

¹Picture by Satya Mallick.

Figure: Image Morphing.¹

¹Picture by Satya Mallick.

Figure: Image Morphing.²

◆□ > ◆個 > ◆臣 > ◆臣 > □ 臣

²Picture by Satya Mallick.

Figure: Elements in a space of geodesic triangulations X.

 $X = X(\mathbb{D}^2, T)$ is a six dimensional manifold.

Is X connected? What is the homotopy type of X?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Figure: A diffeomorphism of the square³

 $Diff(\mathbb{D}^2)$ - the diffeomorphisms group fixing $\partial \mathbb{D}^2$ pointwise.

³Figure: Wikipedia

 $X(\mathbb{D}^2, T) = \{$ simplexwise linear homeomorphisms $\}$

 $X(\mathbb{D}^2, T)$ as an approximation of $Diff(\mathbb{D}^2)$.

Question:

$$Diff(\mathbb{D}^2) \simeq X(\mathbb{D}^2, T)$$
?

Figure: Triangulations of surfaces. ⁴

・ロト ・御ト ・ヨト ・ヨト 三日

⁴Picture by Gustavo Montero and Wiki.

Figure: Triangulations of surfaces. ⁴

X(S, T) - spaces of geodesic triangulations.

⁴Picture by Gustavo Montero and Wiki.

Conjecture (Connelly-Henderson-Ho-Starbird 1984)

 $Diff(S) \simeq X(S, T).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conjecture (Connelly-Henderson-Ho-Starbird 1984)

 $Diff(S) \simeq X(S, T).$

Surface S	Diff(S)	$Diff(S) \simeq X(S,T)$
\mathbb{D}^2	*	Yes (BCH,1984) and No(L, 2020)
\mathbb{S}^2	<i>SO</i> (3)	Open
\mathbb{T}^2	\mathbb{T}^2	Yes (EL, 2021, LWZ, 2021)
Sg	*	Yes (LWZ, 2021)