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Long times, chaos, and spread complexity



Motivations

Complexity and Quantum Chaos

Complexity and long times

Maldacena’s AdS/CFT version of the information paradox

Complexity and the volume of the black hole interior



From Krylov complexity to spread complexity

Krylov complexity was introduced in

[Parker, Cao, Avdoshkin, Scaffidi, Altman, 2018]

As a measure of operator complexity

We will describe directly the generalization to quantum states

The idea is very simple and starts by noticing that

|ψ(t)⟩ = e−iHt |ψ(0)⟩ = ∑
n

(it)n

n!
Hn |ψ(0)⟩ ≡

(it)n

n!
| ψ̃n⟩



This is the solution of the Lanczos algorithm [Viswanath, Muller, 1994]

|ψn⟩ = Hn |ψ(0)⟩ Gram-Schmidt procedure |Kn⟩

|An+1⟩ = (H − an) |Kn⟩ − bn |Kn−1⟩, |Kn⟩ = b−1
n |An⟩

where the Lanczos coefficients are defined by

an = ⟨Kn |H |Kn⟩, bn = ⟨An |An⟩1/2

with the initial conditions

b0 ≡ 0 |K0⟩ = |ψ(0)⟩

From Krylov complexity to spread complexity

From such vectors we can derive the Krylov basis



This implies that the Hamiltonian in the Krylov basis is a tridiagonal matrix

H |Kn⟩ = an |Kn⟩ + bn+1 |Kn+1⟩ + bn |Kn−1⟩

Available numerically stable algorithms for computing the ‘Hessenberg form’

a0 b1

b1 a1 b2

b2 a2 b3
⋱ ⋱ ⋱

bN−2 aN−2 bN−1

bN−1 aN−1

S(t) = ⟨ψ(t) |ψ(0)⟩ = ⟨ψ(0) |eiHt |ψ(0)⟩

Another starting point is the ‘survival amplitude’

From Krylov complexity to spread complexity



Finally, to compute complexity, we expand the time evolving state in the Krylov basis

|ψ(t)⟩ = ∑
n

ψn(t) |Kn⟩

From Krylov complexity to spread complexity

C(t) = C𝒦(t) = ∑
n

n pn(t) = ∑
n

n |ψn(t) |2



Finally, to compute complexity, we expand the time evolving state in the Krylov basis

From Krylov complexity to spread complexity

C(t) = C𝒦(t) = ∑
n

n pn(t) = ∑
n

n |ψn(t) |2

This quantity also follows from minimizing the spread of the wave function over all choices of basis

[Balasubramanian, Caputa, Magan, Wu, 2022]

‘Spread complexity’

|ψ(t)⟩ = ∑
n

ψn(t) |Kn⟩



It is illuminating to apply this framework to the TFD state

|ψβ⟩ ≡
1

Zβ
∑

n

e− βEn
2 |n, n⟩

Under time evolution one obtains

|ψβ(t)⟩ = e−iHt |ψβ⟩ = |ψβ+2it⟩

From Krylov complexity to spread complexity

In AdS/CFT,  TFD are dual to eternal BH and this evolution might describe aspects of the BH interior

[Hartman, Maldacena, 2013] [Susskind, 2016][Maldacena, 2001]

[Guhr, Groeling, Weidenmuller, 1997]

What is important for us is that the survival amplitude is

S(t) = ⟨ψβ+2it |ψβ⟩ =
Zβ−it

Zβ

the analytically continued partition function
and the survival probability is the Spectral Form Factor (SFF)

The SFF plays a leading role in quantum chaos and in recent research in quantum BH

[Cotler, Gur-Ari, Hanada, Polchinski, Saad,Shenker, Stanford, Streicher, Tezuka, 2017]



Using Lanczos coefficients we can compute probabilities and quantum complexity

Different hues correspond to the GUE ensemble for different temperatures

The GUE complexity displays four regimes:  A ramp, a peak, a slope and a plateau 

Random Matrices and long times



We can contrast the behavior with that of the SFF

[Cotler, Gur-Ari, Hanada, Polchinski, Saad, Shenker, Stanford, Streicher, Tezuka, 2017][Guhr, Groeling, Weidenmuller, 1998]

SFF = |S(t) |2 = |⟨ψβ+2it |ψβ⟩ |2 = |
Zβ−it

Zβ
|2

The SFF shows a slope, dip, ramp, plateau. Dip and slope originated in spectral rigidity

Random Matrices and long times



Tridiagonalizing Random Matrices

p(a0, ⋯, aN−1, b1, ⋯, bN−1)

Starting from a generic random state and running the Lanczos algorithm we arrived at

a0 b1

b1 a1 b2

b2 a2 b3
⋱ ⋱ ⋱

bN−2 aN−2 bN−1

bN−1 aN−1

Where the Lanczos coefficients are random.

The problem is then to find the statistics of the Lanczos coefficients,
namely the joint probability distribution 

And generic correlation functions 

am⋯an br⋯bs



Tridiagonalizing Random Matrices

p(a0, ⋯, aN−1, b1, ⋯, bN−1) ∝
N−1

∏
n=1

b(N−n)β−1
n e− βN

4 Tr(V(H))

The joint probability distribution turns out to be

Seff ≡ ln p(a0, …, an−1, b1, …, bN−1) = ∑
n

((N − n)β − 1) ln bn −
βN
4

Tr(V(H ))

By taking the logarithm we obtain an effective action

Doing this and taking the thermodynamic limit is somewhat technical. The end result is

Seff = ∑
n

((N − n)β − 1) ln bn −
βN
4 ∑

n
∫ dE

V(E)

π 4b2
n − (E − an)2

In the thermodynamic (large-N) limit it is better to write everything in terms of x = n /N

Seff

βN2
= ∫ dx (1 − x)ln b(x) −

1
4 ∫ dx∫ dE

V(E)
π 4b(x)2 − (E − a(x))2



Tridiagonalizing Random Matrices

The saddle point equations for the Lanczos coefficients are

4(1 − x) = b(x)
∂

∂b(x) ∫ dE
V(E)

π 4b(x)2 − (E − a(x))2

0 =
∂

∂a(x) ∫ dE
V(E)

π 4b(x)2 − (E − a(x))2

By expanding the saddle point equations around the average we can compute the two point 
functions (covariances) of the Lanczos coefficients

ΔSeff ≡ −
1
2

( δai Maa
ij δai + 2δai Mab

ij δbi + δbi Mbb
ij δbi )



Tridiagonalizing Random Matrices

Numerical verification for three different potentials



Tridiagonalizing Random Matrices



Discussion

Complexity and Quantum Chaos

Complexity and long times

Maldacena’s AdS/CFT version of the information paradox

Thermofield Double Spread complexity is a functional of the spectrum. 
It is a functional of the spectral form factor. 

Spread complexity displays four regimes. Complexity slope controlled by 
spectral rigidity. It codifies the universality classes of chaotic behavior. 

Saturation of survival probability (spectral form factor) equivalent to saturation 
of spread complexity. Unification of two problems. These are further equivalent 
to the vanishing of the Lanczos coefficients.  We were able to provide a proof 
for RMT with a compact spectrum. In the way a new tridiagonal approach to 
RMT is developed

Spread complexity and the volume of the black hole interior
[Balasubramanian, Lawrence, Magan, Sasieta, 2022] [Erdmenger, Jian, Xian 2023] [Rabinovici, Sanchez-Garrido, Conner, 2023]



[Balasubramanian, Lawrence, Magan, Sasieta, 2022]

The proper mass of the shell, related to number of operator insertions, is unconstrained from above

The volume of the Einstein-Rosen bridge roughly proportional to the mass of the shell Vren = ml/(d − 1)

Discussion
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