CONVERGENCE FOR
discrete harmonic maps
j. w/ Brice Loustau, Leonard Monsaingeon
$8 / 3 / 2023$
I. Main Tum
II. Discretization
III. 3 Ingredients

Applied and Computational Geometry and Geometric PDEs BITS
I. Let X, Y be R.mflds, $f: x \rightarrow y$ a piecewise smooth map. surfaces

- The energy of f is $E(f)=\int_{x}\|d f\|^{2}$
let $e=\left\{\right.$ p. smooth maps $\left.x f_{0} y, \simeq f\right\}$.

$$
E: C \rightarrow \mathbb{R}
$$

- f is harmonic if f is a critical pt. of E. i.e. $\left.\frac{D}{d t}\right|_{t=0} E\left(\exp _{f} t V\right)=0$, for all $V \in T_{f} e$

- The tension field of f is $\tau(f)=-\operatorname{grad} E_{f} \in T_{f} \varphi$
f harmonic $\Leftrightarrow \tau(f)=0$

NB. Intuitively, $\tau(f)(x)$ points from $f(x)$ to the barycenter of the f-image of points nearby x.
λ_{r} : Les. measure

Thy (Eells-Sampson): Suppose X is compact, and Y is non-pos. curved.
Then $\left\{\begin{array}{l}f_{0}=f \quad \text { converges as } t \rightarrow \infty \\ \frac{d}{d t} f_{t}=\tau\left(f_{t}\right) \quad \text { to a harmonic map } \phi \simeq f .\end{array}\right.$ for E!

Thu (Hartman). If $\operatorname{rank}(f)>1$ and y is neg. curved, ϕ is unique and smooth.

DISCRETIZATION

CONVERGENCE

MAIN THO (GLM):
Let x, y be compact hyperbolizable NPC surfaces, $f: x \rightarrow y, \quad \operatorname{deg}(f) \neq 0, \quad \phi \simeq f$ harmonic.
If $\left\{G_{n}\right\}$ is a seq. of triangulations of X obtained by midst. refinement which is strongly acute, then the barycentric interpolation of the corresponding discrete harmonic maps converge to ϕ in L^{2}.

- (midpoint refinement)

NB. cf. Bartels: $\left\{G_{n}\right\}$ is "logarithmically right-angled"

- (strongly acute) all angles of $\left\{G_{n}\right\}$ are $\gg 0, \ll \frac{\pi}{2}$
- (barycentric interpolation) $u_{n} \rightarrow \hat{u}_{n}$
- (convergence in $\left.L^{2}\right) \quad d_{2}^{2}\left(\phi, \hat{u}_{n}\right)=\int_{x} d^{2}\left(\phi(x), \hat{u}_{n}(x)\right) d v o l_{x}(x)$

II. Discretization
- Let $G=$ a triangulation of X, endowed with positive edge weights $=\left\{\omega_{x y}: x \sim y\right\}$ vertex weights $=\left\{\mu_{x}\right\}$

- Let $e_{G}=$ "discrete $e^{" \cong} \widetilde{y}^{V(G)}$ $\leftrightharpoons<\infty \sin l$ with $T_{u} e_{G}=\underset{x}{\oplus} T_{u(x)} \tilde{y} \quad$ for $u \in l_{G}$, and inner product $\langle\cdot \cdot\rangle_{u}=\underset{x}{\oplus} \mu_{x}\langle\cdot,\rangle_{u(x)}$

For us, $\omega_{x y}=$ "cot uts"
$\mu_{x}=$ "area wis"

- The discrete energy of $u \in l_{G}$ is $E_{G}(u)=\sum_{x \sim y} \omega_{x y} d^{2}(u(x), u(y))$ and u is discrete harmonic if it's a crit pt of $E_{G}: C_{G} \longrightarrow \mathbb{R}$
- The discrete tension field of $u \in \ell_{G}$ is given by

$$
\begin{aligned}
\tau_{G}(u) & =-g^{\operatorname{rad}_{u} E_{G} \in T_{u} C_{G}} \\
& =\frac{1}{\mu_{x}} \sum_{y \sim x} \omega_{x y} \xrightarrow[u(x) u(y)]{ }
\end{aligned}
$$

u is discrete harmonic $\Leftrightarrow \tau_{G}(u)=0$
Discrete harmonic maps are (discretely) well-balanced
III. 3 Ingredients
(1) The discrete energy E_{G} is strongly convex
(2) cotan weights are BETTER than you think (to $3^{\text {rd }}$ order !) at most vertices.
(3) $\mathrm{O}_{n} \ell_{G}, d_{2}$ \& d_{∞} admit a STRONGER comparison (THINE: $\left.\left(H^{2}\right)^{N}\right)$ than you expect, nearby the D.H.M.
$\left((2)+(3)\right.$ we for $\tau_{G}(f) \approx \tau(f)$
(1) Def. $g: M \rightarrow \mathbb{R}$ is α-convex if $(g \circ \gamma)^{\prime \prime} \geqslant \alpha$ \forall unit-speed geodesics γ

Thu : If Y is NPC and

E_{G} is α-convex where $\alpha \approx \frac{\omega}{A \cdot D}$,

$$
\begin{aligned}
& \omega=\min \omega_{x y} \\
& A=\sum \mu_{x} \\
& D=\operatorname{diam}(G)
\end{aligned}
$$

Q: smooth analogue?

Conjecture: Actually $\alpha \approx 1$, provided $A, \omega \approx 1$
(2) Lemma. If G is hexaparallel at x, then cotangent + area weights satisfy:
(i) $\sum_{y \sim x} \omega_{x y} L(\overrightarrow{x y})=0$ \forall linear L
(ii) $\frac{1}{\mu_{x}} \sum_{y \sim x} \omega_{x y} q(\overrightarrow{x y})=2$ tr \forall quadratic q
(iii) $\sum_{y \sim x} \omega_{x y} \sigma(\overrightarrow{x y})=0 \quad \forall$ cubic σ

IDEA: If $\left\{G_{n}\right\}$ is obtained via midpoint refinement then most vertices are approximately hexaparallel.

(3) "For free": $d_{\infty}(u, w) \leqslant \frac{1}{p} d_{2}(u, w)$ where $r \approx$ edge length of G

Thu: Let $k>0 . \exists c=c(k)$ s.th.: If $w \in e$ has $\operatorname{Lip}(w) \leq K$, and u is DHM, $\quad d_{\infty}(u, w) \leqslant C \cdot \frac{1}{r} d_{2}(u, w) \cdot\left(\log \frac{1}{r}\right)^{-1 / 2}$
"Proof": u is balanced, so going from w to u, if some pt. x moves a lot, then many pts nearby move a lot as well.

Q: smooth analogue?

THANKS!

