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1 Overview
This BIRS workshop brought together researchers with a variety of backgrounds and from different genera-
tions, working on spaces of manifolds. It took place during an exciting era in the field, which is still ongoing:
old and new ideas—both on the more geometric side, as well as in the related field of higher algebra; espe-
cially in the study of K- and L-theory—are merging and the field is moving forward rapidly. Some of the
resulting advances were the topics of the talks and discussions during the workshop. Before explaining this
in more detail, we survey the state of the art of the field until about a decade ago.

2 Overview of the field

2.1 The question
One of the foundational questions of topology is: can compact smooth d-manifolds be classified, or—more
ambitiously—can smooth compact d-manifold bundles be classified? Through the lens of algebraic topology,
this is asking for an understanding of the homotopy type of the moduli space of compact smooth d-manifolds
Mand. Since the 1950s, the study of Mand and related variants has continuously driven innovation in several
mathematical fields, and even led to the development of new ones. For example, Thom’s work on cobordism
[Tho54] motivated the development of stable homotopy theory; ideas surrounding the s-cobordism theorem
of Barden–Mazur–Stallings [Ker65] and the surgery theory of Browder–Sullivan–Novikov–Wall [Wal99]
fostered advances in algebraic K-theory and L-theory of rings; and Waldhausen’s work on pseudoisotopy
theory [Wal78] led to the invention of algebraic K-theory of ring spectra and the rise of higher algebra—
algebra over the sphere spectrum S instead of over the integers Z (see e.g. the work of Lurie [Lur17]).

Recent years have seem dramatic progress in the understanding of the moduli space of manifolds Mand
from a variety of different angles: new geometric insights as well as significant advances in higher algebra (in
particular the study of algebraic K- and L-theory of ring spectra) have led to major applications to Mand. The
potential of such applications, however, is still yet to be fully understood. This workshop fostered applications
of this kind, and also encouraged reversing the flow of information: breakthroughs in the geometric study of
manifolds can for instance inspire new directions in the study of higher algebraic structures.
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2.2 Classical approach
To put the aforementioned breakthroughs in context, we survey the classical approach to the study of the
moduli space of manifolds Mand.

Originally, manifolds were studied by comparison to topological spaces, or rather their homotopy types:
given a topological space X , is it homotopy equivalent to a smooth d-manifold and if so, in how many
ways? These questions informed some of the development of topology during the 20th century, and in
high dimensions, the results proven as part of surgery theory culminated in a satisfying answer in terms
of algebraic L-theory and stable homotopy theory [Wal99]. From the perspective of spaces of manifolds,
surgery theory provides a description of the difference between the moduli space of block-manifolds M̃and
and the moduli space of topological spaces Top. The space M̃and is a simplification of Mand, but for the
original question of classifying manifolds up to diffeomorphism, this simplification is harmless: M̃and and
Mand have the same path-components. However, to achieve the more ambitious goal of classifying smooth
d-manifold bundles, a full understanding of Mand is needed.

Hence as a next step one tries to understand the difference between M̃and and Mand; this is the subject of
pseudoisotopy theory. This “difference” is again encoded in the homotopy type of a space, and classical work
of Cerf [Cer70] and Hatcher–Wagoner [HW73] determines its fundamental groups at various basepoints in
terms of algebraic K-theory of the group rings Z[π1(M)] of the fundamental groups π1(M) of manifolds M .
Waldhausen [Wal78] then had the fundamental insight that in order to understand the actual homotopy type
of this “difference” as opposed to just its fundamental group, one must replace the integers Z by the sphere
spectrum S, the group π1(M) by the loop space ΩM , and the ring Z[π1(M)] by a ring spectrum S[ΩM ].
His work, with later contributions by Weiss–Williams [WW88], resulted in a complete description of the
space encoding the difference between M̃and and Mand in a range depending on d in algebraic K-theoretical
terms, namely as the infinite loop space of a spectrum closely related to the algebraic K-theoryK(S[ΩM ]) of
S[ΩM ]. In Rognes’ words [Rog18]: “this is one of the main reasons to be interested in the algebraic K-theory
of ring spectra”.

One of the limitations of this approach is that it requires an understanding of the K- and L-theory of
S[ΩM ] and Z[π1(M)], which is generally very difficult. The more crucial limitation, however, lies in the
above range depending on d. Although Igusa’s work on parametrised Morse theory [Igu88] shows that this
range grows at least linearly with the dimension d, it is finite, so the above approach captures for instance at
most finitely many of the homotopy groups of Mand—a pessimist might say 0%.

3 Recent developments and talk highlights
We will now summarise some of the recent breakthroughs in overcoming both of the above limitations in our
understanding of Mand, and closely related other advances. Moreover, we will summarise the talks during
the workshop which were related to these topics.

3.1 Cobordism categories and parametrised surgery theory
Madsen–Weiss’ [MW07] celebrated solution of the Mumford conjecture on the cohomology of the moduli
space of Riemann surfaces suggested a new method to access Mand: instead of comparing Mand to the
moduli spaces of block-manifolds M̃and and topological spaces Top, one compares it to the classifying space
BCobd of the d-dimensional cobordism category. The homotopy type of the latter was determined in terms of
stable homotopy theory by Galatius–Madsen–Tillmann–Weiss [GTMW09], and using this Galatius–Randal-
Williams [GRW14, GRW17] proved that in even dimensions d = 2n the homology of the components of
Mand have a complete description in stable homotopy theoretical terms after stabilising Man2n by taking
connected sums with Sn × Sn. Their method of proof is often referred to as parametrised surgery theory.

3.1.1 Related talks during the workshop

In odd dimensions d = 2n + 1, a result of similar strength has not yet been established and even the state-
ment of such an odd-dimensional analogue is still unclear. Steinebrunner pointed out in his talk that in
the case d = 3, this can be approached using an higher-algebraic generalisation of the notion of a modular



3

operad. Closely related, he spoke about his solution together with Boyd and Bregman [BBS24] of a conjec-
ture of Kontsevich saying that the moduli space of manifolds diffeomorphic to a connected 3-manifold with
nonempty boundary has the homotopy type of a finite CW-complex. Randal-Williams gave a talk on a result
joint with Galatius [GR23] which shows that the space of homeomorphisms of a contractible d-manifold M
relative to its boundary is for d ≥ 6 contractible, which generalises the caseM = Dd of a closed disc, known
as the Alexander trick. The proof involves ideas close in spirit to parametrised surgery theory. They also
offered an alternative proof based on embedding calculus, which is the topic we will discuss next.

3.2 Embedding calculus
To use the results mentioned in Section 3.1 to obtain information about Mand, one needs to understand how
the homotopy type of Mand is affected by various forms of stabilisation, e.g. by attaching Sn×Sn if d = 2n.
The difference between the stabilised and the unstabilised variant can often be described in terms of embed-
ding spaces, and Weiss [Wei21] realised that one can combine this with Goodwillie’s multiple disjunction
lemma [Goo90], conveniently packaged in the form of embedding calculus [Wei99], to analyse this differ-
ence. In the past, embedding calculus has been successful in the study of embedding spaces Emb(M,N)
between manifolds of handle-codimension at least 3, but Weiss’ insight combined with the programme out-
lined in Section 3.1 has opened the way to also apply it to access the homotopy type of Mand, in principle
without being constrained by a range. This strategy and variants of it have led to a variety of new results on
Mand, which were out of reach until recently (see e.g. [Kup19, KRW20, Kra22, KR21, BKK24]).

3.2.1 Related talks during the workshop

Embedding calculus featured in a number of talks during the workshop. Boavida de Brito described joint
work with Weiss [BdBW24] which involved embedding calculus and an analogue of the torus trick for home-
omorphisms of tori to show that the space of topological embeddings between Euclidean spaces is equivalent
to the space of derived between the corresponding little discs operads if the codimension is at least 3. Ma-
lin spoke about the variant of embedding calculus resulting from replacing the category of spaces by that
of spectra, and its relation to Koszul duality and Goodwillie calculus [Mal24]. Muoz-Echniz gave a talk
about his work [Mu23] which combines Goodwillie’s multiple disjunction lemma and the resulting bound
on the concordance embeddings stable range from [GKK22] with an analogue for embedding spaces of
Weiss–Williams’ partial description of the difference between spaces of diffeomorphisms and block diffeo-
morphisms in terms of algebraic K-theory [WW01], to analyse the homotopy type of embedding spaces in a
range. Naef spoke in his talk about work with Safranov [NS24] in which they exhibited a relation between
string topology, embedding calculus, and the trace of the Whitehead torsion. Kosanovic explained a con-
struction of classes in the space of embeddings of 1-manifolds into higher manifolds whose nontriviality can
be detected using embedding calculus [Kos24]. Arone’s talk was in the context of functor calculus, which is
related to embedding calculus. He explained his computation with Barthel, Heard and Sanders [ABHS24] of
the Balmer spectrum for the category of n-excisive functors from spaces to spectra.

3.3 Configuration space integrals and graph complexes
Inspired by ideas from mathematical physics and low-dimensional topology, Kontsevich [Kon94] suggested
a new source of characteristic classes of manifold bundles. These are defined in terms of integrals over
configuration spaces and take value in the homology of combinatorial graph complexes. Watanabe [Wat09]
used them to construct novel provably non-trivial families of smooth bundles with fibre a closed d-disc, far
outside the range accessible to the classical approach to Mand. Unlike most methods in geometric topology
these ideas are insensitive to the dimension, which allowed him to also disprove the 4-dimensional Smale
conjecture [Wat18]. Beyond Watanabe’s work, the application and study of graph complexes (especially in
combination with embedding calculus as mentioned above) has seen several recent advances (e.g. [FTW17,
Wil15, ALV07, BM20]), most of them yet to be applied to the study of Mand.
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3.3.1 Related talks during the workshop

Watanabe spoke about an extension of his work, joint with Botvinnik, leading to a chain map from a larger
part of Kontsevich’s graph complex to the singular chain complex of the classifying space of the diffeomor-
phism group of even-dimensional discs, likely to lead to more nontrivial elements in the homology of this
classifying space. Stoll explained his computation of the stable cohomology of block diffeomorphisms of
certain products of spheres, in terms of a Lie graph complex, which is closely related to his earlier work
on homotopy automorphisms [Sto24] and Berglund–Madsen’s work before that [BM20]. His result relies
on an algebraic rational model for the homotopy type of classifying spaces of homotopy automorphisms of
Poincaré duality spaces due to Berglund and Zeman [BZ22]. Berglund gave a talk on this algebraic model,
and he also explained a new source of characteristic classes constructed in terms of the algebraic models.

3.4 New foundations for Hermitian K-theory and L-theory
Recently, a team of nine mathematicians made significant advancements in the foundations and computations
of Hermitian K-theory—a unification of algebraic K- and L-theory [CDH+23, CDH+20a, CDH+20b]. Their
extension of classical methods from ordinary algebra to higher algebra allows for computations relevant to
the study of Mand that were previously out of reach, and it has the potential to put the classical approach
to Mand outlined in Section 2 and the more recent bordism-theoretic perspective from Section 2.2 into a
common framework.

3.4.1 Related talks during the workshop

The workshop featured talks by three of the nine pioneers. Steimle spoke about how classical Nil-Nil theo-
rems in algebraic K- and L-theory can be united to results in Hermitian K-theory in the setting of their above
mentioned framework. Land talked about an application of their framework to the study of the behaviour of
the signature in fibre bundles. In a different but related direction, Hebestreit gave a talk on theory of homol-
ogy manifolds and explained an inconsistency between two foundational results in this area that he recently
discovered together with Land, Weiss, and Winges [HLWW24].

3.5 Highly connected manifolds via stable homotopy theory
Coming from a different angle, Burklund, Hahn, and Senger [BHS23] recently managed to resolve a long-
standing open question in Wall’s classification of highly-connected manifolds from the 1960’s [Wal62]. This
question was reformulated in terms of stable homotopy theory by Stolz [Sto85], which they solved using a
new perspective on Adams spectral sequence calculations via the theory of synthetic spectra [Pst23].

3.5.1 Related talks during the workshop

Senger gave a summary of some of these results and further advances in the study of highly-connected
manifolds via stable homotopy theory joint with Burklund, Hahn, and Zhang [BHS23, BS20, BHS20].

3.6 New developments in algebraic K-theory
The study of algebraic K-theory has seen major breakthroughs in the past years, independent of the connec-
tions to geometric topology. Prominent examples include Land–Tamme’s work on the behaviour of algebraic
K-theory under pullbacks [LT19] or Nikolaus–Scholze’s new perspective on trace methods [NS18]. These
developments are likely to yield a better understanding of the K-theory of spherical group rings in the coming
years, and thus eventually of the part of Mand captured by the method discussed in Section 2.2. Moreover,
recent developments in equivariant K-theory, in particular the interpretation of G-spectra as spectral Mackey
functors [GM, BO15, Bar17, BGS20, MMO, GMMO23] have opened the way for generalisations of the clas-
sical approach to the moduli space of manifold Mand to its equivariant generalisations ManGd for manifolds
with a group action [MM19, MM].
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3.6.1 Related talks during the workshop

During the workshop, Malkiewich spoke about one of the crucial ingredients in generalising the classical
approach from Mand to ManGd , an equivariant analogue of the stable parametrised h-cobordism theorem
of Waldhausen–Jahren–Rognes [WJR13], joint with Goodwillie, Igusa, and Merling [GIMM23]. Rovi and
Semikina spoke about a different relation between manifolds and algebraic K-theory. They explained a
construction of a cut-and-paste K-theory of manifolds closely related to the classical notion of scissors con-
gruence, alongside with several results on this object and connection to cobordism categories as featuring
in Section 3.1 [HRS22, HMM+]. Abouzaid talked about joint work with Courte, Guillermou, and Kragh
[ACGK] which involves relations between symplectic topology and algebraic K-theory as featuring in geo-
metric topology.

4 Open problems brought up during the workshop
An important component of the workshop was an open problem session. The following list consists of the
presented open problems; we hope that they will inspire further advances on the topics of this workshop.

4.1 Oscar Randal-Williams: Miller–Morita–Mumford classes
Given an oriented closed d-dimensional manifold M , an oriented fibre bundle M → E

π−→ B with classify-
ing map Tπ : E → BSO(d) for the vertical tangent bundle, and a characteristic class c ∈ H∗(BSO(d)), one
can form the generalised Miller–Morita–Mumford class∫

π

c(Tπ) := κc ∈ H |c|−d(B).

In even dimensions, after stabilising by copies of Sn × Sn, the subalgebra of the rational cohomology of
BDiff∂(M) generated by these classes is free polynomial algebra on κc for certain monomials c [GRW14].
Unstably, however, these satisfy many relations.

Question 4.1. Do relations among the generalised MMM-classes κc’s on a givenM yield interesting (matric)
Massey products on H∗(BDiff+(M))?

Example 4.2. For the mapping class group Γ4 of a surface Σ4 of genus 4, Tommasi computed the cohomology
group H5(BDiff+(Σ4);Q) ∼= Q [Tom05]. Does this arise as a (matric) Massey product? This would give
meaning to some odd degree cohomology classes on moduli spaces of curves.

Question 4.3. For the 4-dimensional smooth manifold M = CP 2, Baraglia proved that there is a relation
p1(Tπ) = e(Tπ) + π∗(κe2) in H4(BDiff+(M);Q) [Bar23]. The right side only depends on underlying
fibration, so for smooth fibre bundles the first Pontryagin class only depends on the underlying fibration, not
the smooth structure. Is this true topologically, or smoothly without using gauge theory? Or for the exotic
topological manifold ∗CP 2?

4.2 Fabian Hebestreit: unimodular symmetric forms over S
Using Waldhausen’s matrix model [Wal85], theA-theory spectrumA(∗) can be described as Z×BGL∞(S)+.
In [WW14], Weiss and Williams introduced a mixture LAv(∗) of visible L-theory and A-theory (see also
[CDH+20a]).

Question 4.4. Is there a similar matrix model description for LAv(∗), e.g. involving orthogonal groups?

Another description of A(∗) is as group completion of a finitely generated projective modules over S, via
a cofinality statement. We know that LAv(∗) is the group completion of visible unimodular forms over S,
but not enough to understand the required cofinality theorem.

Question 4.5. Can we classify indefinite (visibly) unimodular symmetric forms on S⊕g?
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This is not possible without “indefinite,” as over the integers. A fact by Weiss–Williams is that you can
lift forms over Z to S, but for these lifts the relations usually fail, e.g.

E8 ⊕ 〈−1〉 ∼= 8〈1〉 ⊕ 〈−1〉,

holds over Z but not for lifts over S [WW14, Theorem 4.3], c.f. [CDH+20a, 4.6.4].

Question 4.6. Is there an Hasse–Minkowski principle for indefinite (visibly) unimodular symmetric forms?

4.3 Cary Malkiewich: Spaces of equivariant PL or topological h-cobordisms
In the talk, I discussed the spaces of equivariant or isovariant smooth h-cobordisms. You can also ask about
the PL or topological settings. In the setting the following is known:

Theorem 4.7 ([BQ75, Rot78]). In dimensions ≥ 6, isovariant h-cobordisms over M up to diffeomorphisms
are given by ⊕(H)Wh(MH/WH), in smooth, PL, and topological settings. Here MH is the stratum with
isotropy H and WH = NH/H .

Theorem 4.8 ([Ste88]). Isovariant topological h-cobordisms over M up to homomorphisms inject into
WhTOP

G (M), but this does not split.

Question 4.9. Is the splitting true or false in the PL category? Either on π0 or on the level of moduli spaces?

In the topological case, Steinberger gave a 5-term exact sequence describing the isovariant topological
h-cobordisms.

Question 4.10. Is there a space-level Steinberger exact sequence?

4.4 Jan Steinebrunner: Cyclic En-operads
More refined than operads are cyclic operads, in the sense that we can obtain the former from the latter by
forgetting structure.

Question 4.11. For which n is the En-operad equivalent to some cyclic operad, or cyclic∞-operad?

This is known for 1, 3,∞, possibly obstructed in even dimensions. This is equivalent to the following
question, involving the∞-categories Discfrn of finite disjoint unions of framed n-discs and framing-preserving
embeddings between them and S of spaces.

Question 4.12. Is there a functor (Discfrn)op → S such that F (t2Dn) ' ∗ and Embfr(tkDn, Dn) ×
F (t2Dn)

∼−→ F (tk+1D
n)? Note that the domain is equivalent to Embfr(tkDn, Dn), determining the

homotopy type of F (tk+1D
n).

Example 4.13. For n = 3, you can use F (tkD3) = Embfr(tkD3, SU2)/SU2. This suggests n = 7 may
also be special.

4.5 Nils Prigge: Diameters and presheaves
Let Discd be the topological category or ∞-category of finite disjoint unions of d-discs and embeddings
between these, and PSh(Discd) the category of space-valued presheaves on this. A general theme of re-
cent work is: given d-dimensional closed manifold M , how much information is retained by the presheaf
Emb(−,M) ∈ PSh(Discd)?

Theorem 4.14 ([CF79]). For d ≥ 5 there exists an ε > 0 depending on Riemannian metrics on closed M
and N , so that if f : Md → Nd is a map with diam(f−1(p)) < ε then f is homotopic to a homeomorphism.

Question 4.15. Can one build a homeomorphism φ : M → N from an equivalence Emb(−,M)→ Emb(−, N),
by gaining enough control to apply Chapman–Ferry’s theorem?
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4.6 Manuel Krannich: Automorphisms of Ed

Let Aut(Ed) denote the derived automorphisms of the little d-discs operad in spaces. Little is known about
the homotopy type of this group.

Question 4.16. What is π0(Aut(Ed))? Is the map π0(Aut(Ed)) → {±1} given by degree of the map
Ed(2)→ Ed(2) an isomorphism?

Question 4.17. Are the homotopy groups of Aut(Ed) countable groups?

If the answer were yes, then BAutid(Ed) → BAutid(EQ
d ) would be a rationalisation, see [KK22]. The

latter is amenable to computations via graph complexes, see [FTW17].

4.7 Pedro Boavida-de Brito: smoothing theory in dimension 4
Question 4.18. Does smoothing theory work for 1-manifolds in 4-manifold? More precisely, is there a
cartesian square as follows:

Embs(M,M) Embt(M,N)

Imms(M,N) Immt(M,N)

If this is true then, then Embt(R1,R4) ' Maph(E1, E4).

Question 4.19. What is the connectivity of −× idR : Top(3)→ Top1(4) (the homeomorphisms of R4 which
fixes R1 pointwise)?

Question 4.20. What are the automorphisms of the Goodwillie tower Pnid(∨mS1) of a wedge of circles?

String links (with m strands, up to concordance) seem to act on this Goodwillie tower in an interesting
way. Indeed, by Biederman–Dwyer [BD10], π1Pnid(∨mS1) is identified with the lower central series quo-
tient of the free group Fm/Γn+1Fm. And the said action lifts the well known “Artin representation” of string
links (with m strands, up to concordance) on the lower central series quotients of the free group Fm. In
particular, all Milnor invariants factor through it.

4.8 Markus Land: homology manifolds
Question 4.21. For all n sufficiently large, does there exist a PD-complex X which is n-connected but which
is not equivalent to a homology manifold?

The motivation is to understand the philosophical difference between homology manifolds and Poincaré
complexes. One may think it is related to giving a PD diagonal, and this would say the difference is still quite
large.

4.9 Victor Turchin: 2-knots in dimension 4
Question 4.22. Are there smooth embeddings S2 → S4 which are PL-isotopic to the standard inclusion but
not smoothly non-isotopic to the standard inclusion?

There is a slogan that in dimension 4, PL and smooth are the same but this is not such a case. The above
question amounts to computing π2PL2(4). For comparison, π0Emb(S3,S6) = π3PL3(6)/π3O(3) ∼= Z
generated by the Haefliger trefoil.
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4.10 Connor Malin: Blow-ups
In embedding calculus and orthogonal calculus, the representable functors Emb(−,M) and LinInj(V,−)
play essential roles. In a precise way, the Taylor towers of these functors are controlled by the spaces
Emb(

⊔
i Rn,M) and LinInj(Ri,V), as i varies, together with their actions by the categories of disc embed-

dings and vector space injections, respectively. The former has the homotopy type of framed configuration
space, and the existence of the Fulton-MacPherson models of configuration spaces simplifies many technical
arguments in embedding calculus. These models are given by the oriented blowup ofM i = Map(i,M) at the
non-injective maps. The existence of an analogous model of LinInj(Ri,V) is both an interesting geometric
question and has applications to orthogonal calculus:

Question 4.23. Does the oriented blow-up of the space of linear maps Rn → V at the subspace of non-
injective linear maps have a description functorial in linear embeddings V ↪→W?

Here oriented blow-up is a bordification, a manifold with boundary whose interior is homotopic to the
complement.

4.11 Ian Hambleton: Groups of inertial h-cobordisms
There is a group H(Mn) of h-cobordisms W : M  M up to diffeomorphism relative to boundary, with
composition given by concatenation. In [Kre01], Kreck computed its underlying set in the case of 1-connected
4-manifolds in terms of automorphisms of the intersection form.

Question 4.24. What is the space-level version of Kreck’s theorem?

There is a map S(M × I; ∂)→ H(M) from the structure space.

Question 4.25. Can we understand the map from the perspective of the answer of the previous question?

Example 4.26. If π1(M) has finite odd order then there is an exact sequence [HK04, Theorem B]

0 −→ S(M × I; ∂) −→ H(M) −→ Isom(π1, π2, k, sM ) −→ 1.

4.12 Alexander Berglund: Characteristic classes and cohomology of arithmetic groups
Let X be a simply connected finite CW-complex and let Baut(X) denote the classifying space of the topo-
logical monoid of self-homotopy equivalences of X , aka the classifying space for fibrations with fiber X .

Theorem 4.27 (Berglund–Zeman [BZ22]). The space Baut(X) admits a normal covering space Bautu(X)
with deck transformation group ΓX such that

(i) ΓX is an arithmetic subgroup of a reductive algebraic group G over Q, and

(ii) Bautu(X) is ΓX -equivariantly rationally equivalent to the geometric realization of a nilpotent dg Lie
algebra u of algebraic representations of G.

In particular, this implies that there is an isomorphism of graded algebras

H∗(Baut(X);Q) ∼= H∗
(
ΓX , H

∗
CE(u)

)
. (1)

The isomorphism (1) provides a link between characteristic classes of fibrations and cohomology of
arithmetic groups, which should be investigated further.

Question 4.28. What arithmetic groups can be realized as ΓX for some X?

The group ΓX is the image im(h) of the representation in semisimple homology,

h : aut(X)→ GL
(
H∗(X;Q)ss

)
,

where the semisimple homology, H∗(X;Q)ss, is the sum of the composition factors of H∗(X;Q) viewed as
a representation of the algebraic group π0aut(XQ). It is often equal to H∗(X;Q). The space Bautu(X) is
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the classifying space of the “Torelli monoid” ker(h). In view of Sullivan’s result [Sul77, Theorem (10.3)(iv)],
we expect that all arithmetic subgroups of reductive groups can be realized up to commensurability, but the
question is what groups within a given commensurability class can be realized. For example, GLn(Z) can
be realized as ΓX for X = (S3)n, but what about finite-index subgroups of GLn(Z), e.g., the principal
congruence subgroup of level N?

Question 4.29. What is the geometric meaning of characteristic classes of fibrations constructed using (1)
and known sources of cohomology classes of arithmetic groups such as automorphic forms?

For example, for odd d, the rational cohomology of Baut(Sd×Sd) can be expressed in terms of cuspidal
modular forms of certain congruence subgroups of SL2(Z) by using (1) and the Eichler–Shimura isomor-
phism (see [BZ22]), but the geometric meaning of the characteristic classes associated to modular forms in
this way is somewhat convoluted.

Question 4.30. Suppose that X is a simply connected smooth compact manifold. Is there an analog of
Theorem 4.27 for BDiff(X)?

4.13 Alexander Berglund: Poincaré duality fibrations and graph homology

Consider an oriented fibration E π−→ B with fiber a simply connected Poincaré duality complex X of dimen-
sion m. In my talk, I sketched the construction of maps∫ α

π

: H∗(E;Q)⊗s → H∗−m(1−n)−|α|(B;Q),

associated to homology classes α in Kontsevich’s hairy Lie graph complex GCm(n, s).
IfX is a smooth manifold, we can use these to define characteristic classes of oriented block bundles with

fiber X by setting

κ̃αc1,...,cs =

∫ α

π

c1(Tπ)⊗ · · · ⊗ cs(Tπ) ∈ H∗(BD̃iff(X);Q) (2)

for c1, . . . , cs ∈ H∗(BO;Q), where π is the universal oriented block bundle over BD̃iff(X) and Tπ is the
stable fiberwise tangent bundle. We can also consider the pullbacks of these classes along the canonical map
I : BDiff(X)→ BD̃iff(X),

καc1,...,cs = I∗(κ̃αc1,...,cs) ∈ H∗(BDiffo(X);Q). (3)

These generalize the well-known Miller–Morita–Mumford classes in the sense that

κεn,s
c1,...,cs = κenc1...cs (4)

for certain classes εn,s ∈ H0(GCm(n, s)).
Now consider the manifold Wg = #gSd × Sd and let D2d ⊂ Wg be an embedded disc. Building on

[BM20], we can show that classes of the form (2) freely generate the stable rational cohomology algebra of
BD̃iff(Wg, D

2d) (and all non-trivial α are needed). In contrast, Galatius–Randal-Williams [GRW14] show
that the stable rational cohomology algebra of BDiff(Wg, D

2d) can be freely generated by classes of the
form (4) only.

This suggests that the classes (3) should satisfy a number of algebraic relations that are not satisfied by
the classes (2). Whatever these relations are, they give obstructions for “unblocking” block bundles.

Question 4.31. What algebraic relations do the classes καc1,...,cs satisfy and how much of the cohomology of
BDiffo(X) do they account for?

A naive guess would be that the classes (3) are zero whenever |α| > 0, but we do not even know whether
this is the case for X = Wg .
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5 Further program highlights
In addition to the talks, the workshop featured several other components.

1. Online learning pre-seminar. In the run-up to the workshop, we organized an online seminar which
covered the background knowledge required to get the most out of the talks. The talks were given
by pairs of junior participants, mentored by a more senior expert attending the workshop. It was
highly successful in improving the interaction between participants, allowing the speakers to assume
more prerequisites during the workshop, and hence allowing the talks during the workshop to focus
on cutting-edge research. The pre-seminar was open to any interested party and well-attended by a
wider mathematical community than the group of workshop-attendees. We expect that the connections
fostered through this mentoring program will be helpful for the participating early career participants,
especially those from under-represented groups.

2. Problem session. To set the stage for the next decade of innovations in the study of manifolds through
higher-algebraic invariants, we organized a problem session on the Thursday afternoon of the work-
shop. Having asked the participants in general and the speakers in particular to think about open
problems in advance, we collected them and included them in this report.

3. Career panel. During the Thursday evening of the workshop we organized an informal career panel.
This presented an opportunity for graduate students and postdocs to ask questions about the job search
process and to learn from the first-hand experiences of those who have recently gone through this
process, as well as experiences of more senior participants who serve on committees and can provide
an alternative perspective. It was attended by nearly all junior participants and was very well received.

6 Outcome of the Meeting
The objective of this meeting was to bring together experts working on moduli spaces of manifolds, including
those more geometrically driven and those working on higher algebraic structures which can be applied to
manifolds. Our intention was for them to exchange not only results but also speculations and problems, so
as to spur innovation and collaboration. We believe the workshop was successful at this, as many of the
talks led to lively discussions about the “big picture”. This workshop was timely; as indicated in this report,
while recent years have seen a number of important breakthroughs, the complete picture remains mysterious.
Our hope is that this workshop set the stage for the next decade of innovations in this direction. A further
objective was to decrease the gap between textbooks and the forefront of research—inevitably given the
amount of activity in the field of this workshop—which can be hard to bridge for graduate students and early-
career researchers. The workshop and in particular its adjacent learning seminar were a valuable resource in
doing so, as during the latter we brought younger participants—and any other interested parties—to the level
where they could understand the talks during the workshop and see how they fit into the big picture.

References
[ABHS24] G. Arone, T. Barthel, D. Heard, and B. Sanders, The spectrum of excisive functors,

arXiv:2402.04244.

[ACGK] M. Abouzaid, S. Courte, S. Guillermou, and T. Kragh, Twisted generating functions and the nearby
Lagrangian conjecture, arXiv:2011.13178.
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[BO15] Anna Marie Bohmann and Angélica Osorno, Constructing equivariant spectra via categorical
mackey functors, Algebraic & Geometric Topology 15 (2015), no. 1, 537–563.

[BQ75] W. Browder and F. Quinn, A surgery theory for G-manifolds and stratified sets, Manifolds—Tokyo
1973 (Proc. Internat. Conf., Tokyo, 1973), Math. Soc. Japan, Tokyo, 1975, pp. 27–36.

[BZ22] A. Berglund and T. Zeman, Algebraic models for classifying spaces of fibrations, 2022,
arXiv:2203.02462.

[BS20] R. Burklund and A. Senger, On the high-dimensional geography problem, arXiv e-prints (2020),
arXiv:2007.05127.

[CDH+20a] B. Calmés, E. Dotto, Y. Harpaz, F. Hebestreit, M. Land, K. Moi, D. Nardin, T. Nikolaus, and
W. Steimle, Hermitian K-theory for stable∞-categories II: Cobordism categories and additivity.

[CDH+20b] B. Calmés, E. Dotto, Y. Harpaz, F. Hebestreit, M. Land, K. Moi, D. Nardin, T. Nikolaus, and
W. Steimle, Hermitian K-theory for stable∞-categories III: Grothendieck-Witt groups of rings.

[CDH+23] B. Calmés, E. Dotto, Y. Harpaz, F. Hebestreit, M. Land, K. Moi, D. Nardin, T. Nikolaus, and
W. Steimle, Hermitian K-theory for stable∞-categories I: Foundations, Selecta Math. (N.S.) 29 (2023),
no. 1, Paper No. 10, 269.

[Cer70] J. Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de
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