Chaos and complexity through the lens of dynamics in Krylov space.

Anatoly Dymarsky

University of Kentucky

BIRS, 8 June, 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

What is this talk about?

- Dynamics in Krylov space emerged as a novel probe of chaos and complexity
 - universal operator growth hypothesis
 - operator growth (OTOC)
 - complexity
- What is behind all of this?
 - demystifying Krylov: it only knows about

$$C(t) = \langle A(t)A \rangle$$
 or $F(t) = \langle \psi(t)|\psi \rangle$

うして ふゆ く は く は く む く し く

- relation between C(t) and $b_n, K(t)$ is very intricate

Recursion method

- ingredients: Hamiltonian H, an operator A, two-point function $C(t) = \langle A(0)A(t) \rangle$
- iterative relation defines basis A_n in Krylov space

$$A_{n+1} = [H, A_n] - a_n A_n - b_{n-1}^2 A_{n-1}$$

Lanczos coefficients a_n, b_n are fixed by requiring A_n are mutually orthogonal, $b_n^2 = \langle A_{n+1}A_{n+1} \rangle / \langle A_n A_n \rangle$

• Liouvillian matrix \mathcal{L}_{nm} is three-diagonal

$$[H, A_k] = \sum \mathcal{L}_{kl} A_l$$

time evolution $e^{i\mathcal{L}t}$ is easy to evaluate numerically

Math of Krylov method

Krylov space can be defined for any linear operator

$$v_0 = v, \qquad v_k = H^k v_0$$

Krylov space includes all eigenvectors/eigenvalues of H, which have an overlap with v_0

- Lanczos method choice of basis in Krylov space
- \$\mathcal{L}\$ is defined by [H, A]; choice of cor. function choice of scalar product, affecting representation of \$\mathcal{L}\$ isospectral deformation, integrable dynamics of \$a_n, b_n\$ with Gorsky, PRB 102, 085137 (2020) temperature dependence talk by Nick Angelinos

• Lanczos coefficients b_n – a way to rewrite C(t)

Chaos from two-point function

power spectrum

$$f^{2}(\omega) = \frac{1}{2\pi} \int dt \, e^{-i\omega t} \, C(t)$$

• relation between f, C, and b_n

$$f^2(\omega) \sim e^{-\omega/\omega_0} \leftrightarrow C(i\tau) \sim (\tau - \omega_0^{-1})^{\Delta}$$

consistent with $b_n \sim \pi \omega_0 n/2$

• signature of chaos?

 $f^2(\omega) \sim e^{-\omega/\omega_0}$ is a signature of (classical) chaos Elsayed, Hess, Fine, PRE 90, 022910 (2014)

singularity of |A(it)| and C(it) is expected in a generic quantum lattice model in $D \ge 2$ with A. Avdoshkin, PRR 2, 043234 (2020)

Universal operator growth hypothesis

• in a generic quantum system Lanczos coefficients grow at maximal possible rate (consistent with locality)

$$b_n \sim \alpha n$$

smart reformulation of Elsayed et al.?

• Krylov complexity grows exponentially $K \sim e^{2\alpha t}$ and bounds OTOC (conjecture)

$$K(t) = \sum_{k} |c_k|^2 k, \qquad A(t) = \sum c_k \tilde{A}_k.$$

Parker, Cao, Avdoshkin, Scaffidi, Altman PRX 9, 041017 partial proof Gu, Kitaev, Zhang JHEP 03 (2022) 133

Lanczos growth and chaos

- SYK model Parker et al.'2019
- universal bounds on C(t) in lattice models with Avdoshkin'2020
- non-integrable 1D Ising model in magnetic field maximal growth of b_n ~ n/ln(n) (provided the behavior is smooth) Cao'2021

• faster then exponential decays of f^2 for XXZ model numerical evidence, Rigol et al.'2020

problems

- b_n grow linearly in free theories; also not smooth
- b_n probe scrambling, not chaos? Bhattacharjee et al.'2022

Thermal 2pt function in CFT

• "Wightman"-ordered thermal two point function

$$C(t) = \operatorname{Tr}(e^{-\beta H/2}A(t)e^{-\beta H/2}A)/Z(\beta).$$

- C(t) always has a singularity at t = iβ/2 assuming b_n is smooth they must behave as b_n ≈ π(n + Δ + 1/2)/β, in which case K ~ e^{2π/β t}
- conjectural bound on OTOC in terms of Krylov complexity becomes MSS bound

$$\lambda_{OTOC} \le \frac{2\pi}{\beta}$$

Universality of b_n in QFT

- singularity at $C(i\beta/2)$ or $f(\omega) \propto e^{-\beta\omega/2}$ is dictated by locality
- relation between b_n and $C^{(n)}$ sum over Dyck paths

$$M_{2k} = C^{(2k)}/C = \sum_{h_1...h_{2k}} \prod b_{(h_i+h_{i+1})/2}$$

• integral over Dyck paths

$$C^{(2k)}/C = \int \mathcal{D}f e^S, \quad S = 2k \int_0^1 dt S_2((f'(t)+1)/2) + \ln b(2kf(t)))$$

with A. Avdoshkin'2019

$$b_n \approx \pi (n + \Delta + 1/2)/\beta$$

with Smolkin, PRD 104, L081702 (2021)

Free fields in various dimensions

• thermal 2pt function

$$C(-i\tau) \sim \zeta(2\Delta, 1/2 + \tau/\beta) + \zeta(2\Delta, 1/2 - \tau/\beta)$$

- for scalar d = 4 and $d = 6 b_n$ are known; for other d and fermions theories numerical results
- b_n exhibit "staggering" but are sufficiently smooth; K(t) grows exponentially at the "MSS" rate

Holographic thermal 2pt function

• thermal 2pt function evaluated numerically

the behavior of b_n asymptote to $\pi(n+\Delta+1/2)/\beta$

exponential growth of Krylov complexity with $\lambda_k = 2\pi/\beta$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Effects of β and UV cutoff

- $f^2(\omega) \propto e^{-\beta\omega/2}$ is fixed kinematically, because 2pt function is singular when two operators collide
- another look: $f^2(\omega) \propto e^{-\beta\omega/2}$ is because $\langle E + \omega/2 | \phi | E \omega/2 \rangle$ is unsuppressed for large ω due to Heisenberg uncertainty principle!
- conclusion: for any $local \phi$ behavior $f^2(\omega) \propto e^{-\beta \omega/2}$ and hence linear growth of b_n follow automatically; asymptotic behavior of b_n is not fixed when UV cutoff is introduced
- prediction: at low T coefficients b_n should exhibit linear growth, even if the model is integrable! more on temperature dependence: talk by Nick Angelinos

Spin-chain at different temperatures

XY-model

$$H = \sum_{i} X_i X_{i+1} + Y_i Y_{i+1}$$

• linear growth of b_n at small T, saturation at UV-cutoff

small T behavior is universal (field theory), real asymptote of b_n is controlled by UV physics

イロト 不得下 イヨト イヨト

-

Universal growth hypothesis: upshot

• maximal *asymptotic* growth of b_n for generic non-integrable systems

finite Λ_{UV} , $b_n \sim \Lambda_{UV}$, and thermodynamic limit, which reduces to divergence of |A(it)|

- coarse grained universality of b_n from $\rho(E)$ as well OTOC, which also probes scrambling Bhattacharjee, Cao, Nandy, Pathak '2022
- possibility of exotic behavior (several branches of b_n)?

Reformulation in terms of Krylov space opened new connections with level statistics, OTOC, complexity, etc.

Dynamics in Krylov space and OTOC

- does C(t) and b_n know about chaos (level statistics)?
 Yes! spectrum of L is E_n − E_m
- coarse grained universality of b_n from $\rho(E)$

imprint of $\langle \rho(E)\rho(E')\rangle$ is work in progress

talk by Javier Magan, Balasubramanian, Magan, Wu'22 Erdmenger, Jian, Xian'23 Hashimoto, Murata, Tanahashi, Watanabe'23

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うらぐ

Dynamics in Krylov space and OTOC

- b_n grow at maximal rate compatible with locality, $b_n \sim \alpha \, n$
- Krylov complexity grows exponentially $K \sim e^{\lambda_K t}$, bounds OTOC

$$\lambda_{OTOC} \le \lambda_K (= 2\alpha) \le \frac{2\pi}{\beta}$$

left inequality, conjectured by Parker et al., proved for $f^2(\omega) \sim e^{-\pi\omega(2\alpha)}$ by Gu, Kitaev, Zhang'2021

right inequality, generalization when $\lambda_K \neq 2\alpha$, with Avdoshkin'2020

Free massive scalar

• mass introduces "persistent staggering"

$$\beta b_n = \alpha_0 \, n + \alpha_1 + (-1)^n \alpha_2$$

Krylov complexity grows exponentially with $\lambda_K < 2\pi/\beta$

・ロット 全部 マート・トロッ

• for massive fermion qualitatively the same with Avdoshkin and Smolkin, 2212.14429 also talk by Keun-Young Kim, Camargo, Jahnke, Kima, Nishidac'22

Krylov complexity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dynamics in Krylov space and complexity

- growth of K(t) should be compared with holographic/computational complexity Barbon, Rabinovici, Shir, Sinha'2019
- initial (exponential) growth, after that K(t) grows approximately linearly for an exponential time until saturates at $K(t) \sim e^{O(S)}$ numerical evidence from SYK model, spin chains, etc., bulk interpretation for SYK

Rabinovici, Sanchez-Garrido, Shir, Sonner'2021, 2022,2023

• connection between K(t) and complexity, Caputa, ...

Free scalar on $\mathbb{S}^3 \times \mathbb{S}^1$

what if the space is compact

$$C(-i\tau) \sim \sum_{\ell} \frac{\pi^2}{\cosh^2(\pi(\ell R + i\tau)/\beta)} - \frac{2\pi\beta}{R}$$

• for finite R asymptotic behavior changes!

Krylov complexity is bounded from above, $K(t) \le K_{\max}(R/\beta)$ • same qualitative picture for holographic model in TAdS

・ロット 全部 マート・トロッ

1D bosons on the lattice

• a model with mass, compact space, UV-cutoff

$$H = \sum_{i=1}^{N} \dot{\phi}_i^2 + (\phi_{i+1} - \phi_i)^2 + \mu^2 \phi_i^2$$

 \bullet slopes, controlled by N/β and UV cutoff

1D bosons on the lattice

• 'staggering" controlled by $\beta\mu$, slopes controlled by N/β

by tuning N/β two slopes will emerge well before the UV-cutoff

• if R/β is sufficiently small, K(t) is bounded from above by some UV-independent value!

Conclusions

- Krylov space is a new avenue to *unify* approaches to chaos
- extension of MSS bound

$$\lambda_{OTOC} \le \lambda_K \le \frac{2\pi}{\beta}$$

うして ふゆ く は く は く む く し く

non-trivial checks

- behavior of b_n as a probe of chaos, need for UV cutoff imprint of level statistics?
- Krylov complexity vs holographic/computational complexity

suggestive but non-universal results

Auxiliary slides

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Upper bound on infinity-norm

Euclidean time evolution

$$A(t) \equiv e^{tH}A e^{-tH} = \sum_{k} \underbrace{[H, \dots [H, A]]}_{k \text{ times}} \frac{t^{k}}{k!}$$

locality of interaction

$$H = \sum_{I} h_{I}, \qquad [H, \dots [H, A]] = \sum_{I_{1}, \dots, I_{k}} [h_{I_{k}}, \dots [h_{I_{1}}, A]]$$

• the bound

$$|A(t)| \le |A|f(t), \quad f(t) = \sum_{\text{clusters}} \sum_{k} n(k) \frac{(2J|t|)^k}{k!}$$

n(k) – number of sets I_1, \ldots, I_k , which satisfy adjacency condition, associated with a given cluster (lattice animal)

Counting the sets I_1, \ldots, I_k

• Each set I_1, \ldots, I_k defines lattice animal *history*

$$\{I\} \equiv I_1, \dots, I_k \to \{J\} \equiv J_1, \dots, J_j, \qquad j \le k$$

• the map $\{I\} \rightarrow \{J\}$ defines a partition of k objects into j groups, and vice versa

$$n(k) = S(k, j)\phi(j)$$

n(k) – number of sets $\{I\}$ associated with a given cluster $\phi(j)$ – number this cluster's histories $\{J\}$

$$N(k) = \sum_{\text{clusters}} n(k) = \sum_{j} S(k, j)\phi(j)$$

うして ふゆ く は く は く む く し く

Summing over histories

• Stirling transform

$$N(k) = \sum_{j} S(k, j)\phi(j), \quad \phi(j) = \sum_{k} s(k, j)N(k)$$

• Stirling transform

$$f(t) \equiv \sum_{k} N(k) \frac{t^k}{k!} = \sum_{j} \phi(j) \frac{q^j}{j!}, \quad q \equiv e^t - 1.$$

• summing over histories - new expansion parameter

$$|A(t)| \le |A|f(t), \qquad f = \sum_{j} \phi(j) \frac{q^{j}}{j!}, \quad q \equiv e^{2J|t|} - 1.$$

A D F A 目 F A E F A E F A Q Q

Bound for Bethe lattices

- Bethe lattice of coordination number $z\geq 2$
- exact number of lattice animal histories

$$\phi(j) = (z-2)^j \frac{\Gamma(j+z/(z-2))}{\Gamma(z/(z-2))}$$

• the bound

$$f = (1 - (z - 2)q)^{-z/(z-2)}$$

for z > 2 there is a pole at some $t = \beta^{*}$ for z = 2, i.e. 1D lattices, $f = e^{2q}$

• for arbitrary lattices Bethe lattices provide an upper bound

Euclidean operator growth and chaos

generic non-integrable quantum lattice models
 D ≥ 2, singularity at finite t = β^{*}

$$|A(t)| \lesssim \frac{|A|}{(1 - q/q_0)}$$

D = 1, double-exponential growth

 $|A(t)| \lesssim |A|e^{2q}$

Euclidean Lieb-Robinson

 $D \ge 2$, operators spread to spatial infinity at finite $t = \beta^*$ D = 1, operators spread exponentially, $t \sim \ln(\ell)$

$$|[A(t), B]| \le 2|A||B|e^q \frac{q^\ell}{\ell!}$$

Euclidean operator growth and OTOC

• location of the singularity of $C(\beta^* = \pi/(2\alpha))$ – slope of Lanczos coefficients growth $b_n \propto \alpha n$ bounds $\lambda_{\rm OTOC}$

 $\lambda_{\rm OTOC} \le 2\alpha$

Parker, Cao, Avdoshkin, Scaffidi, Altman'18 Murthy, Srednicki'19

 \bullet improved bound on chaos for large T

$$\lambda_{\text{OTOC}} \le \frac{2\pi T}{1+2\beta^* T}$$

- $\cdot \,$ exact SYK
- \cdot improved bound
- \cdot MSS bound

Singularity of C(t)

• scalar product in the space of operators

$$\langle B|A\rangle := \frac{1}{N} \operatorname{Tr}(AB^{\dagger}), \qquad C(t) = \langle A|A(t)\rangle$$

• adjoint action [H,~] is self-adjoint with $\langle~|~\rangle$

$$C(t_1 + t_2) = \langle A(t_1) | A(t_2) \rangle = \langle A(t_1/2) | e^{t_2[H,]} | A(t_1/2) \rangle$$

• assuming A(t/2) is typical

$$C(t+\beta) = ||A(t)||^2 \frac{Z(\beta)Z(-\beta)}{Z(0)^2} = ||A(t)||^2 e^{2F(0) - F(\beta) - F(-\beta)}$$

qualitatively, singularity of C(t) is associated with A(t)spreading within Krylov space and becoming more typical

Chaos vs localization in Krylov space

- \bullet when the system is chaotic and C(t) has a singularity at $t=t^{*},\,A(t)$ delocalizes in Krylov space at $t=t^{*}/2$
- \bullet when the system is integrable and C(t) is analytic, IPR is finite and the operator is Localized

$$\begin{split} C(t) &\propto e^{at^2/2}, \qquad I \propto t, \\ C(t) &\propto e^{ae^{mt}}, \qquad I \propto e^{mt} \end{split}$$

qualitatively similar to: localization/ergodicity in physical space
= localization / delocalization in Fock space
Altshuler, Gefen, Kamenev, Levitov'97
Basko, Aleiner, Altshuler'06

うして ふゆ く は く は く む く し く

Main results

- universal bounds on the operator norm growth in lattice models, Euclidean Lieb-Robinson bound
- Toda chain interpretation of the recursion method, time-correlation function
- chaos in the underlying quantum many-body system as delocalization in Krylov space

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Outlook

• Connection between Euclidean and Minkowski dynamics

- Can Toda help connect different manifestations of chaos?
 - connection with OTOC
 - connection with spectral properties
- Chaos as delocalization? Connection to BH physics?

うして ふゆ く は く は く む く し く