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Abstract

We consider the free boundary problem for a 2D and 3D fluid filtered in
porous media, which is known as the one-phase Muskat problem.

We show that if the initial free boundary is the graph of a periodic
Lipschitz function, then there exists a unique global Lipschitz strong
solution. The proof of the uniqueness relies on a new pointwise C1,α

estimate near the boundary for harmonic functions.

This is based on joint work with Francisco Gancedo (Universidad de
Sevilla, Spain) and Huy Q. Nguyen (University of Maryland, USA).
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Part I: Formulation of the problem and known results
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Formulation of the problem

Consider a 2D (or 3D) incompressible fluid permeating a
(homogeneous) porous medium, modeled by the classical Darcy law

µu(x , y , t) = −∇x ,yp(x , y , t) − ρ · (0,1),

∇x ,y · u(x , y , t) = 0, (x , y) ∈ Ωt ⊂ R
2, t ∈ R+.

Here u is the fluid velocity, p is the pressure (harmonic), and the
positive constants µ and ρ are respectively the dynamic viscosity and
fluid density (constants).

This problem is known as the one-phase Muskat problem and is
mathematically equivalent to the vertical Hele-Shaw problem driven by
gravity.

The problem arises from underground water-flow in the oil industry.
The equation was introduce by Morris Muskat in 1930’s.
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Formulation of the problem

▶ The free boundary Σt = ∂Ωt moves with the fluid

V(Σt) = u · n,

where n is the outward pointing unit normal to Σt .
▶ We neglect the surface tension, so the pressure is continuous

across the free boundary p|Σt = 0.
▶ We are interested in the geometry and regularity of the free

boundary Σt as time evolves.
▶ Two cases: graph and non-graph boundaries.

For both cases, the existence and uniqueness of local strong
solution have been well established even for much more general
settings, including multi-phase, with rigid boundaries, with surface
tension, nonconstant permeability.
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Long-term dynamics

Global existence and uniqueness of solutions have been obtained when

▶ Σ0 is the graph of a small function in various function spaces:
Siegel–Caflisch–Howison (04), Córdoba–Gancedo (07), Escher–Matioc (11),
Constantin–Gancedo–Shvydkoy–Vicol (17).

▶ “Medium data” in the Wiener algebra or the Lipschitz space:
Constantin–Córdoba–Gancedo–Strain (13, 16),
Gancedo–Garcia-Juarez–Patel–Strain (19), Cameron (19, 20).

▶ Small data in critical Sobolev spaces with large (or even infinite)
Lipschitz norm (also critical): Córdoba–Lazar (18), Gancedo–Lazar (20),
Alazard–Q.-H. Nguyen (20).

▶ Σ0 is close to a circle: Xinfu Chen (93), Constantin–Pugh (93),
Gancedo–Garcia-Juarez–Patel–Strain (19).
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Long-term dynamics

▶ For the two-phase problem, Deng-Lei-Lin (17) proved the
existence (without uniqueness) of global weak solutions that are
monotone in R.

▶ There has not been any global well-posedness result for initial
data of arbitrary size, either for weak or strong solutions.
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Long-term dynamics

Finite-time singularity
▶ For the two-phase problem, initial graph interfaces with large

slopes can turn over passing from a stable regime to an unstable
regime (Castro–Córdoba–Fefferman (12)) and solutions loss regularity
in finite time (Castro et. al. (12)).

▶ In contrast, starting from graph initial boundaries the free
boundary of the one-phase problem cannot turn over.

▶ It was proved that for the one-phase problem, solutions can
develop splash singularity (Castro–Córdoba–Fefferman–Gancedo (16))
from some non-graph initial boundary, while the two-phase
problem cannot (Gancedo–Strain (14)).

▶ No splat singularity for both problems: particles on the free
boundary cannot collide along a curve.
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Global solutions to the one-phase problem

Two fundamental questions for the one-phase problem:
1 Does there exist a unique global solution?
2 If yes, what is its long-term regularity?

In this work, we address the first problem: we proved

If Σ0 is the graph of a periodic Lipschitz function, then there exists a
global Lipschitz solution in the strong sense (and hence almost
everywhere). Moreover, it is the unique viscosity solution.
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Part II: Reformulation of the problem
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Reformulation in terms of the D-N operator

Assume that
Ωt = {(x , y) ∈ R2, y < f(x , t)}

for some function f(x , t) : R × [0,T ]→ R that is 2π-periodic in x.
Then f satisfies an equivalent (nonlocal) parabolic type equation

∂t f = −κG(f)f , κ = ρ/µ.

For f ,g : T→ R, the Dirichlet-Neumann operator G(f)g is well defined
with a quantitative bound, provided that f ∈W1,∞(T) and g ∈ H1(T):(

G(f)g
)
(x) = ∂Nφ(x , f(x)),

where φ(x , y) solves the elliptic problem∆x ,yφ = 0 in Ω,

φ(x , f(x)) = g(x), ∇x ,yφ ∈ L2(Ω).
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Reformulation in terms of the D-N operator

Some examples of the D-N operator
▶ Half space, i.e, f ≡ 0:

∂nφ(x ,0) = −
1

2π

∫
∞

−∞

g(x + x′) + g(x − x′) − 2g(x)
|x′|2

dx′

▶ In a disc B1(0),

∂nφ(e ix) = −
1

8π

∫ π

−π

g(x + x′) + g(x − x′) − 2g(x)

sin2(x′
2 )

dx′.

A simple property: G(f + a)(g + b) = G(f)g for constants a,b.
Therefore, if f is a solution, f + a and f(x + x0, t) are also solutions.
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Main theorem in the 2D case

Theorem (D.-Gancedo-Nguyen, 2021, CPAM)

For any f0 ∈W1,∞(T), there exists

f ∈ C(T × [0,∞)) ∩ L∞([0,∞);W1,∞(T)), ∂t f ∈ L∞([0,∞);L2(T))

such that f |t=0 = f0, f satisfies the equation in L∞t L2
x , and

∥f(t)∥W1,∞(T) ≤ ∥f0∥W1,∞(T) a.e. t > 0.

Moreover, f is the unique viscosity solution.

This appears to be the first global well-posedness result of the Muskat
problem for initial data of arbitrary size.
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A remark

Sufficiently smooth solutions obey the comparison principle:
if f0 ≤ f̃0, then f(·, t) ≤ f̃(·, t) for any t > 0.

Consequently, the modulus of continuity of f0 is preserved by f(t) for all
t > 0. Consequently, as long as the free boundary remains to be a
graph, its slope is bounded by the initial slope.
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Part III: Outline of the proof of the existence part
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Viscosity solutions

A function f : T × [0,T ] is called a viscosity subsolution (resp.
supersolution) on (0,T) provided that
(i) f is upper semicontinuous (resp. lower semicontinuous) on
T × [0,T ], and
(ii) for every ψ : T × (0,T)→ R with ∂tψ ∈ C(T × (0,T)) and
ψ ∈ C((0,T);C1,1(T)), if f − ψ attains a global maximum (resp.
minimum) over T × [t0 − r , t0] at (x0, t0) ∈ T × (0,T) for some r > 0,
then

∂tψ(x0, t0) ≤ −κ
(
G(ψ)ψ

)
(x0, t0) (resp. ≥).

A viscosity solution is both a viscosity subsolution and viscosity
supersolution.
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Viscosity solutions

We construct solutions by the viscosity regularization approach:
for small ε > 0, consider the approximate equation

∂t fε = −κG(fε)fε + ε∂2
x fε.

To solve for fε, we use the layer potential representation of G(f)g.

Hongjie Dong (Brown University) One-phase Muskat problem October 2, 2023 17 / 34



Layer potential representation

Newtonian kernel for T ×R:

N(z) = (4π)−1 ln
(
cosh y − cos x

)
, z = (x , y) ∈ T ×R.

Double layer potential for a function h : T→ R:

K [f ]h(z) := −
∫
Σ

(∂n(x′)N)(z − z′)h̃(z′)dz′

=
1

4π

∫
T

sin(x − x′)∂x f(x′) − sinh(y − f(x′))
cosh(y − f(x′)) − cos(x − x′)

h(x′)dx′.

Single layer potential:

S[f ]h(x , y) =
1

4π

∫
T

ln
(
cosh(y − f(x′)) − cos(x − x′)

)
h(x′)dx′.
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Layer potential representation

The unique solution φ of the Dirichlet problem is then given by

φ = K(
1
2

I + K)−1g.

For f ∈ Lip(T) and g ∈ H1(T), we have for a.e. x ∈ T that

(G(f)g)(x) = (1, ∂x f(x)) · ∇S[f ]θ(x , f(x))

=
1

4π
p.v .
∫
T

sin(x − x′) + sinh(f(x) − f(x′))∂x f(x)
cosh(f(x) − f(x′)) − cos(x − x′)

θ(x′)dx′

=
1

4π
p.v .
∫
T
∂x ln

(
cosh(f(x) − f(x′)) − cos(x − x′)

)
θ(x′)dx′,

where
θ = ∂x(

1
2

I + K)−1g = (
1
2

I − K ∗)−1(∂xg).
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Quantitative bounds

Verchota (84) proved that 1
2 I − K ∗ : L2

0 (T)→ L2
0 (T) is invertible

provided that the boundary f ∈ Lip.

We obtained the following quantitative estimates, which are needed for
the solvability of the equation.

There exists a universal constant C > 0 such that

∥(
1
2

I ± K ∗)−1
∥L2

0 (T)→L2
0 (T)
≤ C(1 + ∥f∥Lip(T))

5/2.

Moreover, for any g ∈ Ḣ1(T),

∥G(f)g∥L2(T) ≤ C(1 + ∥f∥Lip(T))
2
∥∂xg∥L2(T)

With these estimates, the existence of solutions is proved by using the
contraction mapping method and (quite involved) energy method: L2,
Ḣ1, Ḣ2, and finally Ḣs estimates for s > 2 (depending on ε).
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Part IV: Proof of the uniqueness
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Comparison principle for viscosity solutions

The uniqueness of viscosity solutions follows from the comparison
principle below by using the inf/sup convolutions.

Theorem
Assume that f , g : T × [0,T ]→ R are respectively a bounded viscosity
subsolution and supersolution on (0,T). If f(x ,0) ≤ g(x ,0) for all
x ∈ T, then f(x , t) ≤ g(x , t) for all (x , t) ∈ T × [0,T ].

The theorem above is a consequence of the consistency result:

If a viscosity solution is C1,1 at a point (x0, t0) then it satisfies the
equation classically at the same point.

A key step in the proof of the consistency result is a pointwise C1,α

estimate, which allows us to pass to the limit in the integral
representation of the D-N mapping.
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A pointwise boundary C1,α estimate

Suppose that Ω is a Lipschitz domain in R2. For (x0, y0) ∈ R
2 and

r > 0, we denote

Ωr(x0, y0) = Br(x0, y0) ∩ Ω and Ωr = Ωr(0).

We also define the half ball as

B+
r (x0, y0) = {(x , y) ∈ Br(x0, y0) : y > y0}.

We assume that 0 ∈ ∂Ω. Suppose that there exists some r0 > 0 such
that in a coordinate system, ∂Ω ∩ B2r0 can be represented by a
Lipschitz graph with Lipschitz constant L > 0.

Let u be a harmonic function in Ω, which vanishes on ∂Ω.
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A pointwise boundary C1,α estimate

Theorem
Suppose that there exist constants M0, r0 > 0 and function ψ in (−r0, r0)
such that in a coordinate system

ψ(0) = ψ′(0) = 0, Ωr0 = {(x , y) ∈ Br0 : y > ψ(x)},

and ψ is C1,1 at the origin.

Then u is C1,α at 0, i.e., for any (x , y) ∈ Ω such that
√

x2 + y2 < r0,

|u(x , y) − (x , y) · ∇x ,yu(0)| ≤ C |x2 + y2
|

1+α
2 r−2−α

0 ∥u∥L2(Ω2r0 )
,

where C > 0 is a constant depending only on M0r0 and L, and
α ∈ (0,1) is a small constant depending only on L.
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Some remarks

▶ The conditions can be relaxed to ψ ∈ C1,β at 0 for some β ∈ (0,1).
▶ By using simple barrier argument, we know that in any dimension,

u is Lipschitz at 0.
▶ With a bit more work, one can show that u is C1 in any

non-tangential direction (see Caffarelli-Salsa (05)), again in any
dimension.

▶ Unfortunately, the C1 regularity is insufficient for our purpose:
we need C1,α regularity or at least C1,Dini.
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Proof of C1,α estimate

We first recall a global C1/2+ε0 estimate when the domain is Lipschitz.

Lemma
Under the Lipschitz conditions, there exist ε0 = ε0(L) > 0 and
M1 = M1(L) > 0 such that u ∈ C

1
2+ε0(Ωr0) and

∥u∥
C

1
2 +ε0 (Ωr0 )

≤ M1r−
3
2−ε0

0 ∥u∥L2(Ω2r0 )
.

For the proof, we compare u with Re(zβ), where β ∈ (1/2,1).
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Step 1

By scaling, we may assume that r0 = 1 and ∥u∥L2(Ω2) = 1.

Using the Lipschitz estimate and the reverse Hölder’s inequality, there
exists p0 = p0(L) > 2 such that

∥∇x ,yu∥Lp0 (Ωr ) ≤ Cr
2

p0 .
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Step 2

Take a smooth domain E such that B+
2/3 ⊂ E ⊂ B+

3/4. For any
(x0, y0) ∈ R

2 and r > 0, denote

Er(x0, y0) =
{
(x , y) ∈ R2 : r−1(x − x0, y − y0) ∈ E

}
,

Γr(x0, y0) =
{
(x , y) ∈ ∂Er(x0, y0) : y = y0

}
.

For r sufficiently small, we have Er(0,M0r2) ⊂ Ωr .

Take a smooth function η = η(s) on R such that η(s) = 0 in (−∞,1)
and η(s) = 1 in (2,∞). Denote ηr(s) = η(s/(M0r2)). A simple
calculation reveals that u(x , y)ηr(y) satisfies

∆x ,y(u(x , y)ηr(y)) = ∂y(uη′r) + ∂yuη′r in Er(0,M0r2)

and uηr = 0 on Γr(0,M0r2). Note that the right-hand side is supported
in a narrow strip {(x , y) ∈ Ωr : M0r2 < y < 2M0r2

}.
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Step 3
We decompose uηr = w + v in Er(0,M0r2), where w = wr be a weak
solution to

∆x ,yw = ∂y(uη′r) + ∂yuη′r in Er(0,M0r2)

with the zero Dirichlet boundary condition on ∂Er(0,M0r2).
Then v = uηr −w is harmonic in Er(0,M0r2) and v = 0 on Γr(0,M0r2).

By using the W1,p estimate, Hardy’s inequality, and a duality argument,

∥∇x ,yw∥Lp (Er (0,M0r2)) ≤ C∥∇x ,yu∥Lp (Ωr∩{y<2M0r2}).

Fix p =
(2+p0)

2 and let q > 1 be such that 1
q = 1

p −
1
p0

.
Using Hölder’s inequality,

∥∇x ,yw∥Lp (Er (0,M0r2)) ≤ C∥∇x ,yu∥Lp0 (Ωr∩{y<2M0r2})r
3
q ≤ Cr

2
p0

+ 3
q .

By the Morrey embedding,

∥w∥L∞(Er (0,M0r2)) ≤ Cr1+ 1
q .
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solution to

∆x ,yw = ∂y(uη′r) + ∂yuη′r in Er(0,M0r2)

with the zero Dirichlet boundary condition on ∂Er(0,M0r2).
Then v = uηr −w is harmonic in Er(0,M0r2) and v = 0 on Γr(0,M0r2).

By using the W1,p estimate, Hardy’s inequality, and a duality argument,

∥∇x ,yw∥Lp (Er (0,M0r2)) ≤ C∥∇x ,yu∥Lp (Ωr∩{y<2M0r2}).

Fix p =
(2+p0)

2 and let q > 1 be such that 1
q = 1

p −
1
p0

.
Using Hölder’s inequality,

∥∇x ,yw∥Lp (Er (0,M0r2)) ≤ C∥∇x ,yu∥Lp0 (Ωr∩{y<2M0r2})r
3
q ≤ Cr

2
p0

+ 3
q .

By the Morrey embedding,

∥w∥L∞(Er (0,M0r2)) ≤ Cr1+ 1
q .
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Step 3, Cont’ed

By the boundary estimate for harmonic functions,

∥∇x ,yv∥L∞(B+
r/4(0,M0r2)) ≤ Cr−1

∥v∥L∞(B+
r/2(0,M0r2)),

which together with the Lipschitz regularity of u at 0 implies that

∥∇x ,yv∥L∞(B+
r/4(0,M0r2)) ≤ C .

Moreover, for any linear function ℓ of y,

∥∇
2
x ,yv∥L∞(B+

r/4(0,M0r2)) ≤ Cr−2
∥v − ℓ∥L∞(B+

r/2(0,M0r2)).

Thus by the mean value theorem and v(0,M0r2) = ∂xv(0,M0r2) = 0,
for any κ ∈ (0,1/4),

∥v − (y −M0r2)∂yv(0,M0r2)∥L∞(B+
κr (0,M0r2))

≤ Cκ2
∥v − ℓ∥L∞(B+

r/2(0,M0r2)).
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Step 4 (last step)
Recalling uηr = w + v in Er(0,M0r2), we have

∥uηr − (y −M0r2)∂yv(0,M0r2)∥L∞(B+
κr (0,M0r2))

≤ Cκ2 inf
a,b∈R

∥uηr − (a + by)∥L∞(B+
r/2(0,M0r2)) + Cr1+ 1

q .

By the C1/2+ε0 estimate,

∥u(1 − ηr)∥L∞(Ωr ) ≤ sup
Ωr∩{y<2M0r2}

|u(x , y)| = sup
Ωr∩{y<2M0r2}

|u(x , y) − u(x , ψ(x))| ≤ Cr1+2ε0 .

Thus,

inf
a,b∈R

∥u − (a + by)∥L∞(Ωκr ) ≤ Cκ2 inf
a,b∈R

∥u − (a + by)∥L∞(Ωr ) + Cr1+α,

where α = min{2ε0,1/q}.
By a standard iteration argument,

inf
a,b∈R

∥u − (a + by)∥L∞(Ωr ) ≤ Cr1+α.
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Global wellposedness in 3D

Recently, we established the global wellposedness in the 3D case.
▶ Compared to the 2D case, in 3D the fundamental solution is

implicit.
▶ While the H1 regularity result due to Verchota suffices in the 2D

case, in 3D this regularity turns out to be critical and thus
inadequate.

▶ Instead, our proof relies on the W1,2+ε layer potential estimates in
Lipschitz domains by Dahlberg-Kenig (1987) and Mitrea-Taylor
(1999).

▶ For the proof of the pointwise C1,α regularity, we used the W1,3+ε

estimate for harmonic functions in Lipschitz domains due to
Jerison-Kenig (1995).
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Further questions

▶ Smoothness of strong solutions.
For example, does the solution become C1 and smooth in finite
time? Note that there is no instantaneous smoothing of solutions
(S. Wu et. al. (2022)).

▶ Equations in the whole space.
▶ Equations with surface tension.
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Thank you for your attention!
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