Approximating Isosurfaces by guaranteed-quality triangular meshes

Joel Hass, University of California, Davis Maria Trnkova, University of California, Davis

Finding Optimal Meshes

A *mesh* is a 2-dimensional surface made from flat triangles.

Goal: Approximate a surface in \mathbb{R}^3 by a mesh whose triangles are as close to equilateral as possible.

A *sliver* is a triangle with one or more small angles. Slivers cause problems in applications and are to be avoided.

The GradNormal algorithm for smooth function inputs

Start with a surface defined implicitly by an equation f(x,y,z) = 0, where f is a differentiable function with regular value 0.

 $F=f^{-1}(0)$

Decide on how fine a mesh is desired. Output a mesh approximating *F*.

Example

Input: A function $f(x,y,z) = x^2 + y^2 + z^2 - 4$.

Output: A high-quality mesh approximating the sphere of radius 2.

Theorem. When F is smooth, then at a sufficiently fine resolution the GradNormal Mesh has all angles in the interval [35.2°, 101.5°].

We establish the following bounds.

Theorem. When F is smooth, then at a sufficiently fine resolution the GradNormal Mesh has all angles in the interval [35.2°, 101.5°].

Compare to:

P. Chew (1993): Delaunay with point insertion gives [30°, 120°].

Labelle & Shewchuck (2007): The Isosurface Stuffing algorithm triangulates the surface interior with high quality tetrahedra and also establishes boundary-mesh bounds of **[16°, 145°].**

de Verdiere & Marin (1990): There exist meshes realizing **~ [51.6°, 72°]** on any surface (best possible by Gauss-Bonnet).

The GradNormal Algorithm for Mesh inputs

Alternately, start with input given by a surface defined by any mesh approximating *F*. Produce a mesh approximating *F* with good angle quality. **Example:** Start with the Stanford Bunny mesh (58,029 vertices). This has angles as low as 0.5°. Output a new GradNormal mesh (34,834 vertices) with all angles larger than 10.4°.

The GradNormal Algorithm for Mesh inputs

Original Bunny Mesh

GradNormal Mesh

The GradNormal Algorithm for Mesh inputs

Original Mesh

GradNormal Mesh

We achieve Smooth Approximation

A mesh using pyramids stacked on cubes can be used to approximate a surface *F* with a mesh consisting entirely of equilateral triangles. This optimizes angles but does not approximate normal directions.

Our goal is to produce a mesh with a) good angles and

b) good tangent space approximation. (A piecewise-C¹ approximation)

Illustrate idea - dimension two

The algorithm has some resemblance to **Marching Tetrahedra.**

This method can result in very small angles in dimension three

The GradNormal Algorithm in dimension two

Step 1: Construct a MidNormal Mesh

The GradNormal Algorithm in dimension two

Step 2: Project each MidNormal Mesh vertex to the closest point on F.

GradNormal **Marching Tetrahedra** d╋

In dimension three there is an extra step

Step 3:

Step 1. Tile space with tetrahedra and construct a MidNormal Mesh.

This requires a tetrahedral tiling. Which tiling should we use?

Step 1. Tile space with tetrahedra

The tetrahedral tiling we use is one of a family of tilings we investigated, discovered by Goldberg in 1974. The optimal Goldberg tiling turns out to coincide with a tetrahedral tiling discovered by **Sommerville** in 1923, with vertices located at the body centered cubic lattice.

We have shown that no tetrahedral shape can significantly improve the angles achieved by our method.

Step 1. Construct a MidNormal Mesh

Step 1.

Construct a MidNormal Mesh. Tile space with tetrahedra. Determine the MidNormal triangles.

Step 1. A MidNormal Mesh

The GradNormal Algorithm in 3D Step 2: Project each MidNormal Mesh vertex to the closest point on *F*.

Step 3: Remove all valence-four vertices

Before removal

After

GradNormal Angle Distributions

GradNormal with 6,748,416 Tetrahedra GradNormal with 52,931,340 Tetrahedra Original Stanford Bunny

Angle (Degrees)

GradNormal Angle Bounds (smooth F)

	Genus	k _M	θ_m	θ_M	vertices	faces
		0.23	33.0°	102.8°	1,082	1,988
	0	0.09	34.2°	101.3°	6,782	12,564
		0.05	35.4°	102.7°	27,104	50,300
000		0.03	35.2°	101.1°	433,208	866,412
		0.57	10.9°	153.8°	1,336	2,540
	2	0.29	22.2°	129.0°	5,438	10,306
		0.15	27.8°	118.8°	21,880	41,600
		0.08	31.7°	108.9°	87,802	166,898
		0.8	26.6°	122.0°	7,318	14,652
	5	0.4	29.2°	113.4°	29,348	55,122
		0.2	30.8°	109.4°	117,878	235,772
		0.1	33.4°	104.4°	471,696	943,408

