On the measures satisfying a monotonicity of surface area with respect to Minkowski sum

Dylan Langharst
Institute of Mathematics of Jussieu ${ }^{1}$

Harmonic Analysis and Convexity BIRS Workshop 20 November 2023

[^0]- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$.)
- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$.)
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$. .)
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.

- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$.)
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.

- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$.)
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- We will denote by vol $_{n}(K)$ - volume of $K \subset \mathbb{R}^{n}$
- We will often use notion of Minkowski sum: $K+L=\{x+y: x \in K$ and $y \in L\}$.
- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$. .
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- We will denote by vol $_{n}(K)$ - volume of $K \subset \mathbb{R}^{n}$
- We will often use notion of Minkowski sum: $K+L=\{x+y: x \in K$ and $y \in L\}$.

- All of the sets we will consider will be convex (i.e. K is convex if $x, y \in K$ implies $(1-\lambda) x+\lambda y \in K$ for every $\lambda \in[0,1]$. .)
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- We will denote by vol $_{n}(K)$ - volume of $K \subset \mathbb{R}^{n}$
- We will often use notion of Minkowski sum: $K+L=\{x+y: x \in K$ and $y \in L\}$.

Supermodularity of Volume

Theorem of Fradelizi, Madiman and Zvavitch
Let A be a convex body and B and C compact, convex sets, all in \mathbb{R}^{n}. Then, volume is supermodular, i.e.

$$
\operatorname{vol}_{n}(A)+\operatorname{vol}_{n}(A+B+C) \geq \operatorname{vol}_{n}(A+B)+\operatorname{vol}_{n}(A+C) .
$$

Supermodularity of Volume

Theorem of Fradelizi, Madiman and Zvavitch
Let A be a convex body and B and C compact, convex sets, all in \mathbb{R}^{n}.
Then, volume is supermodular, i.e.

$$
\operatorname{vol}_{n}(A)+\operatorname{vol}_{n}(A+B+C) \geq \operatorname{vol}_{n}(A+B)+\operatorname{vol}_{n}(A+C)
$$

How would one go about proving this result?

Supermodularity of Volume

Theorem of Fradelizi, Madiman and Zvavitch

Let A be a convex body and B and C compact, convex sets, all in \mathbb{R}^{n}.
Then, volume is supermodular, i.e.

$$
\operatorname{vol}_{n}(A)+\operatorname{vol}_{n}(A+B+C) \geq \operatorname{vol}_{n}(A+B)+\operatorname{vol}_{n}(A+C)
$$

How would one go about proving this result?
We all know that $\operatorname{vol}_{n}(t K)=t^{n}$ vol $_{n}(K)$ for $t \geq 0$, i.e. volume is a homogeneous measure of degree of homogeneity n. But there is much more!!!

Main Definitions: Mixed Volume

Let K_{1}, K_{2}, K_{3} be convex bodies in \mathbb{R}^{n} and $t_{1}, t_{2}, t_{3} \geq 0$
Then, volume of Minkowski summation is a polynomial:

$$
\operatorname{vol}_{n}\left(t_{1} K_{1}+t_{2} K_{2}+t_{3} K_{3}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{n}=0}^{3} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) t_{i_{1}} t_{i_{2}} \ldots t_{i_{n}} .
$$

where $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

Main Definitions: Mixed Volume

Let K_{1}, K_{2}, K_{3} be convex bodies in \mathbb{R}^{n} and $t_{1}, t_{2}, t_{3} \geq 0$
Then, volume of Minkowski summation is a polynomial:

$$
\operatorname{vol}_{n}\left(t_{1} K_{1}+t_{2} K_{2}+t_{3} K_{3}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{n}=0}^{3} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) t_{i_{1}} t_{i_{2}} \ldots t_{i_{n}} .
$$

where $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- $V(K, \ldots, K)=\operatorname{vol}_{n}(K)$; Mixed volume is symmetric and translation invariant in its arguments.

Main Definitions: Mixed Volume

Let K_{1}, K_{2}, K_{3} be convex bodies in \mathbb{R}^{n} and $t_{1}, t_{2}, t_{3} \geq 0$
Then, volume of Minkowski summation is a polynomial:

$$
\operatorname{vol}_{n}\left(t_{1} K_{1}+t_{2} K_{2}+t_{3} K_{3}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{n}=0}^{3} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) t_{i_{1}} t_{i_{2}} \ldots t_{i_{n}}
$$

where $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- $V(K, \ldots, K)=\operatorname{vol}_{n}(K)$; Mixed volume is symmetric and translation invariant in its arguments.
- If $K \subset L$, then $V\left(K, K_{2}, K_{3}, \ldots, K_{n}\right) \leq V\left(L, K_{2}, K_{3}, \ldots, K_{n}\right)$.

Main Definitions: Mixed Volume

Let K_{1}, K_{2}, K_{3} be convex bodies in \mathbb{R}^{n} and $t_{1}, t_{2}, t_{3} \geq 0$
Then, volume of Minkowski summation is a polynomial:

$$
\operatorname{vol}_{n}\left(t_{1} K_{1}+t_{2} K_{2}+t_{3} K_{3}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{n}=0}^{3} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) t_{i_{1}} t_{i_{2}} \ldots t_{i_{n}}
$$

where $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- $V(K, \ldots, K)=\operatorname{vol}_{n}(K)$; Mixed volume is symmetric and translation invariant in its arguments.
- If $K \subset L$, then $V\left(K, K_{2}, K_{3}, \ldots, K_{n}\right) \leq V\left(L, K_{2}, K_{3}, \ldots, K_{n}\right)$.

Notation We denote
$V\left(K_{1}, \ldots, K_{m}, K \ldots, K\right)=V\left(K_{1}, \ldots, K_{m}, K[n-m]\right)$.

Main Definitions: Mixed Volume

Let K_{1}, K_{2}, K_{3} be convex bodies in \mathbb{R}^{n} and $t_{1}, t_{2}, t_{3} \geq 0$
Then, volume of Minkowski summation is a polynomial:

$$
\operatorname{vol}_{n}\left(t_{1} K_{1}+t_{2} K_{2}+t_{3} K_{3}\right)=
$$

$$
\sum_{0 \leq k \leq j \leq n}\binom{n}{n-j}\binom{n-j}{n-j-k} V\left(K_{1}[n-j-k], K_{2}[j], K_{3}[k]\right) t_{1}^{n-j-k} t_{2}^{j} t_{3}^{k}
$$

where $V\left(K_{1}[j], K_{2}[k], K_{3}[n-j-k]\right)$ is the mixed volume of $K_{1} j$-times, $K_{2} k$-times and $K_{3}(n-j-k)$ times.

- $V(K, \ldots, K)=\operatorname{vol}_{n}(K)$; Mixed volume is symmetric and translation invariant in its arguments.
- If $K \subset L$, then $V\left(K, K_{2}, K_{3}, \ldots, K_{n}\right) \leq V\left(L, K_{2}, K_{3}, \ldots, K_{n}\right)$.

Notation We denote
$V\left(K_{1}, \ldots, K_{m}, K \ldots, K\right)=V\left(K_{1}, \ldots, K_{m}, K[n-m]\right)$.

Main Definitions: Mixed Volume

Let K_{1}, K_{2}, K_{3} be convex bodies in \mathbb{R}^{n} and $t_{1}, t_{2}, t_{3} \geq 0$
Then, volume of Minkowski summation is a polynomial:

$$
\operatorname{vol}_{n}\left(t_{1} K_{1}+t_{2} K_{2}+t_{3} K_{3}\right)=
$$

$$
\sum_{0 \leq k \leq j \leq n}\binom{n}{n-j}\binom{n-j}{n-j-k} V\left(K_{1}[n-j-k], K_{2}[j], K_{3}[k]\right) t_{1}^{n-j-k} t_{2}^{j} t_{3}^{k}
$$

where $V\left(K_{1}[j], K_{2}[k], K_{3}[n-j-k]\right)$ is the mixed volume of $K_{1} j$-times, $K_{2} k$-times and $K_{3}(n-j-k)$ times.

- $V(K, \ldots, K)=\operatorname{vol}_{n}(K)$; Mixed volume is symmetric and translation invariant in its arguments.
- If $K \subset L$, then $V\left(K, K_{2}, K_{3}, \ldots, K_{n}\right) \leq V\left(L, K_{2}, K_{3}, \ldots, K_{n}\right)$. Notation We also use $V(K, L)=V(K[n-1], L[1])$ and $V(A, B, C)=V(A[n-2], B[1], C[1])$.

Main Question

To establish

$$
\operatorname{vol}_{n}(A)+\operatorname{vol}_{n}(A+B+C) \geq \operatorname{vol}_{n}(A+B)+\operatorname{vol}_{n}(A+C)
$$

expand each term with the Minkowski polynomial and obtain known inequalities about the mixed volumes.

Main Question

To establish

$$
\operatorname{vol}_{n}(A)+\operatorname{vol}_{n}(A+B+C) \geq \operatorname{vol}_{n}(A+B)+\operatorname{vol}_{n}(A+C)
$$

expand each term with the Minkowski polynomial and obtain known inequalities about the mixed volumes.
Can we establish which Radon (locally finite and inner regular Borel) measures on \mathbb{R}^{n} are supermodular?

Main Question

To establish

$$
\operatorname{vol}_{n}(A)+\operatorname{vol}_{n}(A+B+C) \geq \operatorname{vol}_{n}(A+B)+\operatorname{vol}_{n}(A+C)
$$

expand each term with the Minkowski polynomial and obtain known inequalities about the mixed volumes.
Can we establish which Radon (locally finite and inner regular Borel) measures on \mathbb{R}^{n} are supermodular?
Turns out, it is connected to another story!

Surface Area

Surface Area

Thus vol $2\left(K+t B_{2}^{2}\right)=\operatorname{vol}_{2}(K)+\operatorname{vol}_{1}(\partial K) t+t^{2}$ Error, or

Surface Area

Thus vol $2\left(K+t B_{2}^{2}\right)=\operatorname{vol}_{2}(K)+\operatorname{vol}_{1}(\partial K) t+t^{2}$ Error, or

$$
\operatorname{vol}_{1}(\partial K)=\lim _{t \rightarrow 0} \frac{\operatorname{vol}_{2}\left(K+t B_{2}^{2}\right)-\operatorname{vol}_{2}(K)}{t}
$$

Surface Area

Thus vol $2\left(K+t B_{2}^{2}\right)=\operatorname{vol}_{2}(K)+\operatorname{vol}_{1}(\partial K) t+t^{2}$ Error, or

$$
\operatorname{vol}_{n-1}(\partial K)=\lim _{t \rightarrow 0} \frac{\operatorname{vol}_{n}\left(K+t B_{2}^{n}\right)-\operatorname{vol}_{n}(K)}{t},
$$

where K convex body in \mathbb{R}^{n} and B_{2}^{n} is a unit Euclidean ball.

Surface Area

On the other-hand, using Minkowski's polynomial

$$
\operatorname{vol}_{n}\left(K+t B_{2}^{n}\right)=\sum_{k=0}^{n}\binom{n}{k} V\left(B_{2}^{n}[k], K[n-k]\right) t^{k} .
$$

Surface Area

Combining the two:

$$
\operatorname{vol}_{n-1}(\partial K)=\lim _{t \rightarrow 0} \frac{\operatorname{vol}_{n}\left(K+t B_{2}^{n}\right)-\operatorname{vol}_{n}(K)}{t}
$$

Surface Area

Combining the two:

$$
\begin{aligned}
\operatorname{vol}_{n-1}(\partial K) & =\lim _{t \rightarrow 0} \frac{\operatorname{vol}_{n}\left(K+t B_{2}^{n}\right)-\operatorname{vol}_{n}(K)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\operatorname{vol}_{n}(K)+\operatorname{tn} V\left(K, B_{2}^{n}\right)+\mathcal{O}\left(t^{2}\right)-\operatorname{vol}_{n}(K)}{t}
\end{aligned}
$$

Surface Area

Combining the two:

$$
\begin{aligned}
\operatorname{vol}_{n-1}(\partial K) & =\lim _{t \rightarrow 0} \frac{\operatorname{vol}_{n}\left(K+t B_{2}^{n}\right)-\operatorname{vol}_{n}(K)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\operatorname{vol}_{n}(K)+\operatorname{tnV}\left(K, B_{2}^{n}\right)+\mathcal{O}\left(t^{2}\right)-\operatorname{vol}_{n}(K)}{t} \\
& =n V\left(K, B_{2}^{n}\right)
\end{aligned}
$$

Surface Area

Combining the two:

$$
\begin{aligned}
\operatorname{vol}_{n-1}(\partial K) & =\lim _{t \rightarrow 0} \frac{\operatorname{vol}_{n}\left(K+t B_{2}^{n}\right)-\operatorname{vol}_{n}(K)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\operatorname{vol}_{n}(K)+\operatorname{tn} V\left(K, B_{2}^{n}\right)+\mathcal{O}\left(t^{2}\right)-\operatorname{vol}_{n}(K)}{t} \\
& =n V\left(K, B_{2}^{n}\right) .
\end{aligned}
$$

Thus, from monotonicity of mixed volumes, $K \subseteq L$ implies $\operatorname{vol}_{n-1}(\partial K) \leq \operatorname{vol}_{n-1}(\partial L)$.

Monotonicity of Weighted Surface Area

Definition

Let μ be a Borel measure on \mathbb{R}^{n} and K a Borel set (convex body). Then, the Minkowski content of K with respect to μ, or its weighted surface area is given by

$$
\mu^{+}(\partial K)=\liminf _{\varepsilon \rightarrow 0} \frac{\mu\left(K+\varepsilon B_{2}^{n}\right)-\mu(K)}{\varepsilon} .
$$

Monotonicity of Weighted Surface Area

Kryvonos and Langharst ('22): If K is convex body and μ has density ϕ containing ∂K in its Borel set, then the liminf is a limit and

$$
\mu^{+}(\partial K)=\int_{\partial K} \phi(x) d \mathcal{H}^{n-1}(x)
$$

Monotonicity of Weighted Surface Area

Kryvonos and Langharst ('22): If K is convex body and μ has density ϕ containing ∂K in its Borel set, then the liminf is a limit and

$$
\mu^{+}(\partial K)=\int_{\partial K} \phi(x) d \mathcal{H}^{n-1}(x)
$$

Theorem of G. Saracco and G. Stefani ('23)
Let μ be a Borel measure on \mathbb{R}^{n} with continuous density that has the following property: if K and L are convex bodies such that $K \subseteq L$, then $\mu^{+}(\partial K) \leq \mu^{+}(\partial L)$. Then, μ is a multiple of the Lebesgue measure.

Mixed Measures

We say a collection of Borel sets is a class if it is closed under Minkowski summation and dilation.

Mixed Measures

We say a collection of Borel sets is a class if it is closed under Minkowski summation and dilation.
Definition (Mixed Measures; Milman-Rotem and Livshyts)
Let μ be a Borel measure supported on a class of Borel sets \mathcal{C}. Then, for $K, L \in \mathcal{C}$,

$$
\mu(K, L):=\liminf _{\epsilon \rightarrow 0} \frac{\mu(K+\epsilon L)-\mu(K)}{\epsilon} .
$$

Mixed Measures

We say a collection of Borel sets is a class if it is closed under Minkowski summation and dilation.
Definition (Mixed Measures; Milman-Rotem and Livshyts)
Let μ be a Borel measure supported on a class of Borel sets \mathcal{C}. Then, for $K, L \in \mathcal{C}$,

$$
\mu(K, L):=\liminf _{\epsilon \rightarrow 0} \frac{\mu(K+\epsilon L)-\mu(K)}{\epsilon} .
$$

\mathcal{C} will always be some convex sets (all convex bodies, symmetric convex bodies, etc.) in which case, the liminf is a limit if μ has density that

Mixed Measures

We say a collection of Borel sets is a class if it is closed under Minkowski summation and dilation.
Definition (Mixed Measures; Milman-Rotem and Livshyts)
Let μ be a Borel measure supported on a class of Borel sets \mathcal{C}. Then, for $K, L \in \mathcal{C}$,

$$
\mu(K, L):=\liminf _{\epsilon \rightarrow 0} \frac{\mu(K+\epsilon L)-\mu(K)}{\epsilon} .
$$

\mathcal{C} will always be some convex sets (all convex bodies, symmetric convex bodies, etc.) in which case, the liminf is a limit if μ has density that

- is continuous Livshysts ('19)
- contains ∂K in its Lebesgue set (K-L '22)

Mixed Measures

We say a collection of Borel sets is a class if it is closed under Minkowski summation and dilation.
Definition (Mixed Measures; Milman-Rotem and Livshyts)
Let μ be a Borel measure supported on a class of Borel sets \mathcal{C}. Then, for $K, L \in \mathcal{C}$,

$$
\mu(K, L):=\liminf _{\epsilon \rightarrow 0} \frac{\mu(K+\epsilon L)-\mu(K)}{\epsilon} .
$$

\mathcal{C} will always be some convex sets (all convex bodies, symmetric convex bodies, etc.) in which case, the liminf is a limit if μ has density that

- is continuous Livshysts ('19)
- contains ∂K in its Lebesgue set (K-L '22)

Notice: $\mu^{+}(\partial K)=\mu\left(K ; B_{2}^{n}\right)$.

The Connection

Local forms of supermodularity
Let μ be a Radon measure on \mathbb{R}^{n}. Let \mathcal{A}, \mathcal{B} and \mathcal{C} be classes of convex sets such that $\mathcal{B}, \mathcal{C} \subset \mathcal{A}$. Then the following are equivalent: for every $A \in \mathcal{A}, B \in \mathcal{B}$ and $C \in \mathcal{C}$,

- $\mu(\boldsymbol{A}+\boldsymbol{B}+\boldsymbol{C})+\mu(\boldsymbol{A}) \geq \mu(\boldsymbol{A}+\boldsymbol{B})+\mu(\boldsymbol{A}+\boldsymbol{C})$,
(3) $\mu(A+C ; B) \geq \mu(A ; B)$,

The Connection

Local forms of supermodularity

Let μ be a Radon measure on \mathbb{R}^{n}. Let \mathcal{A}, \mathcal{B} and \mathcal{C} be classes of convex sets such that $\mathcal{B}, \mathcal{C} \subset \mathcal{A}$. Then the following are equivalent: for every $A \in \mathcal{A}, B \in \mathcal{B}$ and $C \in \mathcal{C}$,

- $\mu(\boldsymbol{A}+\boldsymbol{B}+\boldsymbol{C})+\mu(\boldsymbol{A}) \geq \mu(\boldsymbol{A}+\boldsymbol{B})+\mu(\boldsymbol{A}+\boldsymbol{C})$,
(3) $\mu(A+C ; B) \geq \mu(A ; B)$,

Local forms of supermodularity with a ball
Let μ be a Radon measure on \mathbb{R}^{n} and set $\mathcal{B}=\left\{r B_{2}^{n}\right\}_{r \geq 0}$. Let \mathcal{A} and \mathcal{C} be classes of convex sets such that $\mathcal{B}, \mathcal{C} \subset \mathcal{A}$. Then the following are equivalent: for every $r \geq 0, A \in \mathcal{A}$ and $C \in \mathcal{C}$
(0) $\mu\left(A+r B_{2}^{n}+C\right)+\mu(A) \geq \mu\left(A+r B_{2}^{n}\right)+\mu(A+C)$.
(3) $\mu^{+}(\partial(A+C)) \geq \mu^{+}(\partial A)$.

Classification Results

Main Theorem
Let μ be a Radon measure on \mathbb{R}^{n} such that, for every convex body K and compact, convex set L, one has

$$
\mu^{+}(\partial(K+L)) \geq \mu^{+}(\partial K) .
$$

Then, μ is a multiple of the Lebesgue measure.

Classification Results

Main Theorem

Let μ be a Radon measure on \mathbb{R}^{n} such that, for every convex body K and compact, convex set L, one has

$$
\mu^{+}(\partial(K+L)) \geq \mu^{+}(\partial K) .
$$

Then, μ is a multiple of the Lebesgue measure.
We use that the class of dilates of B_{2}^{n} is a subset of all convex bodies, and the localization theorem, to obtain the following.

Classification Results

Main Theorem
Let μ be a Radon measure on \mathbb{R}^{n} such that, for every convex body K and compact, convex set L, one has

$$
\mu^{+}(\partial(K+L)) \geq \mu^{+}(\partial K) .
$$

Then, μ is a multiple of the Lebesgue measure.

Main Corollary

Let μ be a Radon measure that is supermodular over the class of all convex bodies. Then, μ is a multiple of the Lebesgue measure.

Can we bridge the gap?

An open question

Let μ be a Radon measure on \mathbb{R}^{n} with the following property: for every convex body K and compact, convex set L such that L contains the origin, one has

$$
\mu^{+}(\partial(K+L)) \geq \mu^{+}(\partial K),
$$

it is true that then, μ is a constant multiple of the Lebesgue measure?

A different type of result

Theorem in the plane
Let K be a convex body in \mathbb{R}^{2} and let μ be the Borel measure with density $|x|^{2}$. Then, for every symmetric convex, compact set L containing the origin in \mathbb{R}^{2}

$$
\mu^{+}(\partial(K+L)) \geq \mu^{+}(\partial K) .
$$

A different type of result

Theorem in the plane

Let K be a convex body in \mathbb{R}^{2} and let μ be the Borel measure with density $|x|^{2}$. Then, for every symmetric convex, compact set L containing the origin in \mathbb{R}^{2}

$$
\mu^{+}(\partial(K+L)) \geq \mu^{+}(\partial K) .
$$

Hint to the proof
Let K be a convex body in \mathbb{R}^{2}. Let μ be the Borel measure with density $\phi(x)=|x|^{2}$. Then, for every $u \in \mathbb{R}^{2}$

$$
\mu^{+}(\partial(K+[0, u])) \geq \mu^{+}(\partial K) .
$$

Restricting the classes of Convex Bodies

Theorem for Zonoids
Let μ be a Radon measure on \mathbb{R}^{n} with the following property: for every symmetric convex body A, centered zonoid B and zonoid containing the origin C, one has

$$
\mu(A+C ; B) \geq \mu(A ; B)
$$

Then, μ is a constant multiple of the Lebesgue measure.

Restricting the classes of Convex Bodies

Theorem for Zonoids
Let μ be a Radon measure on \mathbb{R}^{n} with the following property: for every symmetric convex body A, centered zonoid B and zonoid containing the origin C, one has

$$
\mu(\boldsymbol{A}+\boldsymbol{C}+\boldsymbol{B})+\mu(\boldsymbol{A}) \geq \mu(\boldsymbol{A}+\boldsymbol{B})+\mu(\boldsymbol{A}+\boldsymbol{C}) .
$$

Then, μ is a constant multiple of the Lebesgue measure.

[^0]: ${ }^{1}$ joint with Fradelizi, Madiman, and Zvavitch

