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Global Optimization

Goal: Solve the global optimization problem

min
xœRn

f(x) (1)

f is highly non-convex and (potentially) non-smooth

global optimization arises in many standard tasks, e.g., PDE parameter estimation, deep

learning, phase retrieval, etc.

convergence generally only guaranteed for local optimization algorithms, e.g., steepest

descent, SGD, Newton, ADMM, etc.
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Prior Work: Finding Global Minima with Convergence Guarantees

Idea: minimize Moreau envelope u(x, t) of f .

Theorem (Informal)
If f continuous and lower-bounded, and
the set of global minimizers of f is compact

then global minimizers of f are local minimizers
of u(x, T ) for some T

Remark : Gradient descent on Moreau envelope u and converges to global minima of f , i.e., we

want tractable way to compute Òu1

1Global Solutions to Nonconvex Problems by Evolution of Hamilton-Jacobi PDEs. Comm App Math

Comp Sci, Heaton, Wu Fung, Osher. 2022
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Prior Work: Finding Global Minima with Convergence Guarantees

Moreau envelope is solution to Hamilton-Jacobi Burgers’ PDE =∆ di�cult to

compute

But one can leverage Hopf-Lax and Cole-Hopf transformations, we can approximate

the gradient of Moreau envelope with the following formula

Òu(x, t) = 1
t

·
Ey≥N (x,”t)

#
(x ≠ y) exp

!
≠”≠1f(y)

"$

Ey≥N (x,”t) [exp (≠”≠1f(y))] . (2)

Performing gradient descent on Moreau envelope is equivalent to proximal point

algorithm on f

Osher, Wu Fung, Chow Global Opt with Convergence Guarantees 4



Prior Work: Finding Global Minima with Convergence Guarantees

Moreau envelope is solution to Hamilton-Jacobi Burgers’ PDE =∆ di�cult to

compute

But one can leverage Hopf-Lax and Cole-Hopf transformations, we can approximate

the gradient of Moreau envelope with the following formula

Òu(x, t) = 1
t

·
Ey≥N (x,”t)

#
(x ≠ y) exp

!
≠”≠1f(y)

"$

Ey≥N (x,”t) [exp (≠”≠1f(y))] . (2)

Performing gradient descent on Moreau envelope is equivalent to proximal point

algorithm on f

Osher, Wu Fung, Chow Global Opt with Convergence Guarantees 4



Moreau Envelope Minimization Example

A highly non-convex 2D function (Griewank) example:

f(x) , 1 +
nÿ

i=1

x2
i

4000 ≠
nŸ

i=1
cos

3
xiÔ

i

4
, (3)
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Figure 1: Gradient descent on Moreau Envelope converges to a tolerance of 5 ◊ 10≠2 of the

global minimum, while traditional GD converges to local minima.
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Nonconvex Benchmark Functions

HJ-MAD Pure Rand. Search Di�. Evolution Basin Hopping Annealing

Griewank 167 460K N N 451.4K

Drop-Wave 9111 52.5K 1152 N 485.8K

Alpine N.1 635 755.6K N N N

Ackley 498 243.2K 3003 476(116) 3.7M

Levy 5433 N N N N

Rastrigin 500 660.2K 2223 48(12) 590.2K

Table 1: Comparison of global optimization algorithms. Rows represent benchmark functions

and columns represent algorithms. The number in each box gives function (and gradient in

parenthesis) evaluations used. An “N” indicates the method did not converge.
Osher, Wu Fung, Chow Global Opt with Convergence Guarantees 6



Variance Reduction for High-Dimensional Setting

The gradient of envelope (or proximal of f) formula found success for moderately-dimensional

problems (dim < 10) but struggles for higher dimensions due to sample requirements

This Project: tackle the high-dimensional case.

Idea: Use variance reduction schemes (e.g., SVRG) to estimate Òu with much lower sample

complexity.

Variance reduction schemes can be applied to any empirical risk minimization problems, e.g.,

phase retrieval, deep learning, optimal control

Osher, Wu Fung, Chow Global Opt with Convergence Guarantees 7



Variance Reduction for High-Dimensional Setting

Example: consider the ptychographic phase retrieval problem given by

min
x

Nÿ

i=1
Î|F(Qix)| ≠ biÎ, (4)

where F is the Fourier transform, Qi are filters corresponding to di�erent regions being

scanned, bi are observed measurements with 5% noise.

Problem is highly-nonconvex2 and is used in high-resolution electron microscopy

We will consider problems of dimension 4096 =∆ expectation formula for Moreau

envelope gradient (HJ-Prox) requires too many samples

2“Phase Retrieval. What’s New? ”, D. R. Luke, SIAG/OPT Views and News, 25(1):1–5 (2017).
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Probe Illustration
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SVRG Proximals Preliminary Experiments

true image observed data (first probe) SVRG-Prox reconstruction

Reconstruction performed on measurements with 5% noise
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Future Directions

Theoretical framework for SVRG-Prox to converge to global minimum. Connections with

Hamilton-Jacobi PDEs

Application to other high-dimensional problems such as control, games, and deep learning

Numerical considerations and fast implementation
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Motivation

• Existing methods for solving differential equations via neural networks are limited 
by their equation specificity and need for frequent retraining when switching to 
new problems.

• We wish to solve multiple differential-equation-related tasks (including mean 
field control problems) with a single neural network, getting rid of retraining 
(even fine-tuning) for new tasks.

• In the journey toward Artificial General Intelligence (AGI), we also need networks 
that can adapt to new physical systems and tasks, just as a human would.

• Inspired by the "learning to learn" success in models like GPT-2 and GPT-3, we 
aim to adapt this concept for differential equation problems, leading to our 
proposal: In-Context Operator Networks (ICON).



Operator: mapping from condition to QoI, 
both are functions.

Prompt: the condition and QoI functions for 
demonstration, plus a question condition.

Training: ICON is trained to be an "operator 
learner", instead of an "operator 
approximator". It takes a prompt as input and 
predicts the question QoI. Here, query refers 
to where we want to evaluate the question 
QoI.

Inference: learn and apply the new unknown 
operator, without weight updates.



List of the problems solved with a single neural network



A Glance of ICON for ODE and PDE Problems

The colored dotted lines represent the of condition and QoI functions in demos.
The grey dots represent the data of the demo conditions and QoIs used in the prompts.
The blue dots represent the data in the question conditions.
The red dots represent the prediction of the question QoI. One can see the consistency between the prediction 
and the ground truth (solid black lines).



In-Distribution Operators

Average relative testing errors for all 19 problems listed in the table.
The error decreases with an increasing number of demos in each prompt. 
With only five demos, the error goes down to about 1%-2% for most cases.



Plots: density field in the 
temporal-spatial domain. 
Three demos and one question 
share the same terminal cost as 
the unknown parameter in the 
operator.

Blue dots: data for demo 
condition (density in the first 
half of the time).

Red dots: data for demo QoI 
(density in the second half of 
the time).

Black dots: data for question 
condition.

We make the prediction on

Mean-Field Control Problem (Problem #17)



More/Less Data Points (Super/Sub-Resolution)

Still the same problem (mean-field control with terminal 
cost as the unknown parameters).

As we increase the number of data points in each 
condition/QoI function, the error decreases and finally 
converges below 1%.

ICON is trained using 41 to 50 data points, represented by 
the narrow red region.



Out-of-Distribution Operators

Taking forward and inverse 
problems of an ODE and a 
PDE as examples (problems 
5, 6, 11, and 12 in the 
table).

Each pair of (a1, a2) or 
(a,c) defines an operator.

Black rectangle: training 
region.

ICON demonstrated 
accurate prediction 
capabilities even with 
operator parameters 
extending beyond the 
training region.



Generalization to Equations of New Forms

We designed a new ODE by adding a new term to ODE2. The new term is borrowed from ODE3.

The error shows a decreasing trend as the training dataset becomes larger and more 
diversified. This is preliminary evidence of learning operators for equations of new forms that 
were never seen in training data.



Discussion

What's next?

Scale up. In the field of NLP, scaling up leads to 
emergent abilities beyond human expectations. We 
anticipate the possibility of witnessing artificial 
general intelligence for scientific computing with large 
ICON models.
Improvements in neural network architectures and 
training methods, as well as further theoretical and 
numerical studies of how ICON works.

Why a very few demos are sufficient 
to learn the operator?
We leveraged the commonalities shared in training 
and testing operators. ICON only need to identify the 
equation and hidden parameters.
Only need to learn the operator for a 
certain distribution of conditions.
For a larger family of operators, ICON requires more 
demos (especially for those complicated operators), 
as well as a larger neural network.






