Point vortex for the lake equations

Christophe Lacave

Université Savoie Mont Blanc (Chambéry, France) - LAMA
in collaboration with L. Hientzsch and E. Miot.

Fluid Equations, A Paradigm for Complexity: Regularity vs Blow-up,
 Deterministic vs Stochastic BIRS (Banff, Canada) - October 2023

UNIVERSITE
SAVOIE
MONT BLANC

Outline

(1) The lake equations

2 Expansion of the Biot-Savart kernel
(3) Concentrated vortex for the 2D Euler equations

4 Concentrated vortex for the lake equations

Outline

(1) The lake equations

2 Expansion of the Biot-Savart kernel
(3) Concentrated vortex for the 2D Euler equations

4 Concentrated vortex for the lake equations

The lake equations

Fluid domain $\{(\tilde{x}, z), \tilde{x} \in \Omega,-b(\tilde{x})<z<h(\tilde{x})\}$

We consider $v(t, \tilde{x})$ the vertically averaged horizontal component of the velocity of an incompressible fluid satisfies:

$$
\left\{\begin{array}{l}
\partial_{t}(b v)+\operatorname{div}(b v \otimes v)+b \nabla p=0 \\
\operatorname{div}(b v)=0, \quad(b v) \cdot n=0
\end{array}\right.
$$

Derivation: Greenspan 68 (p. 235), Bresch-Métivier 10 (from the shallow water wave equations in the low Froude number limit), Mésognon.

Potential vorticity

Like for the 2D Euler equations, a crucial quantity for this problem is the potential vorticity:

$$
\omega=\frac{1}{b} \operatorname{curl}(v)=\frac{\partial_{1} v_{2}-\partial_{2} v_{1}}{b}
$$

which satisfies the continuity equation

$$
\partial_{t}(b \omega)+\operatorname{div}(b v \omega)=0, \quad \operatorname{div}(b v)=0
$$

Remark

$$
b^{1 / p} \omega_{0} \in L^{p} \Longrightarrow b^{1 / p} \omega(t, \cdot) \in L^{p} \forall t>0
$$

$b v=\nabla^{\perp} \psi$ where $\operatorname{div}\left(\frac{1}{b} \nabla \psi\right)=b \omega$.

Well posedness results

$$
\begin{aligned}
& \text { Theorem (Levermore - Oliver - Titi 96) } \\
& \text { If } b \text { and } \partial \Omega \in C^{3}, \frac{1}{c} \leq b(x) \leq C, b^{1 / p} \omega_{0} \in L^{p} \Longrightarrow u \in W^{1, p} \Longrightarrow \\
& \text { existence and uniqueness in the Yudovich class. }
\end{aligned}
$$

Theorem (Bresch - Métivier 06)

If b and $\partial \Omega \in C^{3}, b(x)=c(x) d(x, \partial \Omega)^{\alpha}(\alpha>0)$, $b^{1 / p} \omega_{0} \in L^{p} \Longrightarrow u \in W^{1, p} \Longrightarrow$ existence and uniqueness in the Yudovich class.

Theorem (AI Taki - C.L. 23)

If b and $\partial \Omega \in C^{3}, b(x)=c(x) d(x, \partial \Omega)^{\alpha}(\alpha>0)$, and $\omega_{0} \in L^{\infty}(\Omega)$ then $u \in$ LogLip and the solution is lagrangian.

Other reduced model

- 2D Euler equations: if $u(t, x)=\left(u_{1}, u_{2}, 0\right)\left(t, x_{1}, x_{2}\right)$, then $\operatorname{curl} u=\omega e_{3}$ verifies the lake equation with $b \equiv 1$.
- Axisymmetric 3D Euler equations without swirl: if $u(t, r, \theta, z)=\left(u_{r}, 0, u_{z}\right)(t, r, z)$, then curl $u=\left(0, \omega_{\theta}, 0\right)(r, z)$ verifies the lake equation with $b(r, z) \equiv r$.
- Helicoidal 3D Euler equations without swirl.

Commun property: the vorticity is scalar and transported.

Concentrated vortex?

Texoma lake (US, Oklahoma) 2015 [DR / US Corps of Engineers]

Concentrated vortex?

Assumption

$$
\begin{aligned}
& \omega_{0, \varepsilon}=\sum_{i=1}^{N_{V}} \omega_{i, \varepsilon} \text { where } \quad \operatorname{supp} \omega_{i, \varepsilon}(0) \subset B\left(z_{0, i}, M \varepsilon\right) \\
& \quad \int b \omega_{i, \varepsilon}(0)=\gamma_{i}, \quad 0 \leq \delta_{i} \omega_{i, \varepsilon}(0) \leq \frac{M}{\varepsilon^{2}} \quad\left(\delta_{i}= \pm 1\right)
\end{aligned}
$$

Question:
(1) does the vorticity remain concentrated? $\omega_{i, \varepsilon} " \approx{ }^{\prime \prime} \gamma_{i} \delta_{z_{i}(t)}$
(2) equation verified by $z_{i}(t)$?

Two notions of "being concentrated"

> Definition (weakly concentrated (the mass))
> $\frac{1}{\gamma_{i}} \int_{B\left(z_{\varepsilon}(t), r_{\varepsilon}\right)} b \omega_{i, \varepsilon} \geq 1-\eta_{\varepsilon}$ where $r_{\varepsilon}, \eta_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Definition (strongly concentrated (the support))
$\operatorname{supp} \omega_{i, \varepsilon}(t) \subset B\left(z_{\varepsilon}(t), r_{\varepsilon}\right)$ where $r_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Outline

(1) The lake equations
(2) Expansion of the Biot-Savart kernel
(3) Concentrated vortex for the 2D Euler equations

4 Concentrated vortex for the lake equations

Expansion of the Green-kernel

We have $b v_{\varepsilon}=\nabla^{\perp} \psi_{\varepsilon}^{0}+$ harmonic part related to islands, where $\psi_{\varepsilon}^{0}(x)=\int G_{\Omega, b}(x, y)\left(b \omega_{\varepsilon}\right)(y) d y$ solves $\operatorname{div}\left(\frac{1}{b} \nabla \psi_{\varepsilon}^{0}\right)=b \omega_{\varepsilon}$ in Ω and $\left.\psi_{\varepsilon}^{0}\right|_{\partial \Omega}=0$.

Lemma

$$
G_{\Omega, b}(x, y)=\sqrt{b(x)} \sqrt{b(y)} G_{\Omega}(x, y)+S_{\Omega, b}(x, y)
$$

where G_{Ω} is the usual Green kernel $\left(\Delta_{D}^{-1}\right)$ and

$$
\begin{gathered}
\operatorname{div}_{x}\left(\frac{1}{b(x)} \nabla_{x} S_{\Omega, b}(x, y)\right)=G_{\Omega}(x, y) \sqrt{b(y)} \Delta_{x}\left(\frac{1}{\sqrt{b(x)}}\right) \text { in } \Omega, \\
\left.S_{\Omega, b}(\cdot, y)\right|_{\partial \Omega}=0
\end{gathered}
$$

Corollary: $G_{\Omega, b}(x, y)=\frac{1}{2 \pi} \sqrt{b(x)} \sqrt{b(y)} \ln |x-y|+R_{\Omega, b}(x, y)$ with $R_{\Omega, b} \in W_{l o c}^{1, \infty} \cap W_{l o c}^{2, p}$.

Biot-Savart type formula

The solution of $\operatorname{div} \frac{1}{b} \nabla \psi_{\varepsilon}=b \omega_{\varepsilon}$ can be written as

$$
\psi_{\varepsilon}(x)=\frac{1}{2 \pi} \int \ln |x-y| \sqrt{b(x) b(y)}\left(b \omega_{\varepsilon}\right)(y) d y+R_{\varepsilon}
$$

hence $v_{\varepsilon}=\frac{\nabla^{\perp} \psi_{\varepsilon}}{b}=v_{K}+v_{L}+v_{R}$ where

- $v_{K}(x)=\frac{1}{2 \pi} \int \frac{(x-y)^{\perp}}{|x-y|^{2}} \sqrt{\frac{b(y)}{b(x)}}\left(b \omega_{\varepsilon}\right)(y) d y=\mathcal{O}\left(\varepsilon^{-1}\right)$ the
spinning around a straight vortex filament;
- $v_{L}(x)=\frac{1}{4 \pi} \frac{\nabla^{\perp} b(x)}{b(x)} \int \ln |x-y| \sqrt{\frac{b(y)}{b(x)}}\left(b \omega_{\varepsilon}\right)(y) d y=\mathcal{O}(\ln \varepsilon)$;
- $v_{R}=\mathcal{O}(1)$.

Outline

(1) The lake equations

2 Expansion of the Biot-Savart kernel
(3) Concentrated vortex for the 2D Euler equations

4 Concentrated vortex for the lake equations

The 2D Euler equations

Limit trajectories: point vortex system

$$
\dot{z}_{i}(t)=\sum_{j \neq i} \gamma_{j} \frac{\left(z_{i}(t)-z_{j}(t)\right)^{\perp}}{2 \pi\left|z_{i}(t)-z_{j}(t)\right|^{2}}
$$

- Marchioro-Pulvirenti 93: weakly concentrated.
- Marchioro-Pulvirenti 94: strongly concentrated, $r_{\varepsilon} \leq \varepsilon^{\beta}$ with $\beta<1 / 300$.
- Marchioro 98, $r_{\varepsilon} \leq \varepsilon^{\beta}$ with $\beta<1 / 3$.
- Buttà-Marchioro 18: time where some vorticity meet $\partial B\left(z_{i}, \varepsilon^{\beta}\right)$ with $\beta<1 / 2$.

Marchioro's strategy

a) Consider that there is only one vortex patch and an exterior lipchitz force F_{ε}. Ok if strongly concentrated.

$$
u_{\varepsilon}(t, x)=\frac{1}{2 \pi} \int \frac{(x-y)^{\perp}}{|x-y|^{2}} \omega_{\varepsilon}(t, y) d y+F_{\varepsilon}(t, x)
$$

b) Vortex center: $z_{\varepsilon}(t):=\int x \omega_{\varepsilon}(t, x) d x$: then

$$
\begin{aligned}
\dot{z}_{\varepsilon}(t) & =-\int x \operatorname{div}\left(u_{\varepsilon}(x) \omega_{\varepsilon}(x)\right) d x=\int u_{\varepsilon}(x) \omega_{\varepsilon}(x) d x \\
& =\frac{1}{2 \pi} \iint \frac{(x-y)^{\perp}}{|x-y|^{2}} \omega_{\varepsilon}(x) \omega_{\varepsilon}(y) d x d y+\int F_{\varepsilon} \omega_{\varepsilon} \\
& =\frac{1}{4 \pi} \iint\left[\frac{(x-y)^{\perp}}{|x-y|^{2}}-\frac{(x-y)^{\perp}}{|x-y|^{2}}\right] \omega_{\varepsilon}(x) \omega_{\varepsilon}(y) d x d y+\mathcal{O}(1)=\mathcal{O}(1)
\end{aligned}
$$

Marchioro's strategy

c) Moment of inertia: $I_{\varepsilon}(t):=\int\left|x-z_{\varepsilon}(t)\right|^{2} \omega_{\varepsilon}(t, x) d x$: then

$$
\begin{aligned}
\dot{I}_{\varepsilon}(t)= & \int 2\left(x-z_{\varepsilon}\right) \cdot\left(u_{\varepsilon}(x)-\dot{z}_{\varepsilon}\right) \omega_{\varepsilon}(x) d x \\
= & \frac{1}{\pi} \iint\left(x-z_{\varepsilon}\right) \cdot \frac{(x-y)^{\perp}}{|x-y|^{2}} \omega_{\varepsilon}(x) \omega_{\varepsilon}(y) d x d y \\
& +\iint 2\left(x-z_{\varepsilon}\right) \cdot\left(F_{\varepsilon}(x)-F_{\varepsilon}(y)\right) \omega_{\varepsilon}(x) \omega_{\varepsilon}(y) d x d y \\
= & \frac{1}{2 \pi} \iint(x-y) \cdot \frac{(x-y)^{\perp}}{|x-y|^{2}} \omega_{\varepsilon}(x) \omega_{\varepsilon}(y) d x d y+\ldots \\
\leq & C I_{\varepsilon} \Longrightarrow I_{\varepsilon}(t) \leq C \varepsilon^{2} .
\end{aligned}
$$

Corollary: weakly concentrated $\int_{B\left(z_{\varepsilon}, r_{\varepsilon}\right)} \omega_{\varepsilon} \leq \frac{I_{\varepsilon}}{r_{\varepsilon}^{2}}$.

Marchioro's strategy

d) $R_{t}:=\max _{x \in \operatorname{supp} \omega_{\varepsilon}(t)}\left|x-z_{\varepsilon}(t)\right|=\left|X_{x_{0}}(t)-z_{\varepsilon}(t)\right|$, then
$\frac{d}{d t}\left|X_{x_{0}}(t)-z_{\varepsilon}(t)\right| \leq f\left(t, m_{t}\left(\frac{R_{t}}{2}\right)\right)$ where $m_{t}(R):=\int_{B\left(z_{\varepsilon}, R\right)^{c}} \omega_{\varepsilon}$.
e) $\lim _{\varepsilon \rightarrow 0} \varepsilon^{-\ell} m_{t}\left(\varepsilon^{\beta}\right)=0$ for any $\ell \in \mathbb{N}$.

VERY technical: $\mu_{t}(h):=1-\int W_{h}\left(x-z_{\varepsilon}\right) \omega_{\varepsilon}(x) d x$ (so that $\left.\mu_{t}(h) \leq m_{t}(h) \leq \mu_{t}\left(\frac{h}{2}\right)\right)$ and prove that
$\frac{d}{d t} \mu_{t}(h)=" u_{\text {radial }} \cdot \nabla W_{h} " \leq A_{h} m_{t}(h)+$ iteration.
f) Conclusion by a continuity argument and bootstrap argument.

Other references

- Iftimie-Sideris and Gamblin
- Smets-Van Schaftingen
- D. Cao et al.
- Davila-Del Pino-Musso-Wei
- Gallay

Outline

(1) The lake equations
(2) Expansion of the Biot-Savart kernel
(3) Concentrated vortex for the 2D Euler equations

4 Concentrated vortex for the lake equations

Local Induction Approximation

We expect a fast motion, self induced in the direction of $\nabla^{\perp} b$ (on the level set \mathcal{C}_{i}).

Main Theorem (Hientzsch - Miot - C.L. 23

After a time change of var., if $z_{i}(0) \in \mathcal{C}_{i}\left(\mathcal{C}_{i} \cap \mathcal{C}_{j}=\emptyset\right)$, the limit trajectories is $\dot{z}_{i}=-\frac{\gamma_{i}}{4 \pi} \frac{\nabla \cdot b\left(z_{i}\right)}{b\left(z_{i}\right)}$, and the vorticity is weakly concentrated and strongly concentrated around the level set:

$$
\operatorname{supp} \omega_{\varepsilon, i}(t, \cdot) \subset\left\{x:\left|b(x)-b\left(z_{i}^{0}\right)\right| \leq \frac{C_{k, T}}{|\ln \varepsilon|^{k}}\right\} .
$$

Strategy (Buttà-Cavallaro-Marchioro 22): moment of inertia in the transverse direction $J_{\varepsilon}(t)=\int_{\Omega}\left|b(x)-b\left(z^{0}\right)\right|^{2}\left(b \omega_{\varepsilon}\right)(x) d x$.

References

Main references:

- Benedetto-Caglioti-Marchioro 00: one vortex ring.
- Buttà-Marchioro 20: several vortex rings (short time).
- Buttà-Cavallaro-Marchioro 22: several vortex ring ($r_{i} \neq r_{j}$).

Further references

- J. J. Thomson 1883.
- Da Rios 1906: formal derivation for vortex filament.
- Jerrard-Smets 15, Jerrard-Seis 17.
- Richardson 00: formal derivation for the lake equation.
- Dekeyser-Van Schaftingen 20: one point and $b(x) \geq b_{0}>0$ (weakly concentrated).
Existence of a particular solution: Frankel 70 and....
Slightly viscous fluid: Gallay-Sverak 16, Bedrossian-Germain-Harrop Griffiths 18.

Main open questions

Study of the filamentation.

Leapfrogging phenomenon.

Vortex ring emanated from Etna.
Source: Siciliafan.

Thank you for your attention!!

Crater lake (OregonUS) 2015 pierre leclerc photography

