Spread Complexity and Topological Transitions in the Kitaev Chain

Jaco van Zyl
University of Cape Town

based on [2208.05520] with P Caputa, N Gupta, J Murugan, S Shajidul Haque, S Liu

8 June 2023, Banff International Research Station

Talk Layout

(1) Background
(2) Spread Complexity
(3) Kitaev Chain
4) Outlook

Complexity

- Central question: How hard is it to synthesize a desired target state with the gates at your disposal?
- Need, $\left|\phi_{r}\right\rangle,\left|\phi_{t}\right\rangle,\left\{U_{1}, U_{2}, \cdots, U_{n}\right\}, g\left(U_{1}, U_{2}, \cdots, U_{n}\right)$

Complexity

- Central question: How hard is it to synthesize a desired target state with the gates at your disposal?
- Need, $\left|\phi_{r}\right\rangle,\left|\phi_{t}\right\rangle,\left\{U_{1}, U_{2}, \cdots, U_{n}\right\}, g\left(U_{1}, U_{2}, \cdots, U_{n}\right)$
- E.g. $U_{1} U_{2} U_{1} U_{3}\left(U_{1}\right)^{3} U_{2}\left|\phi_{r}\right\rangle=U_{3} U_{1} U_{2} U_{1} U_{3}\left(U_{1}\right)^{3} U_{2} U_{3}\left|\phi_{r}\right\rangle$, "complexity $=8$ "

Complexity

- Central question: How hard is it to synthesize a desired target state with the gates at your disposal?
- Need, $\left|\phi_{r}\right\rangle,\left|\phi_{t}\right\rangle,\left\{U_{1}, U_{2}, \cdots, U_{n}\right\}, g\left(U_{1}, U_{2}, \cdots, U_{n}\right)$
- E.g. $U_{1} U_{2} U_{1} U_{3}\left(U_{1}\right)^{3} U_{2}\left|\phi_{r}\right\rangle=U_{3} U_{1} U_{2} U_{1} U_{3}\left(U_{1}\right)^{3} U_{2} U_{3}\left|\phi_{r}\right\rangle$, $"$ complexity $=8$ "
- Discrete notion of complexity closely related to quantum computational setups
- We will, however, be interested in a continuous notion of complexity

Nielsen Complexity

- Accessible gates are taken to be from some symmetry group [Nielsen, quant-ph/0502070]
- E.g. $S U(2)$: Gates $U=e^{i\left(s_{1} J_{1}+s_{2} J_{2}+s_{3} J_{3}\right)}$
- Target states: $\left|\phi_{t}\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right\rangle=U\left(s_{1}, \cdots, s_{n}\right)\left|\phi_{r}\right\rangle$

Nielsen Complexity

- Accessible gates are taken to be from some symmetry group [Nielsen, quant-ph/0502070]
- E.g. $S U(2):$ Gates $U=e^{i\left(s_{1} J_{1}+s_{2} J_{2}+s_{3} J_{3}\right)}$
- Target states: $\left|\phi_{t}\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right\rangle=U\left(s_{1}, \cdots, s_{n}\right)\left|\phi_{r}\right\rangle$
- We have a manifold of target states on which one can define a metric
- Complexity $=$ shortest distance connecting points
- Can introduce a circuit parameter $s_{i}=s_{i}(\sigma)$

Nielsen Complexity

- Two examples of metrics
- F_{1} cost function: $\left.\mathcal{F}_{1} d \sigma=\left|\left\langle\phi_{r}\right| U^{\dagger} d U\right| \phi_{r}\right\rangle \mid$

Nielsen Complexity

- Two examples of metrics
- F_{1} cost function: $\left.\mathcal{F}_{1} d \sigma=\left|\left\langle\phi_{r}\right| U^{\dagger} d U\right| \phi_{r}\right\rangle \mid$
- $d s_{F S}^{2}=\left\langle\phi_{r}\right| d U^{\dagger} d U\left|\phi_{r}\right\rangle-\left\langle\phi_{r}\right| d U^{\dagger} U\left|\phi_{r}\right\rangle \mid\left\langle\phi_{r}\right| U^{\dagger} d U\left|\phi_{r}\right\rangle$
- Group symmetries are encoded as metric isometries

Nielsen Complexity

- Two examples of metrics
- F_{1} cost function: $\left.\mathcal{F}_{1} d \sigma=\left|\left\langle\phi_{r}\right| U^{\dagger} d U\right| \phi_{r}\right\rangle \mid$
- $d s_{F S}^{2}=\left\langle\phi_{r}\right| d U^{\dagger} d U\left|\phi_{r}\right\rangle-\left\langle\phi_{r}\right| d U^{\dagger} U\left|\phi_{r}\right\rangle \mid\left\langle\phi_{r}\right| U^{\dagger} d U\left|\phi_{r}\right\rangle$
- Group symmetries are encoded as metric isometries
- $\mathcal{F}_{1}: \quad F_{i}=\left.\partial_{i}\left(\left\langle\phi_{t}\left(s_{1}^{\prime}, s_{2}^{\prime}, \cdots, s_{n}^{\prime}\right) \mid \phi_{t}\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right\rangle\right)\right|_{s^{\prime}=s}$
- FS metric:

$$
g_{i j}=\left.\partial_{i} \partial_{j}^{\prime} \log \left(\left\langle\phi_{t}\left(s_{1}^{\prime}, s_{2}^{\prime}, \cdots, s_{n}^{\prime}\right) \mid \phi_{t}\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right\rangle\right)\right|_{s^{\prime}=s}
$$

Nielsen Complexity

- The overlap $\left\langle\phi_{r}\right| U^{\dagger}\left(s^{\prime}\right) U(s)\left|\phi_{r}\right\rangle$ is thus a key quantity
- The states $U(s)\left|\phi_{r}\right\rangle$ are generalized coherent states [Perelomov, 1972]

Nielsen Complexity

- The overlap $\left\langle\phi_{r}\right| U^{\dagger}\left(s^{\prime}\right) U(s)\left|\phi_{r}\right\rangle$ is thus a key quantity
- The states $U(s)\left|\phi_{r}\right\rangle$ are generalized coherent states [Perelomov, 1972]
- Stability subgroup $H \subset G$ such that $U_{h}\left|\phi_{r}\right\rangle=e^{i \phi_{h}}\left|\phi_{r}\right\rangle$
- Manifold of states \Leftrightarrow group elements of G / H

Spread Complexity

- A notion of complexity without the need to specify gates
- Given a Hamiltonian and reference state one first builds the basis $\left|O_{n}\right\rangle=H^{n}\left|\phi_{r}\right\rangle$

Spread Complexity

- A notion of complexity without the need to specify gates
- Given a Hamiltonian and reference state one first builds the basis $\left|O_{n}\right\rangle=H^{n}\left|\phi_{r}\right\rangle$
- From a Gram-Schmidt process one then obtains the Krylov basis $\left|K_{n}\right\rangle$
- The K-complexity of a state (or spread complexity) is then given by $C_{K}=\sum_{n} n\left\langle\phi_{t} \mid K_{n}\right\rangle\left\langle K_{n} \mid \phi_{t}\right\rangle \equiv\left\langle\phi_{t}\right| \hat{K}\left|\phi_{t}\right\rangle$
- The Krylov basis provides an ordered basis for the Hilbert space of target states

Spread Complexity

- Given some basis for the Hilbert space of target space in increasing complexity $\left|B_{n}\right\rangle$
- We can define complexity as $C=\sum_{n} c_{n}\left\langle\phi_{t} \mid B_{n}\right\rangle\left\langle B_{n} \mid \phi_{t}\right\rangle$
- With c_{n} strictly increasing

Spread Complexity

- Given some basis for the Hilbert space of target space in increasing complexity $\left|B_{n}\right\rangle$
- We can define complexity as $C=\sum_{n} c_{n}\left\langle\phi_{t} \mid B_{n}\right\rangle\left\langle B_{n} \mid \phi_{t}\right\rangle$
- With c_{n} strictly increasing
- The choice $\left|B_{n}\right\rangle=\left|K_{n}\right\rangle$ minimises the complexity of the time-evolved reference state
[Balasubramanian, Caputa, Magan, Wu, arXiv:2202.06957]

Some Comments

- Complexity is an ambiguous quantity - can likely be a proxy for many physical quantities
- It give an additional label to states \Rightarrow additional information about quantum evolution

Some Comments

- Complexity is an ambiguous quantity - can likely be a proxy for many physical quantities
- It give an additional label to states \Rightarrow additional information about quantum evolution
- Spread complexity is dependent on the choice of reference state - this may be unsatisfactory
- Could average over different choices
- Are there features that can be expected to be robust?

Some Comments

- Complexity is an ambiguous quantity - can likely be a proxy for many physical quantities
- It give an additional label to states \Rightarrow additional information about quantum evolution
- Spread complexity is dependent on the choice of reference state - this may be unsatisfactory
- Could average over different choices
- Are there features that can be expected to be robust?
- Topological phase transitions appear to be such a feature [Caputa, Liu, arXiv:2205.05688], [Caputa, Gupta, Murugan, Haque, Liu, HJRvZ, arXiv:2208.06311]

Low rank algebras

- Fully analytic results can be obtained for $s u(1,1), s u(2)$, Heisenberg-Weyl [Caputa, Magan, Patramanis, arxiv:2109.03824]
- $L_{+}=L_{-}^{\dagger} \quad ; \quad\left[\left[L_{-}, L_{+}\right], L_{ \pm}\right]= \pm 2 f L_{ \pm}$
- Highest weight state $L_{-}|w\rangle=0,\left[L_{-}, L_{+}\right]|w\rangle=w_{0}|w\rangle$
- An arbitrary group element action may be written as $e^{i\left(a_{+} L_{+}+a_{+}^{*} L_{-}+a_{0}\left[L_{-}, L_{+}\right]\right)}|w\rangle=N e^{z L_{+}}|w\rangle$
- The manifold of target states is a two-dimensional manifold \Leftrightarrow elements of $G /\left(\left[L_{-}, L_{+}\right]\right)$

Low rank algebras

- Fully analytic results can be obtained for $s u(1,1), s u(2)$, Heisenberg-Weyl [Caputa, Magan, Patramanis, arxiv:2109.03824]
- $L_{+}=L_{-}^{\dagger} \quad ; \quad\left[\left[L_{-}, L_{+}\right], L_{ \pm}\right]= \pm 2 f L_{ \pm}$
- Highest weight state $L_{-}|w\rangle=0,\left[L_{-}, L_{+}\right]|w\rangle=w_{0}|w\rangle$
- An arbitrary group element action may be written as $e^{i\left(a_{+} L_{+}+a_{+}^{*} L_{-}+a_{0}\left[L_{-}, L_{+}\right]\right)}|w\rangle=N e^{z L_{+}}|w\rangle$
- The manifold of target states is a two-dimensional manifold \Leftrightarrow elements of $G /\left(\left[L_{-}, L_{+}\right]\right)$
- Krylov basis $\left|K_{n}\right\rangle=\frac{\left(L_{+}\right)^{n}|w\rangle}{\sqrt{\langle w|\left(L_{-}\right)^{n}\left(L_{+}\right)^{n}|w\rangle}}$
- Spread complexity $C=z \partial_{z} \log \langle w| e^{\bar{L} L_{-}} e^{z L_{+}}|w\rangle$

Low rank algebras

- Can do a little better than this
- If the Krylov basis is known for $H,\left|\phi_{r}\right\rangle$ then the Krylov basis for $U H U^{\dagger}, U\left|\phi_{r}\right\rangle$ is given by $\left|K_{n}\right\rangle \rightarrow U\left|K_{n}\right\rangle$
- This is particularly useful for the low-rank algebras, since the Krylov basis is rather insensitive to the choice of H
- Spread complexity $C=z^{\prime} \partial_{z^{\prime}} \log \langle w| e^{\bar{z}^{\prime} L_{-}} e^{z^{\prime} L_{+}}|w\rangle$

Tensor Products

- Suppose we have a Hamiltonian $H=\sum_{i} H_{i}$ with $\left[H_{i}, H_{j}\right]=0$
- Krylov basis, by definition, is the ordered orthonormal basis obtained from $\left.\mid O_{n}\right)=H^{n}\left|\phi_{r, 1}, \phi_{r, 2} \cdots\right\rangle$

Tensor Products

- Suppose we have a Hamiltonian $H=\sum_{i} H_{i}$ with $\left[H_{i}, H_{j}\right]=0$
- Krylov basis, by definition, is the ordered orthonormal basis obtained from $\left.\mid O_{n}\right)=H^{n}\left|\phi_{r, 1}, \phi_{r, 2} \cdots\right\rangle$
- In general $C \neq \sum_{i} C_{i}$

Tensor Products

- Suppose we have a Hamiltonian $H=\sum_{i} H_{i}$ with $\left[H_{i}, H_{j}\right]=0$
- Krylov basis, by definition, is the ordered orthonormal basis obtained from $\left.\mid O_{n}\right)=H^{n}\left|\phi_{r, 1}, \phi_{r, 2} \cdots\right\rangle$
- In general $C \neq \sum_{i} C_{i}$
- Redefine: $\tilde{C}=\sum_{i} C_{i}$ which is intuitively appealing

Tensor Products

- Suppose we have a Hamiltonian $H=\sum_{i} H_{i}$ with $\left[H_{i}, H_{j}\right]=0$
- Krylov basis, by definition, is the ordered orthonormal basis obtained from $\left.\mid O_{n}\right)=H^{n}\left|\phi_{r, 1}, \phi_{r, 2} \cdots\right\rangle$
- In general $C \neq \sum_{i} C_{i}$
- Redefine: $\tilde{C}=\sum_{i} C_{i}$ which is intuitively appealing
- For many spin $\frac{1}{2} S U(2)$ tensor products they are equal

Kitaev Chain

- A model of Dirac fermions on an L-site lattice [Kitaev, 2001]
- $H=$

$$
\sum_{j=1}^{L}\left[-\frac{J}{2}\left(c_{j}^{\dagger} c_{j+1}+c_{j+1}^{\dagger} c_{j}\right)-\mu\left(c_{j}^{\dagger} c_{j}-\frac{1}{2}\right)+\frac{1}{2}\left(\Delta c_{j}^{\dagger} c_{j+1}^{\dagger}+\Delta^{*} c_{j+1} c_{j}\right)\right]
$$

- Hopping amplitude J, chemical potential μ and superconducting pairing strength Δ
- c_{j} 's can be redefined to always produce a real Δ
- Topological phase transition occurs at $|J|=|\mu|$, gapless for $|\mu|<|J|$

Kitaev Chain

- $c_{j}=\frac{1}{\sqrt{L}} \sum_{n} e^{i k_{n} j} a_{k_{n}}$

Kitaev Chain

- $c_{j}=\frac{1}{\sqrt{L}} \sum_{n} e^{i k_{n} j} a_{k_{n}}$
- $H=$
$-\sum_{k_{n}>0}\left[2\left(\mu+J \cos \left(k_{n}\right)\right) J_{0}^{\left(k_{n}\right)}-i \Delta \sin \left(k_{n}\right)\left(J_{+}^{\left(k_{n}\right)}-J_{-}^{\left(k_{n}\right)}\right)\right]$
- $J_{0}^{\left(k_{n}\right)}=\frac{1}{2}\left(a_{k_{n}}^{\dagger} a_{k_{n}}-a_{-k_{n}} a_{-k_{n}}^{\dagger}\right) J_{+}^{\left(k_{n}\right)}=a_{k_{n}}^{\dagger} a_{-k_{n}}^{\dagger} J_{-}^{\left(k_{n}\right)}=a_{-k_{n}} a_{k_{n}}$
- Spin- $\frac{1}{2}$ representation of $s u(2)$
$\bullet\left[J_{0}^{\left(k_{n}\right)}, J_{ \pm}^{\left(k_{n}\right)}\right]= \pm J_{ \pm}^{\left(k_{n}\right)} \quad\left[J_{+}^{\left(k_{n}\right)}, J_{-}^{\left(k_{n}\right)}\right]=2 J_{0}^{\left(k_{n}\right)}$

Kitaev Chain

- Eigenstates can be written as $S U(2)$ coherent states - Krylov complexity for simple groups such as $S U(2)$ is well understood
- To determine the Krylov basis we need to specify a reference state (i.e. the zero complexity state)
- Natural choices include the lowest energy state when $\Delta \rightarrow 0$ or $J, \mu \rightarrow 0$ as well as the fermion vacuum
- In principle the Krylov basis needs to be recomputed for all these choices. Here they are related by a unitary transformation

Reference States

- Our circuits will connect these different choices of reference state $(s=0)$ to the Kitaev chain ground state $(s=1)$
- Reference state 1 :

$$
\left|\Omega_{k}(s=0)\right\rangle=e^{-i \frac{\pi}{2} \theta(\mu+J \cos (k))\left(J_{+}^{(k)}+J_{-}^{(k)}\right)}\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{k}
$$

- Reference state 2 :

$$
\left|\Omega_{k}(s=0)\right\rangle=e^{-i \frac{\pi}{4}\left(J_{+}^{(k)}+J_{-}^{(k)}\right)}\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{k}
$$

- Reference state 3:

$$
\left|\Omega_{k}(s=0)\right\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{k}
$$

Target State

- Ground state $\left|\Omega_{k}(s=1)\right\rangle=\prod_{k} \sin \left|\phi_{k}\right| e^{-i \cot \phi_{k} J_{+}^{(k)}\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{k}}$
- $\phi_{k}=\frac{1}{2} \tan ^{-1} \frac{\Delta \sin k}{\mu+J \cos k}$

Target State

- Ground state $\left|\Omega_{k}(s=1)\right\rangle=\prod_{k} \sin \left|\phi_{k}\right| e^{-i \cot \phi_{k} J_{+}^{(k)}\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{k}}$
- $\phi_{k}=\frac{1}{2} \tan ^{-1} \frac{\Delta \sin k}{\mu+J \cos k}$
- Can readily cast the above in the form
$\left|\Omega_{k}(s=1)\right\rangle=U(s)\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{k}=e^{z(s) J_{+}^{(k)}}\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{k}$
- $C_{k}(s)=z \partial_{z} \log k\left\langle\frac{1}{2},-\frac{1}{2}\right| e^{\bar{z}(s) J_{-}^{(k)}} e^{z(s) J_{+}^{(k)}}\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{k}$
- $C(J, \mu, \Delta)=\frac{1}{L} \sum_{n>0} C_{k_{n}} \rightarrow \frac{1}{\pi} \int_{0}^{\pi} d k C_{k}$

Target State

- Ground state $\left|\Omega_{k}(s=1)\right\rangle=\prod_{k} \sin \left|\phi_{k}\right| e^{-i \cot \phi_{k} J_{+}^{(k)}\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{k}}$
- $\phi_{k}=\frac{1}{2} \tan ^{-1} \frac{\Delta \sin k}{\mu+J \cos k}$
- Can readily cast the above in the form
$\left|\Omega_{k}(s=1)\right\rangle=U(s)\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{k}=e^{z(s) J_{+}^{(k)}}\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{k}$
- $C_{k}(s)=z \partial_{z} \log { }_{k}\left\langle\frac{1}{2},-\frac{1}{2}\right| e^{\bar{z}(s) J_{-}^{(k)}} e^{z(s) J_{+}^{(k)}}\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{k}$
- $C(J, \mu, \Delta)=\frac{1}{L} \sum_{n>0} C_{k_{n}} \rightarrow \frac{1}{\pi} \int_{0}^{\pi} d k C_{k}$
- Will set $J=1$

Circuit 1

- Complexity takes a Δ-dependent constant value in the topological phase

Circuit 1

- $\mu=1.1,1.02,0.98$. A discontinuity develops when $|\mu|<1$

Circuit 2

- Complexity takes a Δ-dependent constant value in the topological phase

Circuit 3

- Complexity asymptotes between 0 and 1 , the expected values

Circuit 3

- Derivative diverges as the topological phase transition is crossed

Outlook

- Spread Complexity is sensitive to the topological phase transition in the Kitaev chain see also [Caputa, Liu, arXiv:2205.05688]
- This appears to be a rather robust feature

Outlook

- Spread Complexity is sensitive to the topological phase transition in the Kitaev chain see also [Caputa, Liu, arxiv:2205.05688]
- This appears to be a rather robust feature
- Which choices of reference state exhibit the plateau feature? Presumably related to symmetries...
- What are the effects of twisted boundary conditions? Gauging the model?
- In general, what features of quantum many-body systems can be probed with spread complexity

Thank you for your attention!

Research is supported by the "Quantum Technologies for Sustainable Development" grant from the National Institute for Theoretical and Computational Sciences

