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A simple model in economics leads to an optimization problem

involving concepts from optimal transport (c-convex functions,

MTW condition).

The associated PDE is difficult to write down. A complete

expression has only been found in 2D when the domain is a square

(McCann, Zhang 2023).

In this talk I’ll present a recent C 1,1
loc regularity result for the

optimizers. This is joint work with Robert McCann and Kelvin

Shuangjian Zhang.
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Economics model

Monopolist sells products y ∈ Y ⊂ Rn to consumers x ∈ X ⊂ Rn,

where consumers are distributed according to density µ.

The monopolist pays price c(y) and must come up with a cost for

each product v(y).

Consumer x obtains benefit b(x , y) from product y . Thus they’ll

chose the product y = Yu(x) which realizes the supremum in

u(x) := sup
y∈Y

b(x , y)− v(y).

Monopolist’s problem: Find v : Y → R realizing the supremum

of

Φ[v ] :=

∫
X
v(Yu(x))− c(Yu(x)) dµ.
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Economics model: bilinear case

Prototypical case is bilinear benefit function b(x , y) = x · y and

c(y) = |y |2/2. In this case u defined by

u(x) := sup
y∈Y

b(x , y)− v(y) = sup
y∈Y

x · y − v(y),

is the Legendre transform of v . Moreover Yu(x), the y for which

the supremum is obtained, is Du(x) (assuming u is differentiable).

Monopolist’s Problem (bilinear case). Find convex u : X → R+

maximizing

Φ[u] :=

∫
X
x · Du(x)− u(x)− |Du|2

2
dµ =:

∫
X
F (x , u,Du) dµ.

3



Form of the Euler–Lagrange equation

Consider minimizing

Φ[u] :=

∫
X
x · Du(x)− u(x)− |Du|2

2
dx .

Without the convexity or nonnegativity constraint the

Euler–Lagrange equation is

∆u = (n + 1) in X .

Without the convexity constraint the Euler–Lagrange equation is

∆u = (n + 1)χ{u>0} in X and (Du − x) · n = 0 on {u > 0} ∩ ∂X .

The convexity constraint further complicates the problem. X splits

into: X0 := {u = 0}, X2 := {u is strictly convex} on which

∆u = n+ 1 and X1 = X \ (X0 ∪ X2). In general we can’t write the

Euler–Lagrange equation on X1.

4



Results for the bilinear case

Rochet & Chonè 1998: Introduced the second form of the

optimization problem involving the Legendre transform.

Carlier & Lachand-Robert 2001: C 1(X ) regularity when domain is

convex and µ = f dx satisfies f > 0, f ∈ C 0(X ) ∩W 1,∞(X ).

Caffarelli & P. L. Lions (unpublished): C 1,1
loc regularity under the

same hypothesis as Carlier & Lachand-Robert.

McCann & Zhang 2023: Euler-Lagrange equation in the region X1.

Buttazzo, Ferone & Kawohl 1994: Other minimization problems

over the set of convex functions: Newton’s problem of minimal

resistance.
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General case: b-convex functions

For general benefit functions, the consumer’s utility is

u(x) = sup
y∈Y

b(x , y)− u(x),

and they choose y = Yu(x) realizing the above supremum. Using

terminology from optimal transport the function u is b-convex and

Yu(x) is the b-exponential mapping.

Monopolist’s problem (general case): Find b-convex

u : X → R+ maximizing

Φ(u) =

∫
X
b(x ,Yu(x))− u(x)− c(Yu(x))dµ.
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Background results for the general case

Carlier 2000: Existence result in terms of b-convex function.

Figalli, Kim & McCann 2011: Convexity of the problem in terms of

an assumption B3, a strengthening of the MTW condition in

optimal transport.

Chen 2013: C 1(X ) regularity of the minimizer.

Zhang 2018, McCann & Zhang 2019: Existence in an even more

general setting: g -convex functions from generated Jacobian

equations.
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C 1,1
loc Regularity result

B1. For (x0, y0) ∈ X × Y the following are diffeomorphisms:

y ∈ Y 7→ bx(x0, y) and x ∈ X 7→ by (x , y0).

B2. For (x0, y0) ∈ X × Y , bx(x0,Y ) and by (X , y0) are convex.

By B1 we may define a mapping Y by

bx(x ,Y (x , p)) = p.

B3. For ξ, η ∈ Rn there holds

Dpkplbx ix j (x ,Y (x , p))ξiξjηkηl ≥ 0.

Theorem. [McCann, R, Zhang 23] Assume b satisfies

B1,B2,B3. Assume that c is uniformly b∗-convex and µ = f dx

where f ∈ C 0,1(X ) satisfies 0 < λ ≤ f (x). Then the solution of

the Monopolist’s problem, u, satisfies u ∈ C 1,1
loc (X ) .
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Idea behind the proof

Follows ideas from Caffarelli & Lions’s result.

Similar techniques as for the Monge–Ampère equation.

The B3 condition ensures b-convexity behaves similarly enough to

convexity for the key ideas to work.

No EL equation, so must work with the variational formulation.

Let u be the minimizer. Fix x0 ∈ X and assume u(x0),Du(x0) = 0.

Put h = supBr (x0) u. We can construct another admissible function

ũ such that

Φ[u]− Φ[ũ] ≤ C1h − C2
h2

r2
.

However since u is the maximizer for Φ and ũ is admissible

Φ[u]− Φ[ũ] > 0. Thus

h ≤ Cr2,

which is known to be equivalent to C 1,1
loc regularity. 9



Idea behind the proof

In the bilinear case Caffarelli & Lions’s construction of ũ is based

on taking a support plane P = h
2r x1, and constructing ũ as the

maximum of u and this plane. For such a plane

Φ(P) =

∫
X
x · DP + P − |DP|2

2
=

∫
X

h2

4r2
dµ.

Similar ideas are found in Caffarelli’s work on the Monge–Ampère

equation.

The B3 condition ensures the theory of b-convexity behaves

similarly to standard convexity. We can then perform a similar

construction to Caffarelli and Lions, modifying with ideas from

Figalli-Kim-McCann 2013 and Chen-Wang 2016.
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Future work/Open questions

• Regularity in the more general setting of McCann & Zhang.

• Understand the structure of X0,X1,X2: When can these sets

be empty? What is the Euler–Lagrange equation on X1?

Thank you!
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