to extract info from the power spectrum (IR/UV cutoff effect)

Cornelius (Cornel) Lanczos (1893-1974):
a Hungarian-American and later Hungarian-Irish mathematician and/physicist.

Short Review on Krylov Complexity

Khushboo

The time evolution of an operator O by a time independent Hamiltonian H

$$
\begin{aligned}
\partial_{t} \mathcal{O}(t) & =i[H, \mathcal{O}(t)] \\
\mathcal{O}(t) & =e^{i t H} \mathcal{O}(0) e^{-i t H} \quad \text { Baker-Campbell-Hausdorff }(\mathrm{BCH}) \text { formula } e^{X} Y e^{-X}=\sum_{n=0}^{\infty} \frac{\mathcal{L}_{X}^{n} Y}{n!} \\
\mathcal{O}(t) & =\mathcal{O}_{0}+i t[H, \mathcal{O}]+\frac{(i t)^{2}}{2!}[H,[H, \mathcal{O}]]+\frac{(i t)^{3}}{3!}[H,[H,[H, \mathcal{O}]]]+\cdots .
\end{aligned}
$$

ex) 1D spin chain

$$
\left.\begin{array}{l}
H=-\sum\left(Z_{i} Z_{i+1}+g X_{i}+h Z_{i}\right) \\
Z_{1}(t)=Z_{1}+i t\left[H, Z_{1}\right]-\frac{t^{2}}{2!}\left[H,\left[H, Z_{1}\right]\right]-\frac{i t^{3}}{3!}\left[H,\left[H,\left[H, Z_{1}\right]\right]\right]+\ldots \\
{\left[H, Z_{1}\right]}
\end{array}\right) Y_{1} .
$$

The time evolution of an operator O by a time independent Hamiltonian H

$$
\begin{aligned}
\partial_{t} \mathcal{O}(t) & =i[H, \mathcal{O}(t)] \\
\mathcal{O}(t) & =e^{i t H} \mathcal{O}(0) e^{-i t H} \quad \text { Baker-Campbell-Hausdorff }(\mathrm{BCH}) \text { formula } e^{X} Y e^{-X}=\sum_{n=0}^{\infty} \frac{\mathcal{L}_{X}^{n} Y}{n!} \\
\mathcal{O}(t) & \left.=\mathcal{O}_{0}+i t[H, \mathcal{O}]+\frac{(i t)^{2}}{2!}[H,[H, \mathcal{O}]]\right]+\frac{(i t)^{3}}{3!}[H,[H,[H, \mathcal{O}]]]+\cdots \\
\mathcal{O}(t) & =\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!} \tilde{\mathcal{O}}_{n} \quad \tilde{\mathcal{O}}_{n}=\mathcal{L}^{n} \mathcal{O}(0) \quad \mathcal{L}:=[H, \cdot]
\end{aligned}
$$

ex) 1 D spin chain

$$
\left.\begin{array}{l}
H=-\sum\left(Z_{i} Z_{i+1}+g X_{i}+h Z_{i}\right) \\
Z_{1}(t)=Z_{1}+i t\left[H, Z_{1}\right]-\frac{t^{2}}{2!}\left[H,\left[H, Z_{1}\right]\right]-\frac{i t^{3}}{3!}\left[H,\left[H,\left[H, Z_{1}\right]\right]\right]+\ldots \\
{\left[H, Z_{1}\right]}
\end{array}\right) Y_{1} .
$$

The time evolution of an operator O by a time independent Hamiltonian H

$$
\begin{aligned}
\partial_{t} \mathcal{O}(t) & =i[H, \mathcal{O}(t)] \\
\mathcal{O}(t) & =e^{i t H} \mathcal{O}(0) e^{-i t H} \quad \text { Baker-Campbell-Hausdorff }(\mathrm{BCH}) \text { formula } e^{X} Y e^{-X}=\sum_{n=0}^{\infty} \frac{\mathcal{L}_{X}^{n} Y}{n!} \\
\mathcal{O}(t) & \left.=\mathcal{O}_{0}+i t[H, \mathcal{O}]+\frac{(i t)^{2}}{2!}[H,[H, \mathcal{O}]]\right]+\frac{(i t)^{3}}{3!}[H,[H,[H, \mathcal{O}]]]+\cdots \\
\mathcal{O}(t) & =\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!} \tilde{\mathcal{O}}_{n} \quad \tilde{\mathcal{O}}_{n}=\mathcal{L}^{n} \mathcal{O}(0) . \quad \mathcal{L}:=[H, \cdot]
\end{aligned}
$$

- The set of operators $\left\{\tilde{\mathcal{O}}_{n}\right\}$ defines a basis of the so-called Krylov space associated to the operator \mathcal{O}
- Regard the operator as a state $\mathcal{O} \rightarrow \mid \mathcal{O}$) in the Hilbert space of operators

Inner product: Wightman inner product

$$
(A \mid B):=\left\langle e^{\beta H / 2} A^{\dagger} e^{-\beta H / 2} B\right\rangle_{\beta}=\frac{1}{\mathcal{Z}_{\beta}} \operatorname{Tr}\left(e^{-\beta H / 2} A^{\dagger} e^{-\beta H / 2} B\right) \quad \mathcal{Z}_{\beta}:=\operatorname{Tr}\left(e^{-\beta H}\right)
$$

Krylov basis $\left(\mathcal{O}_{m} \mid \mathcal{O}_{n}\right)=\delta_{m n}$ (Lanczos algorithm: Gram-Schmidt procedure)

$$
\begin{align*}
&\left.\left.\left|\mathcal{O}_{0}\right|:=\mid \tilde{\mathcal{O}}_{0}\right):=\mid \mathcal{O}(0)\right)\left\{b_{n}\right\}: \text { Lanczos coefficients } \\
&\left.\left.\mid \mathcal{O}_{1}\right):=b_{1}^{-1} \mathcal{L} \mid \tilde{\mathcal{O}}_{0}\right) b_{1}:=\left(\tilde{\mathcal{O}}_{0} \mathcal{L} \mid \mathcal{L} \tilde{\mathcal{O}}_{0}\right)^{1 / 2} \\
&\left.\left.\mid \mathcal{O}_{n}\right):=b_{n}^{-1} \mid A_{n}\right) b_{n}:=\left(A_{n} \mid A_{n}\right)^{1 / 2} \\
&\left.\left.\left.\mid A_{n}\right):=\mathcal{L} \mid \mathcal{O}_{n-1}\right)-b_{n-1} \mid \mathcal{O}_{n-2}\right) \tag{21}
\end{align*}
$$

The time evolution of an operator O by a time independent Hamiltonian H

$$
\begin{aligned}
& \begin{aligned}
\partial_{t} \mathcal{O}(t) & =i[H, \mathcal{O}(t)] \\
\mathcal{O}(t) & =e^{i t H} \mathcal{O}(0) e^{-i t H}
\end{aligned} \\
& \left.\left.\left.\left.\partial_{t} \mid \mathcal{O}(t)\right)=i \mathcal{L} \mid \mathcal{O}(t)\right) \quad \mid \mathcal{O}(t)\right)=\sum_{n=0}^{\infty} i^{n} \varphi_{n}(t) \mid \mathcal{O}_{n}\right) \quad \sum_{n=0}^{\infty}\left|\varphi_{n}(t)\right|^{2}=1 \\
& \mathcal{O}(t)=e^{i \mathcal{L} t} \mathcal{O}(0) \\
& \text { "probability amplitudes" } \\
& \mathcal{O}(t)=\mathcal{O}_{0}+i t[H, \mathcal{O}]+\frac{(i t)^{2}}{2!}[H,[H, \mathcal{O}]]+\frac{(i t)^{3}}{3!}[H,[H,[H, \mathcal{O}]]]+\cdots . \\
& \mathcal{O}(t)=\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!} \tilde{\mathcal{O}}_{n} \quad \tilde{\mathcal{O}}_{n}=\mathcal{L}^{n} \mathcal{O}(0) \quad \mathcal{L}:=[H, \cdot]
\end{aligned}
$$

- The set of operators $\left\{\tilde{\mathcal{O}}_{n}\right\}$ defines a basis of the so-called Krylov space associated to the operator \mathcal{O}
- Regard the operator as a state $\mathcal{O} \rightarrow \mid \mathcal{O}$) in the Hilbert space of operators

Inner product: Wightman inner product

$$
(A \mid B):=\left\langle e^{\beta H / 2} A^{\dagger} e^{-\beta H / 2} B\right\rangle_{\beta}=\frac{1}{\mathcal{Z}_{\beta}} \operatorname{Tr}\left(e^{-\beta H / 2} A^{\dagger} e^{-\beta H / 2} B\right) \quad \mathcal{Z}_{\beta}:=\operatorname{Tr}\left(e^{-\beta H}\right)
$$

Krylov basis $\left(\mathcal{O}_{m} \mid \mathcal{O}_{n}\right)=\delta_{m n}$ (Lanczos algorithm: Gram-Schmidt procedure)

$$
\begin{aligned}
&\left.\left.\left.\mid \mathcal{O}_{0}\right):=\mid \tilde{\mathcal{O}}_{0}\right):=\mid \mathcal{O}(0)\right) \quad\left\{b_{n}\right\}: \text { Lanczos coefficients } \\
&\left.\left.\mid \mathcal{O}_{1}\right):=b_{1}^{-1} \mathcal{L} \mid \tilde{\mathcal{O}}_{0}\right) b_{1}:=\left(\tilde{\mathcal{O}}_{0} \mathcal{L} \mid \mathcal{L} \tilde{\mathcal{O}}_{0}\right)^{1 / 2} \\
&\left.\left.\mid \mathcal{O}_{n}\right):=b_{n}^{-1} \mid A_{n}\right) b_{n}:=\left(A_{n} \mid A_{n}\right)^{1 / 2} \\
&\left.\left.\left.\mid A_{n}\right):=\mathcal{L} \mid \mathcal{O}_{n-1}\right)-b_{n-1} \mid \mathcal{O}_{n-2}\right)
\end{aligned}
$$

Discrete "Schrodinger equation"

$$
\begin{aligned}
& \partial_{t} \mathcal{O}(t)=i[H, \mathcal{O}(t)] \quad \text { "probability amplitudes" } \sum_{n=0}^{\infty}\left|\varphi_{n}(t)\right|^{2}=1 \\
& \left.\left.\left.\left.\partial_{t} \mid \mathcal{O}(t)\right)=i \mathcal{L} \mid \mathcal{O}(t)\right) \quad \mid \mathcal{O}(t)\right)=\sum_{n=0}^{\infty} i^{n} \varphi_{n}(t) \mid \mathcal{O}_{n}\right) \quad \varphi_{n}(t):=i^{-n}\left(\mathcal{O}_{n} \mid \mathcal{O}(t)\right) \\
& \\
& \quad L_{n m}:=\left(\mathcal{O}_{n}|\mathcal{L}| \mathcal{O}_{m}\right)=\left(\begin{array}{ccccc}
0 & b_{1} & 0 & 0 & \cdots \\
b_{1} & 0 & b_{2} & 0 & \cdots \\
0 & b_{2} & 0 & b_{3} & \cdots \\
0 & 0 & b_{3} & 0 & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right)=b_{n} \delta_{m, n-1}+b_{n+1} \delta_{m, n+1} \\
& \left.\begin{array}{l}
\frac{\mathrm{d} \varphi_{n}(t)}{\mathrm{d} t}=b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t) \\
\varphi_{n}(0)=\delta_{n, 0} \quad \varphi_{-1}(t) \equiv 0 \equiv b_{0} \quad \dot{\varphi}_{0}(t)=b_{0} \overbrace{\varphi_{-1}(t)}^{=0}-b_{1} \varphi_{1}(t) \\
\vdots
\end{array}\right)
\end{aligned}
$$

a quantum-mechanical particle on a 1-dimensional chain.

$$
\dot{\varphi}_{n}(t)=b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t)
$$ $b_{n}=$ hopping amplitudes

Krylov complexity average position over the chain

$$
K_{\mathcal{O}}(t):=(\mathcal{O}(t)|n| \mathcal{O}(t))=\sum_{n=0}^{\infty} n\left|\varphi_{n}(t)\right|^{2}
$$

Auto-correlation function $\quad C(t)=\Pi^{W}(t)=\varphi_{0}(t)$

$$
\begin{aligned}
C(t) & :=(\mathcal{O}(t) \mid \mathcal{O}(0))=\varphi_{0}(t) \\
& =\left\langle e^{i(t-i \beta / 2) H} \mathcal{O}^{\dagger}(0) e^{-i(t-i \beta / 2) H} \mathcal{O}(0)\right\rangle_{\beta} \\
& =\left\langle\mathcal{O}^{\dagger}(t-i \beta / 2) \mathcal{O}(0)\right\rangle_{\beta}=: \Pi^{W}(t) \\
\langle\cdots\rangle_{\beta} & =\operatorname{Tr}\left(e^{-\beta H} \cdots\right) / \operatorname{Tr}\left(e^{-\beta H}\right)
\end{aligned}
$$

Moments $\mu_{2 n}$

$$
\Pi^{W}(t):=\sum_{n=0}^{\infty} \mu_{2 n} \frac{(i t)^{2 n}}{(2 n)!} \quad \mu_{2 n}:=\left.\frac{1}{i^{2 n}} \frac{\mathrm{~d}^{2 n} \Pi^{W}(t)}{\mathrm{d} t^{2 n}}\right|_{t=0} \quad \quad \mu_{2 n}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \omega^{2 n} f^{W}(\omega)
$$

Lanczos coefficients from moments

$$
\begin{array}{ll}
b_{1}^{2 n} \cdots b_{n}^{2}=\operatorname{det}\left(\mu_{i+j}\right)_{0 \leq i, j \leq n} & \begin{array}{l}
\text { Hankel matrix } \\
\text { constructed from }
\end{array} \\
\mu_{2}=b_{1}^{2}, \quad \mu_{4}=b_{1}^{4}+b_{1}^{2} b_{2}^{2}, \quad \cdots . \\
b_{n}=\sqrt{M_{2 n}^{(n)}}, \quad M_{2 l}^{(j)}=\frac{M_{2 l}^{(j-1)}}{b_{j-1}^{2}}-\frac{M_{2 l-2}^{(j-2)}}{b_{j-2}^{2}} \quad \text { with } \quad l=j, \ldots, n \\
M_{2 l}^{(0)}=\mu_{2 l}, \quad b_{-1} \equiv b_{0}:=1 \quad, \quad M_{2 l}^{(-1)}=0
\end{array}
$$

Lanczos coefficients

$$
\begin{aligned}
& \mu_{2 n}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \omega^{2 n} f^{W}(\omega)
\end{aligned}
$$

K-complexity

$$
\begin{aligned}
\dot{\varphi}_{0}(t) & =b_{0} \overbrace{\varphi_{-1}(t)}^{=0}-b_{1} \varphi_{1}(t) \\
\dot{\varphi}_{1}(t) & =b_{1} \varphi_{0}(t)-b_{2} \varphi_{2}(t) \\
\vdots & \\
\dot{\varphi}_{n}(t) & =b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t) \\
K_{\mathcal{O}}(t) & =\sum_{n=1}^{n_{\max }} n\left|\varphi_{n}(t)\right|^{2}, \quad n_{\max }=200 .
\end{aligned}
$$

Success in lattice systems
$b_{n} \sim n^{\delta} \Longleftrightarrow f^{W}(\omega) \sim \exp \left(-\left|\omega / \omega_{0}\right|^{1 / \delta}\right)$

$$
\delta \leq 1
$$

D. S. Lubinsky, "A survey of general orthogonal polynomials for weights on finite and infinite intervals," Acta Applicandae Mathematica 10, 237-296 (1987).
A. Magnus, "The recursion method and its applications: Proceedings of the conference, imperial college, london, england september 13-14, 1984," (Springer Science \& Business Media, 2012) Chap. 2, pp. 22-45.

Signatures of chaos in time series generated by many-spin systems at high temperatures

Tarek A. Elsayed, Benjamin Hess, and Boris V. Fine
Phys. Rev. E 90, 022910 - Published 20 August 2014
$f^{W}(\omega) \sim e^{-\frac{\omega}{\omega_{0}}}$ Is a signature of classical chaos

Universal operator growth hypothesis

In a chaotic quantum system
Lanczos coefficients $\left\{b_{n}\right\}$ grow as fast as possible

$$
b_{n} \sim \alpha n
$$

the slowest possible decay of the power spectrum

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}}
$$

Krylov complexity grows exponentially

$$
K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \quad \Longleftrightarrow \quad b_{n} \sim \alpha n \quad \Longleftrightarrow \quad K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

$$
\begin{aligned}
& b_{n} \sim n^{\delta} \Longleftrightarrow f^{W}(\omega) \sim \exp \left(-\left|\omega / \omega_{0}\right|^{1 / \delta}\right) \\
& \delta \leq 1 \\
& \text { Universal operator growth hypothesis }
\end{aligned}
$$

In a chaotic quantum system
Lanczos coefficients $\left\{b_{n}\right\}$ grow as fast as possible

$$
b_{n} \sim \alpha n
$$

the slowest possible decay of the power spectrum

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}}
$$

Krylov complexity grows exponentially

$$
K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \quad \Longleftrightarrow \quad b_{n} \sim \alpha n \quad \Longleftrightarrow \quad K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

Towards Field theory

$$
\mathcal{L}_{E}^{\text {free }}=\frac{1}{2}(\partial \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}
$$

Wightman 2-point function

$$
\begin{aligned}
& \Pi^{W}(t, \mathbf{x}):=\langle\phi(t-i \beta / 2, \mathbf{x}) \phi(0, \mathbf{0})\rangle_{\beta} \\
& \Pi^{W}(\omega, \mathbf{k}):=\int \mathrm{d} t \int \mathrm{~d}^{d-1} \mathbf{x} e^{i \omega t-i \mathbf{k} \cdot \mathbf{x}} \Pi^{W}(t, \mathbf{x})
\end{aligned}
$$

Power spectrum

$$
\begin{aligned}
\Pi^{W}(\omega, \mathbf{k}) & =\frac{1}{\sinh [\beta \omega / 2]} \rho(\omega, \mathbf{k}) \\
\rho(\omega, \mathbf{k}) & =\frac{N}{\epsilon_{k}}\left[\delta\left(\omega-\epsilon_{k}\right)-\delta\left(\omega+\epsilon_{k}\right)\right] \\
\epsilon_{k} & :=\sqrt{|\mathbf{k}|^{2}+m^{2}}
\end{aligned}
$$

$$
\begin{gathered}
C(t)=\Pi^{W}(t, \mathbf{0}) \\
f^{W}(\omega):=\int \mathrm{d} t C(t) e^{i \omega t}=\int \mathrm{d} t \Pi^{W}(t, \mathbf{0}) e^{i \omega t}=\int \frac{\mathrm{d}^{d-1} \mathbf{k}}{(2 \pi)^{d-1}} \Pi^{W}(\omega, \mathbf{k})
\end{gathered}
$$

$$
\begin{aligned}
f^{W}(\omega)= & N(m, \beta, d) \frac{\left(\omega^{2}-m^{2}\right)^{(d-3) / 2}}{\left|\sinh \left(\frac{\beta \omega}{2}\right)\right|} \Theta(|\omega|-m) \\
& \int \frac{\mathrm{d} \omega}{2 \pi} f^{W}(\omega)=1
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{m}=0, \mathrm{~d}=4 \\
f^{W}(\omega)=\frac{\beta^{2} \omega}{\pi \sinh \left(\frac{\beta \omega}{2}\right)} \\
f^{W}(\omega) \sim e^{-\frac{\beta|\omega|}{2}} \sim e^{-\frac{\pi|\omega|}{2 \alpha}}
\end{gathered}
$$

$$
f^{W}(\omega) \longrightarrow \mu_{2 n} \longrightarrow b_{n}
$$

$$
\mu_{2 n}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \omega^{2 n} f^{W}(\omega) \quad b_{1}^{2 n} \cdots b_{n}^{2}=\operatorname{det}\left(\mu_{i+j}\right)_{0 \leq i, j \leq n}
$$

Counter example in QFT

$$
\mathcal{L}_{E}^{\text {free }}=\frac{1}{2}(\partial \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}
$$

Power spectrum ($m=0, d=4$)

$$
\begin{aligned}
f^{W}(\omega) & =\frac{\beta^{2} \omega}{\pi \sinh \left(\frac{\beta \omega}{2}\right)} \\
f^{W}(\omega) & \sim e^{-\frac{\beta|\omega|}{2}} \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \quad\left(\alpha=\frac{\pi}{\beta}\right)
\end{aligned}
$$

Free theory is chaotic?

In a-chaotic quantum system In free QFT
Lanczos coefficients $\left\{b_{n}\right\}$ grow as fast as possible??

$$
b_{n} \sim \alpha n \sim \frac{\pi}{\beta} n
$$

$f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \Longleftrightarrow b_{n} \sim \alpha n \Longleftrightarrow K_{\mathcal{O}}(t) \sim e^{2 \alpha t}$

$$
\mathcal{L}_{E}^{\text {free }}=\frac{1}{2}(\partial \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}
$$

Power spectrum ($m=0, d=4$)

$$
\begin{aligned}
& f^{W}(\omega)=\frac{\beta^{2} \omega}{\pi \sinh \left(\frac{\beta \omega}{2}\right)} \\
& f^{W}(\omega) \sim e^{-\frac{\beta|\omega|}{2}} \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \quad\left(\alpha=\frac{\pi}{\beta}\right)
\end{aligned}
$$

Wightman 2-point function

$$
\Pi^{W}(t, \mathbf{x}):=\langle\phi(t-i \beta / 2, \mathbf{x}) \phi(0, \mathbf{0})\rangle_{\beta} \quad\left(t=\frac{i \beta}{2}\right)
$$

Power spectrum

$$
C(t)=\Pi^{W}(t, \mathbf{0})
$$

$$
f^{W}(\omega):=\int \mathrm{d} t C(t) e^{i \omega t} \stackrel{\downarrow}{=} \int \mathrm{d} t \Pi^{W}(t, \mathbf{0}) e^{i \omega t}
$$

$$
f^{W}(\omega) \sim e^{-\frac{\beta|\omega|}{2}} \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \quad\left(\alpha=\frac{\pi}{\beta}\right)
$$

2104.09514: Dymarsky, Smolkin

General QFT is chaotic? No

In a-chaotic quantum system In general QFT
Lanczos coefficients $\left\{b_{n}\right\}$ grow as fast as possible!

$$
b_{n} \sim \alpha n \sim \frac{\pi}{\beta} n
$$

$f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \Longleftrightarrow b_{n} \sim \alpha n \Longleftrightarrow K_{\mathcal{O}}(t) \sim e^{2 \alpha t}$

Too good to be true

Towards Field theory

Counter example:

- Field theory
- Krylov complexity in saddle-dominated scrambling (2203.03534: Bhattacharjee, Gao, Nancy, Pathak)

Too good to be true

Only if b_{n} is a smooth function of n, Otherwise
Chaos $\underset{?}{\Longleftrightarrow} f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \Longleftrightarrow b_{n} \nsim \alpha n \Longleftrightarrow K_{\mathcal{O}}(t) \sim e^{2 \alpha t}$

Counter example:

Field theory

- Krylov complexity in saddle-dominated scrambling (2203.03534: Bhattacharjee, Gao, Nancy, Pathak)
Too good to be true

Only if b_{n} is a smooth function of n, Otherwise

Need to investigate these relations further.
How to extract (chaotic) information from the power spectrum?

Lanczos coefficients

$$
\begin{aligned}
& \mu_{2 n}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \omega^{2 n} f^{W}(\omega)
\end{aligned}
$$

K-complexity

$$
\begin{aligned}
\dot{\varphi}_{0}(t) & =b_{0} \overbrace{\varphi_{-1}(t)}^{=0}-b_{1} \varphi_{1}(t) \\
\dot{\varphi}_{1}(t) & =b_{1} \varphi_{0}(t)-b_{2} \varphi_{2}(t) \\
\vdots & \\
\dot{\varphi}_{n}(t) & =b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t) \\
K_{\mathcal{O}}(t) & =\sum_{n=1}^{n_{\max }} n\left|\varphi_{n}(t)\right|^{2}, \quad n_{\max }=200 .
\end{aligned}
$$

Unpublished: Camargo, Jahnke, Jeong, KYK, Nishida 2305.16669: Hashimoto, Murata, Tanahashi, Ryota Watanabe
2112.12128: Rabinovici, Sanchez-Garrido, Shir Sonner

Non-trivial mass (IR-cutoff) effect: staggering

Power spectrum $\quad \beta m \gg 1$

$$
f^{W}(\omega) \approx N(m, \beta, d) e^{-\beta|\omega| / 2}\left(\omega^{2}-m^{2}\right)^{(d-3) / 2} \Theta(|\omega|-m) \quad N(m, \beta, d)=\frac{\pi^{3 / 2} \beta^{(d-2) / 2}}{2^{d-2} m^{(d-2) / 2} K_{\frac{d-2}{2}}\left(\frac{m \beta}{2}\right) \Gamma\left(\frac{d-1}{2}\right)}
$$

$K_{n}(z)$ is the modified Bessel function of the second kind

Moments to Lanczos coefficients ($\mathrm{d}=5$)

$\tilde{\Gamma}(n, z)$ is the incomplete Gamma function.
$\mu_{2 n}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \omega^{2 n} f^{W}(\omega)=\frac{2^{-2} e^{\frac{m \beta}{2}}}{2+m \beta}\left(\frac{2}{\beta}\right)^{2 n}\left[-m^{2} \beta^{2} \tilde{\Gamma}\left(2 n+1, \frac{m \beta}{2}\right)+4 \tilde{\Gamma}\left(2 n+3, \frac{m \beta}{2}\right)\right]$

$$
b_{n}=\sqrt{M_{2 n}^{(n)}}, \quad \begin{aligned}
& M_{2 l}^{(j)}=\frac{M_{2 l}^{(j-1)}}{b_{j-1}^{2}}-\frac{M_{2 l-2}^{(j-2)}}{b_{j-2}^{2}} \quad \text { with } \quad l=j, \ldots, n, \\
& \\
& M_{2 l}^{(0)}=\mu_{2 l} \quad, \quad b_{-1} \equiv b_{0}:=1 \quad, \quad M_{2 l}^{(-1)}=0 .
\end{aligned}
$$

$$
b_{n}
$$

$\beta^{2} b_{n}^{2}=m^{2} \beta^{2}\left\{\begin{array}{l}1+4 \frac{1+n}{m \beta}+8 \frac{(n+1)^{2}}{m^{2} \beta^{2}}+12 \frac{(n+1)^{3}}{m^{3} \beta^{3}}+\cdots, \text { for } n \text { odd }, \\ 4 \frac{n(n+2)}{m^{2} \beta^{2}}+8 \frac{n(n+1)(n+2)}{m^{3} \beta^{3}}+\cdots, \text { for } n \text { even },\end{array}\right.$
Staggering: two families for even n and odd n

$$
\begin{aligned}
& b_{n} \sim \alpha_{\text {odd }} n+\gamma_{\text {odd }} \quad(\text { odd } n) \\
& b_{n} \sim \alpha_{\text {even }} n+\gamma_{\text {even }} \quad(\text { even } n)
\end{aligned}
$$

Staggering \quad| $b_{n} \sim \alpha_{\text {odd }} n+\gamma_{\text {odd }}$ | $($ odd $n)$ |
| :--- | :--- |
| $b_{n} \sim \alpha_{\text {even }} n+\gamma_{\text {even }}$ | $($ even $n)$ |

(a) Mass-dependence of $\alpha_{\text {odd }}$ and $\alpha_{\text {even }}$

(b) Mass-dependence of $\gamma_{\text {odd }}-\gamma_{\text {even }}$

Lanczos coefficients

K-complexity

$$
\begin{aligned}
& \dot{\varphi}_{0}(t)=b_{0} \overbrace{\varphi_{-1}(t)}^{=0}-b_{1} \varphi_{1}(t) \\
& \dot{\varphi}_{1}(t)=b_{1} \varphi_{0}(t)-b_{2} \varphi_{2}(t) \\
& \vdots \\
& \dot{\varphi}_{n}(t)=b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t) \\
& K_{\mathcal{O}}(t)=\sum_{n=1}^{n_{\max }} n\left|\varphi_{n}(t)\right|^{2}, \quad n_{\max }=200 .
\end{aligned}
$$

Lanczos coefficients

K-complexity

- Early time: oscillation:
- larger m, shorter period
- Late time: oscillation disappears
- cancelation due to large n
- Exponential increase
- larger m, slower increase
- mass effect

(a) $d=5$

(c) $d=9$

(b) $d=7$
$\cdots \cdots K_{0}(\mathrm{t})=(\mathrm{d}-2) \sinh ^{2}(\pi t / \beta)$
------ $K_{o}(t)$ for $\beta m=0$
- - - $K_{0}(t)$ for $\beta m=10$
------ $K_{o}(t)$ for $\beta m=50$
—— $K_{\mathrm{O}}(\mathrm{t})$ for $\beta \mathrm{m}=100$

Staggering

$$
\begin{aligned}
b_{n} & \sim \alpha_{\text {odd }} n+\gamma_{\text {odd }} \\
b_{n} & (\text { odd } n) \\
& \alpha_{\text {even }} n+\gamma_{\text {even }}
\end{aligned} \quad(\text { even } n) ~ \$
$$

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \nLeftarrow b_{n} \nsim \alpha n \nLeftarrow K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

$$
\begin{aligned}
& \begin{aligned}
\beta \tilde{\lambda}_{K}^{(d)} & =\beta(\underbrace{\alpha_{\text {odd }}+\alpha_{\text {even }}}_{\text {odd }})+k_{2}^{(d)}(\frac{1}{k_{3}^{(d)}+(\underbrace{}_{\text {odd }}-\gamma_{\text {even }} \mid}-\frac{1}{k_{3}^{(d)}})+ \\
& +k_{4}^{(d)}\left(\frac{1}{\left(k_{3}^{(d)}+\beta\left|\gamma_{\text {odd }}-\gamma_{\text {even }}\right|\right)^{2}}-\frac{1}{\left(k_{3}^{(d)}\right)^{2}}\right),
\end{aligned}
\end{aligned}
$$

$$
m=0, d=4
$$

$$
f^{W}(\omega)=N(\beta, \Lambda, \delta) \frac{\omega}{\sinh \left(\frac{\beta \omega}{2}\right)} \exp \left(-|\omega / \Lambda|^{1 / \delta}\right)
$$

$$
f(\omega)=\frac{\sqrt{2 \pi}}{\sigma \operatorname{Erf}\left(\frac{\Lambda}{\sqrt{2} \sigma}\right)} \begin{cases}e^{-\frac{\omega^{2}}{2 \sigma^{2}}} & \text { if }|\omega| \leq \Lambda \\ 0 & \text { if }|\omega|>\Lambda\end{cases}
$$

(a)

(b)

$$
f(\omega)=\frac{\pi a e^{a(\Lambda+m)}}{e^{a \Lambda}(a h m+1)-e^{a m}} \begin{cases}h e^{-a m} & \text { if }|\omega| \leq m \\ e^{-a|\omega|} & \text { if } m<|\omega|<\Lambda \\ 0 & \text { if }|\omega| \geq \Lambda\end{cases}
$$

$$
f(\omega)=N\left(\omega_{0}, \delta, \lambda\right)\left|\frac{\omega}{\omega_{0}}\right|^{\lambda} e^{-\left|\frac{\omega}{\omega_{0}}\right|^{\frac{2}{\delta}}}
$$

$$
f(\omega)= \begin{cases}N\left(\omega_{0}, \Lambda\right) e^{-\left|\frac{\omega}{\omega_{0}}\right|} & \text { if }|\omega| \leq \Lambda \\ 0 & \text { if }|\omega|>\Lambda\end{cases}
$$

Summary (method)

- Is it possible to extract the chaos-info from a $C(t)$ or the power spectrum?

Lanczos coefficients

$$
\mu_{2 n}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \omega^{2 n} f^{W}(\omega)
$$

$$
\begin{array}{l|l}
\begin{array}{l}
\Pi^{W}(t)= \\
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega e^{-i \omega t} f^{W}(\omega) \\
\\
\\
C(t)=\Pi^{W}(t)=\varphi_{0}(t)
\end{array} & \begin{array}{l}
b_{1}^{2 n} \cdots b_{n}^{2}= \\
\operatorname{det}\left(\mu_{i+j}\right)_{0 \leq i, j \leq n} \\
\\
\end{array} \\
\end{array}
$$

K-complexity

$$
\begin{aligned}
\dot{\varphi}_{0}(t) & =b_{0} \overbrace{\varphi_{-1}(t)}^{=0}-b_{1} \varphi_{1}(t) \\
\dot{\varphi}_{1}(t) & =b_{1} \varphi_{0}(t)-b_{2} \varphi_{2}(t) \\
\vdots & \\
\dot{\varphi}_{n}(t) & =b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t) \\
K_{\mathcal{O}}(t) & =\sum_{n=1}^{n_{\max }} n\left|\varphi_{n}(t)\right|^{2}, \quad n_{\max }=200 .
\end{aligned}
$$

Summary (Lattice systems)

- Is it possible to extract the chaos-info from a $C(t)$ or a power spectrum?
- Seems to be possible for Lattice systems.

Universal operator growth hypothesis

In a chaotic quantum system
Lanczos coefficients $\left\{b_{n}\right\}$ grow as fast as possible

$$
b_{n} \sim \alpha n
$$

the slowest possible decay of the power spectrum

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}}
$$

Krylov complexity grows exponentially

$$
\begin{gathered}
K_{\mathcal{O}}(t) \sim e^{2 \alpha t} \\
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \Longleftrightarrow b_{n} \sim \alpha n \Longleftrightarrow K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
\end{gathered}
$$

- Subtleties in saddle point
- Subtleties in QFT

Summary (QFT)

Summary (QFT)

$$
\left.\left.\begin{array}{rl}
\beta \tilde{\lambda}_{K}^{(d)} & =\beta \underbrace{}_{\left(\alpha_{\text {odd }}+\alpha_{\text {even }}\right)})+k_{2}^{(d)}\left(\frac{1}{k_{3}^{(d)}+\left(\beta \mid \gamma_{\text {odd }}-\gamma_{\text {even }}\right.}\right)
\end{array}\right) \frac{1}{k_{3}^{(d)}}\right)+
$$

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \Longleftrightarrow b_{n} \sim \alpha n \Longleftrightarrow K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

Only if b_{n} is a smooth function of n, Otherwise

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \Leftrightarrow b_{n} \nsim \alpha n \Leftrightarrow K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

Summary (QFT)

$$
m=0, d=4
$$

$$
f^{W}(\omega)=N(\beta, \Lambda, \delta) \frac{\omega}{\sinh \left(\frac{\beta \omega}{2}\right)} \exp \left(-|\omega / \Lambda|^{1 / \delta}\right)
$$

- Is it possible to extract the chaos-info from a $C(t)$ or a power spectrum?
- More scales: compact space, interaction, other spins, open systems etc
- Holographic counterpart?
- State (spread) complexity?
- Observations, conjectures, mathematical justification

