Project: SOME ASPECTS OF GAUSSIAN QUANTUM MARKOV SEMIGROUPS

EMANUELA SASSO AND SACHI SRIVASTAVA

June 26th 2023 - WOAIII

Arundhathi Krishnan, Yulia Kuznetsova, Priyanga Ganesan, Sarah Plosker

Fock Space

We work on the Hilbert space $\mathcal{H} = \Gamma(\mathbb{C}^d) \simeq \Gamma(\mathbb{C}) \otimes \cdots \otimes \Gamma(\mathbb{C})$. $(e(\alpha) = e(\alpha_1, \dots, \alpha_d))_{\alpha}$ the canonical orthonormal basis. We consider annihilation and creation operators a_j, a_j^{\dagger}

$$a_j e(\alpha_1, \dots, \alpha_d) = \sqrt{\alpha_j} e(\alpha_1, \dots, \alpha_j - 1, \dots, \alpha_d)$$

$$a_j^{\dagger} e(\alpha_1, \dots, \alpha_d) = \sqrt{\alpha_j + 1} e(\alpha_1, \dots, \alpha_j + 1, \dots, \alpha_d).$$

which are unbounded operators.

They satisfy
$$\left[a_j,a_k^\dagger\right]=\delta_{jk}\mathbb{1}$$
 and $a_j^*=a_j^\dagger.$

Quantum Markov Semigroups

The evolution is usually given on $\mathcal{B}(\mathcal{H})$ via a QMS $\mathcal{T} = (\mathcal{T}_t)_t$. Consider the generator of \mathcal{T} in the GKLS form

$$\mathcal{L}(x) = i[H, x] + \frac{1}{2} \sum_{\ell=1}^{d} (2L_{\ell}^* x L_{\ell} - \{L_{\ell}^* L_{\ell}, x\}), \quad x \in \mathcal{B}(h)$$

We want to consider

$$H=$$
 quadratic polynomial in $a_j, a_j^{\dagger},$ $L_{\ell}=$ linear polynomial in $a_j, a_i^{\dagger}.$

For $\xi = \sum_{\alpha} \xi_{\alpha} e(\alpha)$, $x \in \mathcal{B}(\mathcal{H})$ we define

$$\begin{split} \pounds(x)[\xi',\xi] &= \mathrm{i} \left\langle H \xi', x \xi \right\rangle - \mathrm{i} \left\langle \xi', x H \xi \right\rangle \\ &+ \frac{1}{2} \sum_{\ell} \left[2 \left\langle L_{\ell} \xi', x L_{\ell} \xi \right\rangle - \left\langle \xi', x L_{\ell}^* L_{\ell} \xi \right\rangle - \left\langle L_{\ell}^* L_{\ell} \xi', x \xi \right\rangle \right] \end{split}$$

Gaussian QMS

$$H = \sum_{j,k=1}^{d} \left[\Omega_{jk} a_j^{\dagger} a_k + \frac{\kappa_{jk}}{2} a_j^{\dagger} a_k^{\dagger} + \frac{\overline{\kappa_{jk}}}{2} a_j a_k \right] + \sum_{j=1}^{d} \left[\frac{\zeta_j}{2} a_j^{\dagger} + \frac{\overline{\zeta_j}}{2} a_j \right]$$

$$L_{\ell} = \sum_{j=1}^{d} \overline{\nu}_{\ell} a_j + u_{\ell} a_j^{\dagger}, \quad \ell = 1, \dots, m$$

with $\Omega = \Omega^*$, $\kappa = \kappa^T$ and $\ker(U^*) \cap \ker(V^T) = \{0\}$.

Theorem (Agredo, Fagnola, Poletti (2021))

We can construct a unique QMS, $\mathcal{T}=(\mathcal{T}_t)_t$ such that

$$\left. \frac{d}{dt} \left\langle \xi', \mathcal{T}_t(x) \xi \right\rangle \right|_{t=0} = \pounds(x) [\xi', \xi].$$

We call it **Gaussian QMS associated with** H, L_{ℓ} .

Gaussian states

W(z) are the Weyl operators, defined by

$$W(z) := e^{\sum_{j=1}^d z_j a_j^{\dagger} - \bar{z}_j a_j}$$

Definition

 ρ is a gaussian state if

$$\hat{
ho}(z) = \operatorname{tr}(
ho W(z)) = \exp\left\{-\mathrm{i}\,\operatorname{Re}\left\langle \omega,z
ight
angle - rac{1}{2}\operatorname{Re}\left\langle z,Sz
ight
angle
ight\}$$

for every $z \in \mathbb{C}^d$. For certain $\omega \in \mathbb{C}^d$ and $S : \mathbb{C}^d \to \mathbb{C}^d$ an invertible, **real linear** operator. We write $\rho = \rho_{\omega,S}$.

$$\hat{\rho}(z) = \exp\left\{-\mathrm{i}\left\langle \begin{pmatrix} \operatorname{Re}\omega \\ \operatorname{Im}\omega \end{pmatrix}, \begin{pmatrix} \operatorname{Re}z \\ \operatorname{Im}z \end{pmatrix}\right\rangle - \frac{1}{2}\left\langle \begin{pmatrix} \operatorname{Re}z \\ \operatorname{Im}z \end{pmatrix}, S_{\mathbb{R}^{2d}}\begin{pmatrix} \operatorname{Re}z \\ \operatorname{Im}z \end{pmatrix}\right\rangle \right\}.$$

Why Gaussian Semigroups?

Theorem (Agredo, Fagnola, Poletti (2021))

If $\rho = \rho_{(\omega,S)}$ then $\rho_t := \mathcal{T}_{*t}(\rho)$ is still a gaussian state $\rho_{(\omega_t,S_t)}$ with

$$\omega_t = e^{tZ^T}\omega - \int_0^t e^{sZ^T}\zeta ds$$

$$S_t = e^{tZ^T}Se^{TZ} + \int_0^t e^{sZ^T}Ce^{sZ}ds,$$

where Z and C are the real linear operators

$$Zz = \left(\frac{1}{2}\overline{(U^*U - V^*V)} + i\Omega\right)z + \left(\frac{1}{2}\left(U^TV - V^TU\right) + i\kappa\right)\overline{z}$$

$$Cz = \left(\frac{1}{2}\overline{(U^*U + V^*V)}\right)z + \left(\frac{1}{2}\left(U^TV + V^TU\right)\right)\overline{z}$$

More motivation

Theorem

It holds
$$\mathcal{T}_t(W(z)) = c_t(z)W(e^{tZ}z)$$
 with

$$c_t(z) = \exp\left\{-\frac{1}{2}\int_0^t \operatorname{Re}\left\langle e^{sZ}z, Ce^{sZ}z\right\rangle ds + i\int_0^t \operatorname{Re}\left\langle \zeta, e^{sZ}z\right\rangle ds\right\}$$

The converse also holds:

Theorem (Agredo, Fagnola, Poletti (2021))

The following are equivalent:

- T is a gaussian QMS associated with H, L_{ℓ} ;
- $\mathcal{T}_t(W(z)) = c_t(z)W(e^{tZ}z)$, for some C, Z, ζ ;
- \mathcal{T}_* preserves the set of gaussian states.

List of problems

Problem 1: Irreducibility

A semigroup is irreducible if and only if for every p projection

$$\mathcal{T}_t(p) \geq p \Rightarrow p = 0, p = 1$$

Theorem (Fagnola, Rebolledo)

Let p be a projection and Rg(p) its range. Then $\mathcal{T}_t(p) \geq p$ if and only if

- (i) Rg(p) is invariant for the strongly continuous contraction semigroup e^{tG}
- (ii) $L_{\ell}u = pL_{\ell}u$, for $u \in Dom(G) \cap Rg(p)$

$$G = -\mathrm{i}H - \frac{1}{2} \sum_{\ell} L_{\ell}^* L_{\ell}$$

Decoherence-free Subalgebra

$$\mathcal{N}(\mathcal{T}) = \{ x \in \mathcal{B}(\mathcal{H}) \mid \mathcal{T}_t(x^*x) = \mathcal{T}_t(x^*) \mathcal{T}_t(x),$$

$$\mathcal{T}_t(xx^*) = \mathcal{T}_t(x) \mathcal{T}_t(x^*), \ \forall t \ge 0 \}.$$

Theorem (Agredo, Fagnola, Poletti (2021))

The decoherence-free subalgebra $\mathcal{N}(\mathcal{T})$ is the generalised commutant of the set

$$\{\delta_H^n(L_\ell), \delta_H^n(L_\ell^*) | \ell = 1, \dots, m, 0 \le n \le 2d - 1\}$$

where
$$\delta_H(X) = [H, X]$$
.

 $x \in \mathcal{B}(\mathcal{H})$ is in the generalised commutant of A if

$$xA \subset Ax$$
.

$\mathcal{N}(\mathcal{T})$ for gaussian QMSs

Theorem (Agredo, Fagnola, Poletti)

The decoherence-free subalgebra $\mathcal{N}(\mathcal{T})$ is the von Neumann subalgebra of $\mathcal{B}(\mathcal{H})$ generated by Weyl operators W(z) such that z belonging to real subspaces of $\ker(C)$ that are Z-invariant. Moreover, up to unitary equivalence,

$$\mathcal{N}(\mathcal{T}) = L^{\infty}(\mathbb{R}^{d_c}; \mathbb{C}) \, \overline{\otimes} \, \mathcal{B}(\Gamma(\mathbb{C}^{d_f}))$$

for a pair of natural numbers $d_c, d_f \leq d$.

EID's definition "à la" Blanchard-Olkiewicz

Definition

There is environment induced decoherence (EID) on the system described by \mathcal{T} , if there exist a \mathcal{T}_t -invariant von Neumann subalgebra \mathcal{M}_1 of \mathcal{M} and a \mathcal{T}_t -invariant and *-invariant weak* closed subspace \mathcal{M}_2 of \mathcal{M} such that:

- EID1 $\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2$ with $\mathcal{M}_2 \neq \{0\}$,
- EID2 \mathcal{M}_1 is a maximal von Neumann subalgebra of \mathcal{M} on which every \mathcal{T}_t acts a *-automorphism,
- EID3 $w^* \lim_{t \to \infty} \mathcal{T}_t(x) = 0$ for all $x \in \mathcal{M}_2$.

- \mathcal{M}_1 decoherence-free algebra
- \mathcal{M}_2 space of not-detectable observables.

problem 2: Decoherence

EID holds for a Gaussian Quantum Markov semigroup? $\mathcal{M}_1 = \mathcal{N}(\mathcal{T})$?