Global well-posedness for the one-phase Muskat problem

Hongjie Dong (Brown University)

Workshop on Fluid Equations, A Paradigm for Complexity: Regularity vs Blow-up, Deterministic vs Stochastic BIRS, Banff

One-phase Muskat problem

< ロ > < 同 > < 回 > < 回 >

- We consider the free boundary problem for a 2D and 3D fluid filtered in porous media, which is known as the one-phase Muskat problem.
- We show that if the initial free boundary is the graph of a periodic Lipschitz function, then there exists a unique global Lipschitz strong solution. The proof of the uniqueness relies on a new pointwise $C^{1,\alpha}$ estimate near the boundary for harmonic functions.
- This is based on joint work with Francisco Gancedo (Universidad de Sevilla, Spain) and Huy Q. Nguyen (University of Maryland, USA).

Part I: Formulation of the problem and known results

2

Consider a 2D (or 3D) incompressible fluid permeating a (homogeneous) porous medium, modeled by the classical Darcy law

$$\mu u(x, y, t) = -\nabla_{x, y} p(x, y, t) - \rho \cdot (0, 1),$$

 $abla_{x,y} \cdot u(x,y,t) = 0, \quad (x,y) \in \Omega_t \subset \mathbb{R}^2, \ t \in \mathbb{R}_+.$

Here *u* is the fluid velocity, *p* is the pressure (harmonic), and the positive constants μ and ρ are respectively the dynamic viscosity and fluid density (constants).

This problem is known as the one-phase Muskat problem and is mathematically equivalent to the vertical Hele-Shaw problem driven by gravity.

The problem arises from underground water-flow in the oil industry. The equation was introduce by Morris Muskat in 1930's.

4/34

・ 何 ト ・ ヨ ト ・ ヨ ト

Consider a 2D (or 3D) incompressible fluid permeating a (homogeneous) porous medium, modeled by the classical Darcy law

$$\mu u(x, y, t) = -\nabla_{x,y} p(x, y, t) - \rho \cdot (0, 1),$$

 $abla_{x,y} \cdot u(x,y,t) = 0, \quad (x,y) \in \Omega_t \subset \mathbb{R}^2, \ t \in \mathbb{R}_+.$

Here *u* is the fluid velocity, *p* is the pressure (harmonic), and the positive constants μ and ρ are respectively the dynamic viscosity and fluid density (constants).

This problem is known as the one-phase Muskat problem and is mathematically equivalent to the vertical Hele-Shaw problem driven by gravity.

The problem arises from underground water-flow in the oil industry. The equation was introduce by Morris Muskat in 1930's.

Hongjie Dong (Brown University)

One-phase Muskat problem

Formulation of the problem

• The free boundary $\Sigma_t = \partial \Omega_t$ moves with the fluid

 $\mathcal{V}(\Sigma_t) = u \cdot n$,

where *n* is the outward pointing unit normal to Σ_t .

- We neglect the surface tension, so the pressure is continuous across the free boundary p|_{Σt} = 0.
- We are interested in the geometry and regularity of the free boundary Σ_t as time evolves.
- Two cases: graph and non-graph boundaries. For both cases, the existence and uniqueness of local strong solution have been well established even for much more general settings, including multi-phase, with rigid boundaries, with surface tension, nonconstant permeability.

・ロン ・四 と ・ 回 と ・ 回

Formulation of the problem

► The free boundary $\Sigma_t = \partial \Omega_t$ moves with the fluid

 $\mathcal{V}(\Sigma_t) = u \cdot n$,

where *n* is the outward pointing unit normal to Σ_t .

- We neglect the surface tension, so the pressure is continuous across the free boundary p|_{Σt} = 0.
- We are interested in the geometry and regularity of the free boundary Σ_t as time evolves.

Two cases: graph and non-graph boundaries. For both cases, the existence and uniqueness of local strong solution have been well established even for much more general settings, including multi-phase, with rigid boundaries, with surface tension, nonconstant permeability.

イロト 不得 トイヨト イヨト 二日

Formulation of the problem

• The free boundary $\Sigma_t = \partial \Omega_t$ moves with the fluid

 $\mathcal{V}(\Sigma_t) = u \cdot n$,

where *n* is the outward pointing unit normal to Σ_t .

- We neglect the surface tension, so the pressure is continuous across the free boundary p|_{Σt} = 0.
- We are interested in the geometry and regularity of the free boundary Σ_t as time evolves.
- Two cases: graph and non-graph boundaries. For both cases, the existence and uniqueness of local strong solution have been well established even for much more general settings, including multi-phase, with rigid boundaries, with surface tension, nonconstant permeability.

Long-term dynamics

Global existence and uniqueness of solutions have been obtained when

- Σ₀ is the graph of a small function in various function spaces: Siegel–Caflisch–Howison (04), Córdoba–Gancedo (07), Escher–Matioc (11), Constantin–Gancedo–Shvydkoy–Vicol (17).
- "Medium data" in the Wiener algebra or the Lipschitz space: Constantin–Córdoba–Gancedo–Strain (13, 16), Gancedo–Garcia-Juarez–Patel–Strain (19), Cameron (19, 20).
- Small data in critical Sobolev spaces with large (or even infinite) Lipschitz norm (also critical): Córdoba–Lazar (18), Gancedo–Lazar (20), Alazard–Q.-H. Nguyen (20).
- Σ₀ is close to a circle: Xinfu Chen (93), Constantin–Pugh (93), Gancedo–Garcia-Juarez–Patel–Strain (19).

-

6/34

イロト 不得 トイヨト イヨト

Long-term dynamics

Global existence and uniqueness of solutions have been obtained when

- Σ₀ is the graph of a small function in various function spaces: Siegel–Caflisch–Howison (04), Córdoba–Gancedo (07), Escher–Matioc (11), Constantin–Gancedo–Shvydkoy–Vicol (17).
- "Medium data" in the Wiener algebra or the Lipschitz space: Constantin–Córdoba–Gancedo–Strain (13, 16), Gancedo–Garcia-Juarez–Patel–Strain (19), Cameron (19, 20).
- Small data in critical Sobolev spaces with large (or even infinite) Lipschitz norm (also critical): Córdoba–Lazar (18), Gancedo–Lazar (20), Alazard–Q.-H. Nguyen (20).
- Σ₀ is close to a circle: Xinfu Chen (93), Constantin–Pugh (93), Gancedo–Garcia-Juarez–Patel–Strain (19).

イロト 不得 トイヨト イヨト

э.

- For the two-phase problem, Deng-Lei-Lin (17) proved the existence (without uniqueness) of global weak solutions that are monotone in ℝ.
- There has not been any global well-posedness result for initial data of arbitrary size, either for weak or strong solutions.

Long-term dynamics

Finite-time singularity

- For the two-phase problem, initial graph interfaces with large slopes can turn over passing from a stable regime to an unstable regime (Castro-Córdoba-Fefferman (12)) and solutions loss regularity in finite time (Castro et. al. (12)).
- In contrast, starting from graph initial boundaries the free boundary of the one-phase problem cannot turn over.
- It was proved that for the one-phase problem, solutions can develop splash singularity (Castro–Córdoba–Fefferman–Gancedo (16)) from some non-graph initial boundary, while the two-phase problem cannot (Gancedo–Strain (14)).
- No splat singularity for both problems: particles on the free boundary cannot collide along a curve.

< 日 > < 同 > < 回 > < 回 > < □ > <

Long-term dynamics

Finite-time singularity

- For the two-phase problem, initial graph interfaces with large slopes can turn over passing from a stable regime to an unstable regime (Castro-Córdoba-Fefferman (12)) and solutions loss regularity in finite time (Castro et. al. (12)).
- In contrast, starting from graph initial boundaries the free boundary of the one-phase problem cannot turn over.
- It was proved that for the one-phase problem, solutions can develop splash singularity (Castro-Córdoba-Fefferman-Gancedo (16)) from some non-graph initial boundary, while the two-phase problem cannot (Gancedo-Strain (14)).
- No splat singularity for both problems: particles on the free boundary cannot collide along a curve.

< 日 > < 同 > < 回 > < 回 > < □ > <

Global solutions to the one-phase problem

Two fundamental questions for the one-phase problem:

- Does there exist a unique global solution?
- If yes, what is its long-term regularity?

In this work, we address the first problem: we proved

If Σ_0 is the graph of a periodic Lipschitz function, then there exists a global Lipschitz solution in the strong sense (and hence almost everywhere). Moreover, it is the unique viscosity solution.

9/34

Global solutions to the one-phase problem

Two fundamental questions for the one-phase problem:

- Does there exist a unique global solution?
- If yes, what is its long-term regularity?

In this work, we address the first problem: we proved

If Σ_0 is the graph of a periodic Lipschitz function, then there exists a global Lipschitz solution in the strong sense (and hence almost everywhere). Moreover, it is the unique viscosity solution.

Part II: Reformulation of the problem

2

10/34

イロン イ理 とく ヨン イヨン

Reformulation in terms of the D-N operator

Assume that

$$\Omega_t = \{(x,y) \in \mathbb{R}^2, \quad y < f(x,t)\}$$

for some function $f(x, t) : \mathbb{R} \times [0, T] \to \mathbb{R}$ that is 2π -periodic in x. Then f satisfies an equivalent (nonlocal) parabolic type equation

$$\partial_t f = -\kappa G(f) f, \quad \kappa = \rho/\mu.$$

For $f, g : \mathbb{T} \to \mathbb{R}$, the Dirichlet-Neumann operator G(f)g is well defined with a quantitative bound, provided that $f \in W^{1,\infty}(\mathbb{T})$ and $g \in H^1(\mathbb{T})$:

$$(G(f)g)(x) = \partial_N \varphi(x, f(x)),$$

where $\varphi(x, y)$ solves the elliptic problem

$$\begin{cases} \Delta_{x,y}\varphi = 0 & \text{in } \Omega, \\ \varphi(x, f(x)) = g(x), \quad \nabla_{x,y}\varphi \in L^2(\Omega). \end{cases}$$

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Reformulation in terms of the D-N operator

Assume that

$$\Omega_t = \{(x,y) \in \mathbb{R}^2, \quad y < f(x,t)\}$$

for some function $f(x, t) : \mathbb{R} \times [0, T] \to \mathbb{R}$ that is 2π -periodic in x. Then f satisfies an equivalent (nonlocal) parabolic type equation

$$\partial_t f = -\kappa G(f) f, \quad \kappa = \rho/\mu.$$

For $f, g : \mathbb{T} \to \mathbb{R}$, the Dirichlet-Neumann operator G(f)g is well defined with a quantitative bound, provided that $f \in W^{1,\infty}(\mathbb{T})$ and $g \in H^1(\mathbb{T})$:

$$(G(f)g)(x) = \partial_N \varphi(x, f(x)),$$

where $\varphi(x, y)$ solves the elliptic problem

$$\begin{cases} \Delta_{x,y}\varphi = 0 & \text{in } \Omega, \\ \varphi(x, f(x)) = g(x), \quad \nabla_{x,y}\varphi \in L^2(\Omega). \end{cases}$$

Some examples of the D-N operator

► Half space, i.e, $f \equiv 0$:

$$\partial_n \varphi(x,0) = -rac{1}{2\pi} \int_{-\infty}^{\infty} rac{g(x+x') + g(x-x') - 2g(x)}{|x'|^2} \, dx'$$

► In a disc B₁(0),

$$\partial_n \varphi(e^{ix}) = -\frac{1}{8\pi} \int_{-\pi}^{\pi} \frac{g(x+x') + g(x-x') - 2g(x)}{\sin^2(\frac{x'}{2})} dx'.$$

A simple property: G(f + a)(g + b) = G(f)g for constants *a*, *b*. Therefore, if *f* is a solution, f + a and $f(x + x_0, t)$ are also solutions.

3

Theorem (D.-Gancedo-Nguyen, 2021, CPAM) For any $f_0 \in W^{1,\infty}(\mathbb{T})$, there exists $f \in C(\mathbb{T} \times [0,\infty)) \cap L^{\infty}([0,\infty); W^{1,\infty}(\mathbb{T})), \quad \partial_t f \in L^{\infty}([0,\infty); L^2(\mathbb{T}))$ such that $f|_{t=0} = f_0$, f satisfies the equation in $L^{\infty}_{t}L^2_{x}$, and $||f(t)||_{W^{1,\infty}(\mathbb{T})} \le ||f_0||_{W^{1,\infty}(\mathbb{T})}$ a.e. t > 0.

Moreover, f is the unique viscosity solution.

This appears to be the first global well-posedness result of the Muskat problem for initial data of arbitrary size.

Sufficiently smooth solutions obey the comparison principle: if $f_0 \leq \tilde{f}_0$, then $f(\cdot, t) \leq \tilde{f}(\cdot, t)$ for any t > 0.

Consequently, the modulus of continuity of f_0 is preserved by f(t) for all t > 0. Consequently, as long as the free boundary remains to be a graph, its slope is bounded by the initial slope.

< 日 > < 同 > < 回 > < 回 > < □ > <

Part III: Outline of the proof of the existence part

э

(a) < (a) < (b) < (b)

A function $f : \mathbb{T} \times [0, T]$ is called a viscosity subsolution (resp. supersolution) on (0, T) provided that

(i) *f* is upper semicontinuous (resp. lower semicontinuous) on $\mathbb{T} \times [0, T]$, and

(ii) for every $\psi : \mathbb{T} \times (0, T) \to \mathbb{R}$ with $\partial_t \psi \in C(\mathbb{T} \times (0, T))$ and $\psi \in C((0, T); C^{1,1}(\mathbb{T}))$, if $f - \psi$ attains a global maximum (resp. minimum) over $\mathbb{T} \times [t_0 - r, t_0]$ at $(x_0, t_0) \in \mathbb{T} \times (0, T)$ for some r > 0, then

$$\partial_t \psi(x_0, t_0) \leq -\kappa (G(\psi)\psi)(x_0, t_0) \quad (\text{resp.} \geq).$$

A viscosity solution is both a viscosity subsolution and viscosity supersolution.

Hongjie Dong (Brown University)

We construct solutions by the viscosity regularization approach: for small $\varepsilon > 0$, consider the approximate equation

$$\partial_t f^{\varepsilon} = -\kappa G(f^{\varepsilon}) f^{\varepsilon} + \varepsilon \partial_x^2 f^{\varepsilon}.$$

To solve for f^{ε} , we use the layer potential representation of G(f)g.

3

Layer potential representation

Newtonian kernel for $\mathbb{T} \times \mathbb{R}$:

$$\mathcal{N}(z) = (4\pi)^{-1} \ln (\cosh y - \cos x), \quad z = (x, y) \in \mathbb{T} \times \mathbb{R}.$$

Double layer potential for a function $h : \mathbb{T} \to \mathbb{R}$:

$$\begin{aligned} \mathcal{K}[f]h(z) &:= -\int_{\Sigma} (\partial_{n(x')} \mathcal{N})(z-z') \widetilde{h}(z') dz' \\ &= \frac{1}{4\pi} \int_{\mathbb{T}} \frac{\sin(x-x') \partial_x f(x') - \sinh(y-f(x'))}{\cosh(y-f(x')) - \cos(x-x')} h(x') dx'. \end{aligned}$$

Single layer potential:

$$S[f]h(x,y) = \frac{1}{4\pi} \int_{\mathbb{T}} \ln\left(\cosh(y - f(x')) - \cos(x - x')\right) h(x') dx'.$$

Hongjie Dong (Brown University)

October 2, 2023

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

18/34

The unique solution $\boldsymbol{\varphi}$ of the Dirichlet problem is then given by

$$\varphi = \mathcal{K}(\frac{1}{2}I + K)^{-1}g.$$

For $f \in \text{Lip}(\mathbb{T})$ and $g \in H^1(\mathbb{T})$, we have for a.e. $x \in \mathbb{T}$ that

$$\begin{split} \mathcal{C}G(f)g)(x) &= (1,\partial_x f(x)) \cdot \nabla S[f] \theta(x,f(x)) \\ &= \frac{1}{4\pi} p.v. \int_{\mathbb{T}} \frac{\sin(x-x') + \sinh(f(x) - f(x')) \partial_x f(x)}{\cosh(f(x) - f(x')) - \cos(x-x')} \theta(x') dx' \\ &= \frac{1}{4\pi} p.v. \int_{\mathbb{T}} \partial_x \ln\left(\cosh(f(x) - f(x')) - \cos(x-x')\right) \theta(x') dx', \end{split}$$

where

$$\theta = \partial_x (\frac{1}{2}I + K)^{-1}g = (\frac{1}{2}I - K^*)^{-1}(\partial_x g).$$

Quantitative bounds

Verchota (84) proved that $\frac{1}{2}I - K^* : L_0^2(\mathbb{T}) \to L_0^2(\mathbb{T})$ is invertible provided that the boundary $f \in \text{Lip}$.

We obtained the following quantitative estimates, which are needed for the solvability of the equation.

There exists a universal constant C > 0 such that

$$\|(\frac{1}{2}I \pm K^*)^{-1}\|_{L^2_0(\mathbb{T}) \to L^2_0(\mathbb{T})} \le C(1 + \|f\|_{\operatorname{Lip}(\mathbb{T})})^{5/2}.$$

Moreover, for any $g \in \dot{H}^1(\mathbb{T})$,

 $\|G(f)g\|_{L^{2}(\mathbb{T})} \leq C(1 + \|f\|_{\operatorname{Lip}(\mathbb{T})})^{2} \|\partial_{x}g\|_{L^{2}(\mathbb{T})}$

With these estimates, the existence of solutions is proved by using the contraction mapping method and (quite involved) energy method: L^2 , \dot{H}^1 , \dot{H}^2 , and finally \dot{H}^s estimates for s > 2 (depending on ϵ), $\epsilon = 2$

Hongjie Dong (Brown University)

One-phase Muskat problem

Quantitative bounds

Verchota (84) proved that $\frac{1}{2}I - K^* : L_0^2(\mathbb{T}) \to L_0^2(\mathbb{T})$ is invertible provided that the boundary $f \in \text{Lip}$.

We obtained the following quantitative estimates, which are needed for the solvability of the equation.

There exists a universal constant C > 0 such that

$$\|(\frac{1}{2}I \pm K^*)^{-1}\|_{L^2_0(\mathbb{T}) \to L^2_0(\mathbb{T})} \le C(1 + \|f\|_{\operatorname{Lip}(\mathbb{T})})^{5/2}.$$

Moreover, for any $g \in \dot{H}^1(\mathbb{T})$,

 $||G(f)g||_{L^{2}(\mathbb{T})} \leq C(1 + ||f||_{\operatorname{Lip}(\mathbb{T})})^{2} ||\partial_{x}g||_{L^{2}(\mathbb{T})}$

With these estimates, the existence of solutions is proved by using the contraction mapping method and (quite involved) energy method: L^2 , \dot{H}^1 , \dot{H}^2 , and finally \dot{H}^s estimates for s > 2 (depending on ε).

Hongjie Dong (Brown University)

One-phase Muskat problem

Part IV: Proof of the uniqueness

2

(a) < (a) < (b) < (b)

Comparison principle for viscosity solutions

The uniqueness of viscosity solutions follows from the comparison principle below by using the inf/sup convolutions.

Theorem

Assume that $f, g : \mathbb{T} \times [0, T] \to \mathbb{R}$ are respectively a bounded viscosity subsolution and supersolution on (0, T). If $f(x, 0) \le g(x, 0)$ for all $x \in \mathbb{T}$, then $f(x, t) \le g(x, t)$ for all $(x, t) \in \mathbb{T} \times [0, T]$.

The theorem above is a consequence of the consistency result:

If a viscosity solution is $C^{1,1}$ at a point (x_0, t_0) then it satisfies the equation classically at the same point.

A key step in the proof of the consistency result is a pointwise $C^{1,\alpha}$ estimate, which allows us to pass to the limit in the integral representation of the D-N mapping.

Comparison principle for viscosity solutions

The uniqueness of viscosity solutions follows from the comparison principle below by using the inf/sup convolutions.

Theorem

Assume that $f, g : \mathbb{T} \times [0, T] \to \mathbb{R}$ are respectively a bounded viscosity subsolution and supersolution on (0, T). If $f(x, 0) \le g(x, 0)$ for all $x \in \mathbb{T}$, then $f(x, t) \le g(x, t)$ for all $(x, t) \in \mathbb{T} \times [0, T]$.

The theorem above is a consequence of the consistency result:

If a viscosity solution is $C^{1,1}$ at a point (x_0, t_0) then it satisfies the equation classically at the same point.

A key step in the proof of the consistency result is a pointwise $C^{1,\alpha}$ estimate, which allows us to pass to the limit in the integral representation of the D-N mapping.

Hongjie Dong (Brown University)

Suppose that Ω is a Lipschitz domain in \mathbb{R}^2 . For $(x_0, y_0) \in \mathbb{R}^2$ and r > 0, we denote

$$\Omega_r(x_0, y_0) = B_r(x_0, y_0) \cap \Omega$$
 and $\Omega_r = \Omega_r(0)$.

We also define the half ball as

$$B_r^+(x_0, y_0) = \{(x, y) \in B_r(x_0, y_0) : y > y_0\}.$$

We assume that $0 \in \partial \Omega$. Suppose that there exists some $r_0 > 0$ such that in a coordinate system, $\partial \Omega \cap B_{2r_0}$ can be represented by a Lipschitz graph with Lipschitz constant L > 0.

Let *u* be a harmonic function in Ω , which vanishes on $\partial \Omega$.

A pointwise boundary $C^{1,\alpha}$ estimate

Theorem

Suppose that there exist constants M_0 , $r_0 > 0$ and function ψ in $(-r_0, r_0)$ such that in a coordinate system

$$\psi(0) = \psi'(0) = 0, \quad \Omega_{r_0} = \{(x, y) \in B_{r_0} : y > \psi(x)\},$$

and ψ is $C^{1,1}$ at the origin.

Then u is $C^{1,\alpha}$ at 0, i.e., for any $(x, y) \in \Omega$ such that $\sqrt{x^2 + y^2} < r_0$,

$$|u(x,y) - (x,y) \cdot \nabla_{x,y} u(0)| \le C |x^2 + y^2|^{\frac{1+\alpha}{2}} r_0^{-2-\alpha} ||u||_{L^2(\Omega_{2r_0})},$$

where C > 0 is a constant depending only on M_0r_0 and L, and $\alpha \in (0, 1)$ is a small constant depending only on L.

< ロ > < 同 > < 回 > < 回 >

Some remarks

- ► The conditions can be relaxed to $\psi \in C^{1,\beta}$ at 0 for some $\beta \in (0, 1)$.
- By using simple barrier argument, we know that in any dimension, u is Lipschitz at 0.
- With a bit more work, one can show that u is C¹ in any non-tangential direction (see Caffarelli-Salsa (05)), again in any dimension.
- Unfortunately, the C¹ regularity is insufficient for our purpose: we need C^{1,α} regularity or at least C^{1,Dini}.

We first recall a global $C^{1/2+\varepsilon_0}$ estimate when the domain is Lipschitz.

Lemma

Under the Lipschitz conditions, there exist $\varepsilon_0 = \varepsilon_0(L) > 0$ and $M_1 = M_1(L) > 0$ such that $u \in C^{\frac{1}{2} + \varepsilon_0}(\Omega_{r_0})$ and

$$\|u\|_{C^{\frac{1}{2}+\varepsilon_0}(\Omega_{r_0})} \leq M_1 r_0^{-\frac{3}{2}-\varepsilon_0} \|u\|_{L^2(\Omega_{2r_0})}.$$

For the proof, we compare *u* with $\text{Re}(z^{\beta})$, where $\beta \in (1/2, 1)$.

Hongjie Dong (Brown University)

By scaling, we may assume that $r_0 = 1$ and $||u||_{L^2(\Omega_2)} = 1$.

Using the Lipschitz estimate and the reverse Hölder's inequality, there exists $p_0 = p_0(L) > 2$ such that

 $\|\nabla_{x,y}u\|_{L^{p_0}(\Omega_r)}\leq Cr^{\frac{2}{p_0}}.$

Take a smooth domain *E* such that $B_{2/3}^+ \subset E \subset B_{3/4}^+$. For any $(x_0, y_0) \in \mathbb{R}^2$ and r > 0, denote

$$E_r(x_0, y_0) = \{(x, y) \in \mathbb{R}^2 : r^{-1}(x - x_0, y - y_0) \in E\},\$$

$$\Gamma_r(x_0, y_0) = \{(x, y) \in \partial E_r(x_0, y_0) : y = y_0\}.$$

For *r* sufficiently small, we have $E_r(0, M_0 r^2) \subset \Omega_r$.

Take a smooth function $\eta = \eta(s)$ on \mathbb{R} such that $\eta(s) = 0$ in $(-\infty, 1)$ and $\eta(s) = 1$ in $(2, \infty)$. Denote $\eta_r(s) = \eta(s/(M_0 r^2))$. A simple calculation reveals that $u(x, y)\eta_r(y)$ satisfies

 $\Delta_{x,y}(u(x,y)\eta_r(y)) = \partial_y(u\eta'_r) + \partial_y u\eta'_r \text{ in } E_r(0,M_0r^2)$

and $u\eta_r = 0$ on $\Gamma_r(0, M_0 r^2)$. Note that the right-hand side is supported in a narrow strip $\{(x, y) \in \Omega_r : M_0 r^2 < y < 2M_0 r^2\}$.

28/34

Take a smooth domain *E* such that $B_{2/3}^+ \subset E \subset B_{3/4}^+$. For any $(x_0, y_0) \in \mathbb{R}^2$ and r > 0, denote

$$E_r(x_0, y_0) = \{(x, y) \in \mathbb{R}^2 : r^{-1}(x - x_0, y - y_0) \in E\},\$$

$$\Gamma_r(x_0, y_0) = \{(x, y) \in \partial E_r(x_0, y_0) : y = y_0\}.$$

For *r* sufficiently small, we have $E_r(0, M_0 r^2) \subset \Omega_r$.

Take a smooth function $\eta = \eta(s)$ on \mathbb{R} such that $\eta(s) = 0$ in $(-\infty, 1)$ and $\eta(s) = 1$ in $(2, \infty)$. Denote $\eta_r(s) = \eta(s/(M_0 r^2))$. A simple calculation reveals that $u(x, y)\eta_r(y)$ satisfies

$$\Delta_{x,y}(u(x,y)\eta_r(y)) = \partial_y(u\eta'_r) + \partial_y u\eta'_r \text{ in } E_r(0,M_0r^2)$$

and $u\eta_r = 0$ on $\Gamma_r(0, M_0 r^2)$. Note that the right-hand side is supported in a narrow strip $\{(x, y) \in \Omega_r : M_0 r^2 < y < 2M_0 r^2\}$.

We decompose $u\eta_r = w + v$ in $E_r(0, M_0r^2)$, where $w = w_r$ be a weak solution to

$$\Delta_{x,y}w = \partial_y(u\eta'_r) + \partial_y u\eta'_r \quad \text{in } E_r(0, M_0r^2)$$

with the zero Dirichlet boundary condition on $\partial E_r(0, M_0 r^2)$. Then $v = u\eta_r - w$ is harmonic in $E_r(0, M_0 r^2)$ and v = 0 on $\Gamma_r(0, M_0 r^2)$.

By using the W^{1,p} estimate, Hardy's inequality, and a duality argument,

 $\|\nabla_{x,y}w\|_{L^{p}(E_{r}(0,M_{0}r^{2}))} \leq C\|\nabla_{x,y}u\|_{L^{p}(\Omega_{r}\cap\{y<2M_{0}r^{2}\})}.$

Fix $p = \frac{(2+p_0)}{2}$ and let q > 1 be such that $\frac{1}{q} = \frac{1}{p} - \frac{1}{p_0}$. Using Hölder's inequality,

 $\|\nabla_{x,y}w\|_{L^{p}(E_{r}(0,M_{0}r^{2}))} \leq C\|\nabla_{x,y}u\|_{L^{p_{0}}(\Omega_{r}\cap\{y<2M_{0}r^{2}\})}r^{\frac{3}{q}} \leq Cr^{\frac{2}{p_{0}}+\frac{3}{q}}$

By the Morrey embedding,

$$||w||_{L^{\infty}(E_{r}(0,M_{0}r^{2}))} \leq Cr^{1+\frac{1}{q}}.$$

Hongjie Dong (Brown University)

We decompose $u\eta_r = w + v$ in $E_r(0, M_0r^2)$, where $w = w_r$ be a weak solution to

$$\Delta_{x,y} w = \partial_y (u\eta'_r) + \partial_y u\eta'_r \quad \text{in } E_r(0, M_0 r^2)$$

with the zero Dirichlet boundary condition on $\partial E_r(0, M_0 r^2)$. Then $v = u\eta_r - w$ is harmonic in $E_r(0, M_0 r^2)$ and v = 0 on $\Gamma_r(0, M_0 r^2)$. By using the $W^{1,p}$ estimate. Hardy's inequality and a duality argument

y using the
$$W^{1,p}$$
 estimate, Hardy's inequality, and a duality argument,

$$\|\nabla_{x,y}w\|_{L^{p}(E_{r}(0,M_{0}r^{2}))} \leq C\|\nabla_{x,y}u\|_{L^{p}(\Omega_{r}\cap\{y<2M_{0}r^{2}\})}.$$

Fix $p = \frac{(2+p_0)}{2}$ and let q > 1 be such that $\frac{1}{q} = \frac{1}{p} - \frac{1}{p_0}$. Using Hölder's inequality,

$$\|\nabla_{x,y}w\|_{L^{p}(E_{r}(0,M_{0}r^{2}))} \leq C\|\nabla_{x,y}u\|_{L^{p_{0}}(\Omega_{r}\cap\{y<2M_{0}r^{2}\})}r^{\frac{3}{q}} \leq Cr^{\frac{2}{p_{0}}+\frac{3}{q}}$$

By the Morrey embedding,

$$\|w\|_{L^{\infty}(E_r(0,M_0r^2))} \leq Cr^{1+\frac{1}{q}}$$

By the boundary estimate for harmonic functions,

$$\|\nabla_{x,y}v\|_{L^{\infty}(B^{+}_{r/4}(0,M_{0}r^{2}))} \leq Cr^{-1}\|v\|_{L^{\infty}(B^{+}_{r/2}(0,M_{0}r^{2}))},$$

which together with the Lipschitz regularity of u at 0 implies that

 $\|\nabla_{x,y}v\|_{L^{\infty}(B^{+}_{r/4}(0,M_{0}r^{2}))} \leq C.$

Moreover, for any linear function ℓ of y,

$$\|\nabla_{x,y}^2 v\|_{L^{\infty}(B^+_{r/4}(0,M_0r^2))} \leq Cr^{-2}\|v-\ell\|_{L^{\infty}(B^+_{r/2}(0,M_0r^2))}.$$

Thus by the mean value theorem and $v(0, M_0r^2) = \partial_x v(0, M_0r^2) = 0$, for any $\kappa \in (0, 1/4)$,

$$\begin{split} \| v - (y - M_0 r^2) \partial_y v(0, M_0 r^2) \|_{L^{\infty}(B_{\kappa r}^+(0, M_0 r^2))} \\ &\leq C \kappa^2 \| v - \ell \|_{L^{\infty}(B_{r/2}^+(0, M_0 r^2))}. \end{split}$$

Step 4 (last step)

Recalling
$$u\eta_r = w + v$$
 in $E_r(0, M_0 r^2)$, we have
 $||u\eta_r - (y - M_0 r^2)\partial_y v(0, M_0 r^2)||_{L^{\infty}(B^+_{\kappa r}(0, M_0 r^2))}$
 $\leq C\kappa^2 \inf_{a,b\in\mathbb{R}} ||u\eta_r - (a + by)||_{L^{\infty}(B^+_{r/2}(0, M_0 r^2))} + Cr^{1+\frac{1}{q}}.$

By the $C^{1/2+\varepsilon_0}$ estimate,

$$||u(1-\eta_r)||_{L^{\infty}(\Omega_r)} \leq \sup_{\Omega_r \cap \{y < 2M_0r^2\}} |u(x,y)| = \sup_{\Omega_r \cap \{y < 2M_0r^2\}} |u(x,y) - u(x,\psi(x))| \leq Cr^{1+2\varepsilon_0}.$$

Thus,

$$\inf_{a,b\in\mathbb{R}}\|u-(a+by)\|_{L^{\infty}(\Omega_{\kappa r})}\leq C\kappa^{2}\inf_{a,b\in\mathbb{R}}\|u-(a+by)\|_{L^{\infty}(\Omega_{r})}+Cr^{1+\alpha},$$

where $\alpha = \min\{2\varepsilon_0, 1/q\}$. By a standard iteration argument,

$$\inf_{a,b\in\mathbb{R}} \|u-(a+by)\|_{L^{\infty}(\Omega_r)} \leq Cr^{1+\alpha}.$$

3

Recently, we established the global wellposedness in the 3D case.

- Compared to the 2D case, in 3D the fundamental solution is implicit.
- While the H¹ regularity result due to Verchota suffices in the 2D case, in 3D this regularity turns out to be critical and thus inadequate.
- ► Instead, our proof relies on the W^{1,2+ε} layer potential estimates in Lipschitz domains by Dahlberg-Kenig (1987) and Mitrea-Taylor (1999).
- For the proof of the pointwise C^{1,α} regularity, we used the W^{1,3+ε} estimate for harmonic functions in Lipschitz domains due to Jerison-Kenig (1995).

イロト 不得 トイヨト イヨト

- Smoothness of strong solutions.
 For example, does the solution become C¹ and smooth in finite time? Note that there is no instantaneous smoothing of solutions (S. Wu et. al. (2022)).
- Equations in the whole space.
- Equations with surface tension.

Thank you for your attention!

2