$C_{\text{loc}}^{1,1}$ regularity for the Monopolist's problem

Cale Rankin University of Toronto

Joint with Robert McCann (Toronto) and Kelvin Shuangjian Zhang (Waterloo)

A simple model in economics leads to an optimization problem involving concepts from optimal transport (*c*-convex functions, MTW condition).

The associated PDE is difficult to write down. A complete expression has only been found in 2D when the domain is a square (McCann, Zhang 2023).

In this talk I'll present a recent $C_{loc}^{1,1}$ regularity result for the optimizers. This is joint work with Robert McCann and Kelvin Shuangjian Zhang.

Economics model

Monopolist sells products $y \in Y \subset \mathbb{R}^n$ to consumers $x \in X \subset \mathbb{R}^n$, where consumers are distributed according to density μ .

The monopolist pays price c(y) and must come up with a cost for each product v(y).

Consumer x obtains benefit b(x, y) from product y. Thus they'll chose the product y = Yu(x) which realizes the supremum in

$$u(x) := \sup_{y \in Y} b(x, y) - v(y).$$

Monopolist's problem: Find $v : Y \to \mathbf{R}$ realizing the supremum of

$$\Phi[v] := \int_X v(Yu(x)) - c(Yu(x)) \ d\mu.$$

Prototypical case is bilinear benefit function $b(x, y) = x \cdot y$ and $c(y) = |y|^2/2$. In this case *u* defined by

$$u(x) := \sup_{y \in Y} b(x, y) - v(y) = \sup_{y \in Y} x \cdot y - v(y),$$

is the Legendre transform of v. Moreover Yu(x), the y for which the supremum is obtained, is Du(x) (assuming u is differentiable).

Monopolist's Problem (bilinear case). Find convex $u : X \to \mathbb{R}^+$ maximizing

$$\Phi[u] := \int_X x \cdot Du(x) - u(x) - \frac{|Du|^2}{2} d\mu =: \int_X F(x, u, Du) d\mu.$$

Consider minimizing

$$\Phi[u] := \int_X x \cdot Du(x) - u(x) - \frac{|Du|^2}{2} dx.$$

Without the convexity or nonnegativity constraint the Euler–Lagrange equation is

$$\Delta u = (n+1) \text{ in } X.$$

Without the convexity constraint the Euler-Lagrange equation is

 $\Delta u = (n+1)\chi_{\{u>0\}} \text{ in } X \text{ and } (Du-x)\cdot n = 0 \text{ on } \{u>0\} \cap \partial X.$

The convexity constraint further complicates the problem. X splits into: $X_0 := \{u = 0\}, X_2 := \{u \text{ is strictly convex}\}$ on which $\Delta u = n + 1$ and $X_1 = X \setminus (X_0 \cup X_2)$. In general we can't write the Euler-Lagrange equation on X_1 .

Rochet & Chonè 1998: Introduced the second form of the optimization problem involving the Legendre transform.

Carlier & Lachand-Robert 2001: $C^1(\overline{X})$ regularity when domain is convex and $\mu = f \, dx$ satisfies $f > 0, f \in C^0(\overline{X}) \cap W^{1,\infty}(X)$.

Caffarelli & P. L. Lions (unpublished): $C_{loc}^{1,1}$ regularity under the same hypothesis as Carlier & Lachand-Robert.

McCann & Zhang 2023: Euler-Lagrange equation in the region X_1 .

Buttazzo, Ferone & Kawohl 1994: Other minimization problems over the set of convex functions: Newton's problem of minimal resistance. For general benefit functions, the consumer's utility is

$$u(x) = \sup_{y \in Y} b(x, y) - u(x),$$

and they choose y = Yu(x) realizing the above supremum. Using terminology from optimal transport the function u is b-convex and Yu(x) is the b-exponential mapping.

Monopolist's problem (general case): Find *b*-convex $u: X \rightarrow \mathbf{R}^+$ maximizing

$$\Phi(u) = \int_X b(x, Yu(x)) - u(x) - c(Yu(x))d\mu.$$

Carlier 2000: Existence result in terms of *b*-convex function.

Figalli, Kim & McCann 2011: Convexity of the problem in terms of an assumption B3, a strengthening of the MTW condition in optimal transport.

Chen 2013: $C^1(\overline{X})$ regularity of the minimizer.

Zhang 2018, McCann & Zhang 2019: Existence in an even more general setting: *g*-convex functions from generated Jacobian equations.

$C_{\sf loc}^{1,1}$ Regularity result

B1. For $(x_0, y_0) \in \overline{X} \times \overline{Y}$ the following are diffeomorphisms: $y \in \overline{Y} \mapsto b_x(x_0, y)$ and $x \in \overline{X} \mapsto b_y(x, y_0)$.

B2. For $(x_0, y_0) \in \overline{X} \times \overline{Y}$, $b_x(x_0, Y)$ and $b_y(X, y_0)$ are convex.

By B1 we may define a mapping Y by

 $b_x(x, Y(x, p)) = p.$

B3. For $\xi, \eta \in \mathbf{R}^n$ there holds

$$D_{p_kp_l}b_{x^ix^j}(x,Y(x,p))\xi^i\xi^j\eta_k\eta_l\geq 0.$$

Theorem. [McCann, R, Zhang 23] Assume *b* satisfies B1,B2,B3. Assume that *c* is uniformly *b**-convex and $\mu = f \, dx$ where $f \in C^{0,1}(X)$ satisfies $0 < \lambda \leq f(x)$. Then the solution of the Monopolist's problem, *u*, satisfies $u \in C^{1,1}_{loc}(X)$.

Follows ideas from Caffarelli & Lions's result.

Similar techniques as for the Monge-Ampère equation.

The B3 condition ensures *b*-convexity behaves similarly enough to convexity for the key ideas to work.

No EL equation, so must work with the variational formulation.

Let *u* be the minimizer. Fix $x_0 \in X$ and assume $u(x_0)$, $Du(x_0) = 0$. Put $h = \sup_{B_r(x_0)} u$. We can construct another admissible function \tilde{u} such that

$$\Phi[u] - \Phi[\tilde{u}] \le C_1 h - C_2 \frac{h^2}{r^2}.$$

However since u is the maximizer for Φ and \tilde{u} is admissible $\Phi[u] - \Phi[\tilde{u}] > 0$. Thus

$$h \leq Cr^2$$
,

which is known to be equivalent to $C_{loc}^{1,1}$ regularity.

In the bilinear case Caffarelli & Lions's construction of \tilde{u} is based on taking a support plane $P = \frac{h}{2r}x_1$, and constructing \tilde{u} as the maximum of u and this plane. For such a plane

$$\Phi(P) = \int_X x \cdot DP + P - \frac{|DP|^2}{2} = \int_X \frac{h^2}{4r^2} d\mu.$$

Similar ideas are found in Caffarelli's work on the Monge–Ampère equation.

The B3 condition ensures the theory of *b*-convexity behaves similarly to standard convexity. We can then perform a similar construction to Caffarelli and Lions, modifying with ideas from Figalli-Kim-McCann 2013 and Chen-Wang 2016.

- Regularity in the more general setting of McCann & Zhang.
- Understand the structure of X₀, X₁, X₂: When can these sets be empty? What is the Euler-Lagrange equation on X₁?

Thank you!