

I. Let X, Y be R. mflds,

$$f:X \rightarrow Y$$
 a piecewise smooth map.
The energy of f is $E(f) = \int ||Af||^2$
Let $C = \{p. smooth maps X + b Y, = f\}$.
 $E: C \rightarrow \mathbb{R}$
 f is harmonic if f is a critical pt. of E,
 $i.e. \int_{Af} |_{t=0} E(exp_f tV) = 0$, for all $V \in T_F C$

• The tension field of f is
$$\tau(f) = -grad E_f \in T_f C$$

2

f harmonic $\iff \tau(f) = 0$

NB. Intuitively,
$$\tau(f)(x)$$
 points from $f(x)$ to the barycenter of the f-image of points nearby x.

$$Th \underline{m} (\textbf{Eells} - Sampson) : Suppose X is compact,and Y is non-pos. curved.Then
$$\begin{cases} f_o = f & \text{converses as } t \longrightarrow \infty \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a harmonic map } \phi \cong f \\ \frac{d}{dt} f_t = \tau(f_t) & \text{to a h$$$$

MAIN THM (GLM):

Let X,Y be compact hyperbolizable NPC surfaces,

$$f: X \rightarrow Y$$
, $de_{S}(f) \neq 0$, $\phi = f$ harmonic.
If $\{Gn\}$ is a seq. of triangulations of X obtained
by midpt. refinement which is strongly acute, then
the barycentric interpolation of the corresponding
discrete harmonic maps converge to ϕ in L^{2} .
 $\cdot (midpoint refinement)$
 $\cdot (midpoint refinement)$
 $\cdot (strongly acute)$ all angles of $\{G_n\}$ are $\Rightarrow 0$, $\ll \frac{\pi}{2}$
 $\cdot (barycentric interpolation)$
 $u_n \rightarrow \hat{u}_n$
 $\int de_{S}(\phi, \hat{u}_n) = \int_{X} d^{2}(\phi(e_{2}, \hat{u}_{n}(e_{2})) Avol_{X}(e_{2})$

I Discretization

• Let
$$G = a$$
 triangulation of X, endowed
with positive edge weights = $\{\omega_{xy} : x \sim y\}$
vertex weights = $\{p_x\}$
• Let $C_G = \text{``discrete } C^{\text{``}} \cong \widetilde{Y}^{V(G)}$
with $T_u C_G = \bigoplus_{x} T_{u(x)} \widetilde{Y}$ for $u \in C_G$,
and inner product $\langle \cdot, \cdot \rangle_u = \bigoplus_{x} p_x \langle \cdot, \cdot \rangle_{u(x)}$

• The discrete energy of
$$u \in C_G$$
 is $E_G(u) = \sum_{x \sim y} \omega_{xy} d^2(u(x), u(y))$
and u is discrete harmonic if it's a crit pt of $E_G: C_G \longrightarrow \mathbb{R}$
• The discrete tension field of $u \in C_G$ is given by
 $E_G(u) = -\operatorname{grad}_u E_G \in T_u C_G$
 $= \frac{1}{M_x} \sum_{y \sim x} \omega_{xy} \overline{u(x) u(y)}$
 $u(x) u(y)$
 $u(y)$
 $u(y)$

III. 3 Ingredients

(1) The discrete energy EG is STRONGLY CONVEX

(2) cotan neights are BETTER than you think (to 3rd order!) at most vertices.

dz & das admit a STRONGER comparison (3) On \mathcal{L}_{G} , $\mathcal{A}_{Z} \notin \mathcal{A}_{\infty}$ admit a STRONGER comparison (THINK: $(\mathbb{H}^{2})^{\mathbb{N}}$) than you expect, nearby the D.H.M. (2) + (3) are for $\tau_G(f) \approx \tau(f)$

(1) Def.
$$g: M \rightarrow \mathbb{R}$$
 is *a*-convex if $(s \circ x)'' \ge x$
 \forall unit-speed geodesics x
 $\frac{1}{1}$ $\frac{1}{$

(2) Lemma. If G is hexaparallel at x, i.e. up to GliR then cotangent + area weights satisfy: (i) $\sum_{h \sim x} \omega_{xy} L(\overline{xy}) = 0$ V linear L (ii) $\frac{1}{\mu_{x}} \sum_{y \sim x} \omega_{xy} q(\overline{xy}) = 2 trq$ ∀ quadratic q Y cubic o (iii) $\sum_{y \sim x} \omega_{xy} \sigma(xy) = 0$ IDEA: If *EGn*? is obtained via midpoint refinement then most vertices are approximately hexaparallel

(3) "For free":
$$d_{\infty}(u, w) \lesssim \frac{1}{r} d_{2}(u, w)$$

where $r \approx edge$ dength of G
Thm: Let K>0. $\exists C = C(K)$ s.th.: If we C has $Lip(w) \leq K$,
and u is DHM, $d_{\infty}(u, w) \leq C \cdot \frac{1}{r} d_{2}(u, w) \cdot (log \frac{1}{r})^{-r/2}$
"Proof": u is balanced, so going from w to u,
if some pt. x moves a lot, then many pts
nearby move a lot as well.
Q: Smooth analogue?
 $w(x)$
 $w(x)$

