Chaos and complexity through the lens of dynamics in Krylov space.

Anatoly Dymarsky
University of Kentucky

BIRS, 8 June, 2023

What is this talk about?

- Dynamics in Krylov space emerged as a novel probe of chaos and complexity
- universal operator growth hypothesis
- operator growth (OTOC)
- complexity
- What is behind all of this?
- demystifying Krylov: it only knows about

$$
C(t)=\langle A(t) A\rangle \text { or } F(t)=\langle\psi(t) \mid \psi\rangle
$$

- relation between $C(t)$ and $b_{n}, K(t)$ is very intricate

Recursion method

- ingredients: Hamiltonian H, an operator A, two-point function $C(t)=\langle A(0) A(t)\rangle$
- iterative relation defines basis A_{n} in Krylov space

$$
A_{n+1}=\left[H, A_{n}\right]-a_{n} A_{n}-b_{n-1}^{2} A_{n-1}
$$

Lanczos coefficients a_{n}, b_{n} are fixed by requiring A_{n} are mutually orthogonal, $\quad b_{n}^{2}=\left\langle A_{n+1} A_{n+1}\right\rangle /\left\langle A_{n} A_{n}\right\rangle$

- Liouvillian matrix $\mathcal{L}_{n m}$ is three-diagonal

$$
\left[H, A_{k}\right]=\sum \mathcal{L}_{k l} A_{l}
$$

time evolution $e^{i \mathcal{L} t}$ is easy to evaluate numerically

Math of Krylov method

- Krylov space can be defined for any linear operator

$$
v_{0}=v, \quad v_{k}=H^{k} v_{0}
$$

Krylov space includes all eigenvectors/eigenvalues of H, which have an overlap with v_{0}

- Lanczos method - choice of basis in Krylov space
- \mathcal{L} is defined by $[H, A]$; choice of cor. function - choice of scalar product, affecting representation of \mathcal{L} isospectral deformation, integrable dynamics of a_{n}, b_{n} with Gorsky, PRB 102, 085137 (2020) temperature dependence - talk by Nick Angelinos
- Lanczos coefficients b_{n} - a way to rewrite $C(t)$

Chaos from two-point function

- power spectrum

$$
f^{2}(\omega)=\frac{1}{2 \pi} \int d t e^{-i \omega t} C(t)
$$

- relation between f, C, and b_{n}

$$
f^{2}(\omega) \sim e^{-\omega / \omega_{0}} \leftrightarrow C(i \tau) \sim\left(\tau-\omega_{0}^{-1}\right)^{\Delta}
$$

consistent with $b_{n} \sim \pi \omega_{0} n / 2$

- signature of chaos?
$f^{2}(\omega) \sim e^{-\omega / \omega_{0}}$ is a signature of (classical) chaos Elsayed, Hess, Fine, PRE 90, 022910 (2014)
singularity of $\mid A(i t)$ and $C(i t)$ is expected in a generic quantum lattice model in $D \geq 2$
with A. Avdoshkin, PRR 2, 043234 (2020)

Universal operator growth hypothesis

- in a generic quantum system Lanczos coefficients grow at maximal possible rate (consistent with locality)

$$
b_{n} \sim \alpha n
$$

smart reformulation of Elsayed et al.?

- Krylov complexity grows exponentially $K \sim e^{2 \alpha t}$ and bounds OTOC (conjecture)

$$
K(t)=\sum_{k}\left|c_{k}\right|^{2} k, \quad A(t)=\sum c_{k} \tilde{A}_{k} .
$$

Parker, Cao, Avdoshkin, Scaffidi, Altman PRX 9, 041017 partial proof Gu, Kitaev, Zhang JHEP 03 (2022) 133

Lanczos growth and chaos

- SYK model

Parker et al.'2019

- universal bounds on $C(t)$ in lattice models with Avdoshkin'2020
- non-integrable 1D Ising model in magnetic field maximal growth of $b_{n} \sim n / \ln (n)$ (provided the behavior is smooth)
Cao'2021
- faster then exponential decays of f^{2} for XXZ model numerical evidence, Rigol et al.'2020
problems
- b_{n} grow linearly in free theories; also not smooth
- b_{n} probe scrambling, not chaos?

Bhattacharjee et al.'2022

Thermal 2pt function in CFT

- "Wightman"-ordered thermal two point function

$$
C(t)=\operatorname{Tr}\left(e^{-\beta H / 2} A(t) e^{-\beta H / 2} A\right) / Z(\beta)
$$

- $C(t)$ always has a singularity at $t=i \beta / 2$
assuming b_{n} is smooth they must behave as $b_{n} \approx \pi(n+\Delta+1 / 2) / \beta$, in which case $K \sim e^{\frac{2 \pi}{\beta} t}$
- conjectural bound on OTOC in terms of Krylov complexity becomes MSS bound

$$
\lambda_{O T O C} \leq \frac{2 \pi}{\beta}
$$

Universality of b_{n} in QFT

- singularity at $C(i \beta / 2)$ or $f(\omega) \propto e^{-\beta \omega / 2}$ is dictated by locality
- relation between b_{n} and $C^{(n)}$ - sum over Dyck paths

$$
M_{2 k}=C^{(2 k)} / C=\sum_{h_{1} \ldots h_{2 k}} \prod b_{\left(h_{i}+h_{i+1}\right) / 2}
$$

- integral over Dyck paths

$$
C^{(2 k)} / C=\int \mathcal{D} f e^{S}, \quad S=2 k \int_{0}^{1} d t S_{2}\left(\left(f^{\prime}(t)+1\right) / 2\right)+\ln b(2 k f(t))
$$

with A. Avdoshkin'2019

$$
b_{n} \approx \pi(n+\Delta+1 / 2) / \beta
$$

with Smolkin, PRD 104, L081702 (2021)

Free fields in various dimensions

- thermal 2 pt function

$$
C(-i \tau) \sim \zeta(2 \Delta, 1 / 2+\tau / \beta)+\zeta(2 \Delta, 1 / 2-\tau / \beta)
$$

- for scalar $d=4$ and $d=6 b_{n}$ are known; for other d and fermions theories - numerical results
- b_{n} exhibit "staggering" but are sufficiently smooth; $K(t)$ grows exponentially at the "MSS" rate

with M. Smolkin, 2021

Holographic thermal 2pt function

- thermal 2 pt function evaluated numerically the behavior of b_{n} asymptote to $\pi(n+\Delta+1 / 2) / \beta$

exponential growth of Krylov complexity with $\lambda_{k}=2 \pi / \beta$

Effects of β and UV cutoff

- $f^{2}(\omega) \propto e^{-\beta \omega / 2}$ is fixed kinematically, because 2 pt function is singular when two operators collide
- another look: $f^{2}(\omega) \propto e^{-\beta \omega / 2}$ is because $\langle E+\omega / 2| \phi|E-\omega / 2\rangle$ is unsuppressed for large ω - due to Heisenberg uncertainty principle!
- conclusion: for any local ϕ behavior $f^{2}(\omega) \propto e^{-\beta \omega / 2}$ and hence linear growth of b_{n} follow automatically; asymptotic behavior of b_{n} is not fixed when UV cutoff is introduced
- prediction: at low T coefficients b_{n} should exhibit linear growth, even if the model is integrable! more on temperature dependence: talk by Nick Angelinos

Spin-chain at different temperatures

- XY-model

$$
H=\sum_{i} X_{i} X_{i+1}+Y_{i} Y_{i+1}
$$

- linear growth of b_{n} at small T, saturation at UV-cutoff

small T behavior is universal (field theory), real asymptote of b_{n} is controlled by UV physics

Universal growth hypothesis: upshot

- maximal asymptotic growth of b_{n} for generic non-integrable systems
finite $\Lambda_{U V}, b_{n} \sim \Lambda_{U V}$, and thermodynamic limit, which reduces to divergence of $|A(i t)|$
- coarse grained universality of b_{n} from $\rho(E)$ as well OTOC, which also probes scrambling
Bhattacharjee, Cao, Nandy, Pathak '2022
- possibility of exotic behavior (several branches of b_{n})?

Reformulation in terms of Krylov space opened new connections with level statistics, OTOC, complexity, etc.

Dynamics in Krylov space and OTOC

- does $C(t)$ and b_{n} know about chaos (level statistics)? Yes! spectrum of \mathcal{L} is $E_{n}-E_{m}$
- coarse grained universality of b_{n} from $\rho(E)$

imprint of $\left\langle\rho(E) \rho\left(E^{\prime}\right)\right\rangle$ is work in progress talk by Javier Magan, Balasubramanian, Magan, Wu'22
Erdmenger, Jian, Xian'23
Hashimoto, Murata, Tanahashi, Watanabe'23

Dynamics in Krylov space and OTOC

- b_{n} grow at maximal rate compatible with locality, $b_{n} \sim \alpha n$
- Krylov complexity grows exponentially $K \sim e^{\lambda_{K} t}$, bounds OTOC

$$
\lambda_{O T O C} \leq \lambda_{K}(=2 \alpha) \leq \frac{2 \pi}{\beta}
$$

left inequality, conjectured by Parker et al., proved for $f^{2}(\omega) \sim e^{-\pi \omega(2 \alpha)}$ by Gu, Kitaev, Zhang'2021 right inequality, generalization when $\lambda_{K} \neq 2 \alpha$, with Avdoshkin'2020

Free massive scalar

- mass introduces "persistent staggering"

$$
\beta b_{n}=\alpha_{0} n+\alpha_{1}+(-1)^{n} \alpha_{2}
$$

Krylov complexity grows exponentially with $\lambda_{K}<2 \pi / \beta$

- for massive fermion qualitatively the same with Avdoshkin and Smolkin, 2212.14429 also talk by Keun-Young Kim, Camargo, Jahnke, Kima, Nishidac'22

Krylov complexity

Dynamics in Krylov space and complexity

- growth of $K(t)$ should be compared with holographic/computational complexity
Barbon, Rabinovici, Shir, Sinha'2019
- initial (exponential) growth, after that $K(t)$ grows approximately linearly for an exponential time until saturates at $K(t) \sim e^{O(S)}$ numerical evidence from SYK model, spin chains, etc., bulk interpretation for SYK
Rabinovici, Sanchez-Garrido, Shir, Sonner'2021, 2022,2023

- connection between $K(t)$ and complexity, Caputa, ...

Free scalar on $\mathbb{S}^{3} \times \mathbb{S}^{1}$

- what if the space is compact

$$
C(-i \tau) \sim \sum_{\ell} \frac{\pi^{2}}{\cosh ^{2}(\pi(\ell R+i \tau) / \beta)}-\frac{2 \pi \beta}{R}
$$

- for finite R asymptotic behavior changes!

Krylov complexity is bounded from above, $K(t) \leq K_{\max }(R / \beta)$

- same qualitative picture for holographic model in TAdS

1D bosons on the lattice

- a model with mass, compact space, UV-cutoff

$$
H=\sum_{i=1}^{N} \dot{\phi}_{i}^{2}+\left(\phi_{i+1}-\phi_{i}\right)^{2}+\mu^{2} \phi_{i}^{2}
$$

- slopes, controlled by N / β and UV cutoff

1 D bosons on the lattice

- 'staggering" controlled by $\beta \mu$, slopes controlled by N / β

by tuning N / β two slopes will emerge well before the UV-cutoff
- if R / β is sufficiently small, $K(t)$ is bounded from above by some UV-independent value!

Conclusions

- Krylov space is a new avenue to unify approaches to chaos
- extension of MSS bound

$$
\lambda_{O T O C} \leq \lambda_{K} \leq \frac{2 \pi}{\beta}
$$

non-trivial checks

- behavior of b_{n} as a probe of chaos, need for UV cutoff imprint of level statistics?
- Krylov complexity vs holographic/computational complexity
suggestive but non-universal results

Auxiliary slides

Upper bound on infinity-norm

- Euclidean time evolution

$$
A(t) \equiv e^{t H} A e^{-t H}=\sum_{k} \underbrace{[H, \ldots[H, A]]}_{k \text { times }} \frac{t^{k}}{k!}
$$

- locality of interaction

$$
H=\sum_{I} h_{I}, \quad[H, \ldots[H, A]]=\sum_{I_{1}, \ldots, I_{k}}\left[h_{I_{k}}, \ldots\left[h_{I_{1}}, A\right]\right]
$$

- the bound

$$
|A(t)| \leq|A| f(t), \quad f(t)=\sum_{\text {clusters }} \sum_{k} n(k) \frac{(2 J|t|)^{k}}{k!}
$$

$n(k)$ - number of sets I_{1}, \ldots, I_{k}, which satisfy adjacency condition, associated with a given cluster (lattice animal)

Counting the sets I_{1}, \ldots, I_{k}

- Each set I_{1}, \ldots, I_{k} defines lattice animal history

$$
\{I\} \equiv I_{1}, \ldots, I_{k} \rightarrow\{J\} \equiv J_{1}, \ldots, J_{j}, \quad j \leq k
$$

- the map $\{I\} \rightarrow\{J\}$ defines a partition of k objects into j groups, and vice versa

$$
n(k)=S(k, j) \phi(j)
$$

$n(k)$ - number of sets $\{I\}$ associated with a given cluster $\phi(j)$ - number this cluster's histories $\{J\}$

$$
N(k)=\sum_{\text {clusters }} n(k)=\sum_{j} S(k, j) \phi(j)
$$

Summing over histories

- Stirling transform

$$
N(k)=\sum_{j} S(k, j) \phi(j), \quad \phi(j)=\sum_{k} s(k, j) N(k)
$$

- Stirling transform

$$
f(t) \equiv \sum_{k} N(k) \frac{t^{k}}{k!}=\sum_{j} \phi(j) \frac{q^{j}}{j!}, \quad q \equiv e^{t}-1 .
$$

- summing over histories - new expansion parameter

$$
|A(t)| \leq|A| f(t), \quad f=\sum_{j} \phi(j) \frac{q^{j}}{j!}, \quad q \equiv e^{2 J|t|}-1 .
$$

Bound for Bethe lattices

- Bethe lattice of coordination number $z \geq 2$
- exact number of lattice animal histories

$$
\phi(j)=(z-2)^{j} \frac{\Gamma(j+z /(z-2))}{\Gamma(z /(z-2))}
$$

- the bound
$f=(1-(z-2) q)^{-z /(z-2)}$
for $z>2$ there is a pole at some $t=\beta^{*}$
for $z=2$, i.e. 1D lattices, $f=e^{2 q}$
- for arbitrary lattices Bethe lattices provide an upper bound

Euclidean operator growth and chaos

- generic non-integrable quantum lattice models $D \geq 2$, singularity at finite $t=\beta^{*}$

$$
|A(t)| \lesssim \frac{|A|}{\left(1-q / q_{0}\right)}
$$

$D=1$, double-exponential growth

$$
|A(t)| \lesssim|A| e^{2 q}
$$

- Euclidean Lieb-Robinson
$D \geq 2$, operators spread to spatial infinity at finite $t=\beta^{*}$ $D=1$, operators spread exponentially, $t \sim \ln (\ell)$

$$
|[A(t), B]| \leq 2|A||B| e^{q} \frac{q^{\ell}}{\ell!}
$$

Euclidean operator growth and OTOC

- location of the singularity of $C\left(\beta^{*}=\pi /(2 \alpha)\right)$ - slope of Lanczos coefficients growth $b_{n} \propto \alpha n$ bounds $\lambda_{\text {OTOC }}$

$$
\lambda_{\mathrm{OTOC}} \leq 2 \alpha
$$

Parker, Cao, Avdoshkin, Scaffidi, Altman'18 Murthy, Srednicki'19

- improved bound on chaos for large T
$\lambda_{\mathrm{OTOC}} \leq \frac{2 \pi T}{1+2 \beta^{*} T}$
- exact SYK
- improved bound
- MSS bound

Singularity of $C(t)$

- scalar product in the space of operators

$$
\langle B \mid A\rangle:=\frac{1}{N} \operatorname{Tr}\left(A B^{\dagger}\right), \quad C(t)=\langle A \mid A(t)\rangle
$$

- adjoint action $[H$,$] is self-adjoint with \langle\mid\rangle$

$$
C\left(t_{1}+t_{2}\right)=\left\langle A\left(t_{1}\right) \mid A\left(t_{2}\right)\right\rangle=\left\langle A\left(t_{1} / 2\right)\right| e^{t_{2}[H,]}\left|A\left(t_{1} / 2\right)\right\rangle
$$

- assuming $A(t / 2)$ is typical

$$
C(t+\beta)=\|A(t)\|^{2} \frac{Z(\beta) Z(-\beta)}{Z(0)^{2}}=\|A(t)\|^{2} e^{2 F(0)-F(\beta)-F(-\beta)}
$$

qualitatively, singularity of $C(t)$ is associated with $A(t)$ spreading within Krylov space and becoming more typical

Chaos vs localization in Krylov space

- when the system is chaotic and $C(t)$ has a singularity at $t=t^{*}, A(t)$ delocalizes in Krylov space at $t=t^{*} / 2$
- when the system is integrable and $C(t)$ is analytic, IPR is finite and the operator is Localized

$$
\begin{array}{lr}
C(t) \propto e^{a t^{2} / 2}, & I \propto t \\
C(t) \propto e^{a e^{m t}}, & I \propto e^{m t}
\end{array}
$$

qualitatively similar to: localization/ergodicity in physical space
= localization / delocalization in Fock space
Altshuler, Gefen, Kamenev, Levitov'97
Basko, Aleiner, Altshuler'06

Main results

- universal bounds on the operator norm growth in lattice models, Euclidean Lieb-Robinson bound
- Toda chain interpretation of the recursion method, time-correlation function
- chaos in the underlying quantum many-body system as delocalization in Krylov space

Outlook

- Connection between Euclidean and Minkowski dynamics
- Can Toda help connect different manifestations of chaos?
- connection with OTOC
- connection with spectral properties
- Chaos as delocalization? Connection to BH physics?

