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Is this your first time 
in Banff?

In July 2003 (age 16) I attended:
Mathematical Biology: From molecultes to 
ecosystems: the legacy of Lee Segel

`While he liked talking about his work, he 
had the rare quality of actually being
interested in hearing about other people’s 
work (Daniel Segel, free translation)’



Approximation Theory of Group Invariant Neural Networks
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Supervised Machine Learning: Learn 𝑓 from examples

𝑓 𝑥       `𝑐𝑎𝑡                   `𝑑𝑜𝑔                    `𝑐𝑎𝑡               ′𝑑𝑜𝑔′                              

𝑥

Approximation Theory of Group Invariant Neural Networks

min
∈

𝑓 𝑥 ℎ 𝑥

?Neural Networks



Approximation Theory for Group Invariant Neural Networks

Activation function: 𝜎:ℝ → ℝ

Induces 𝜎:ℝ → ℝ        𝜎 𝑥 , … , 𝑥 𝜎 𝑥 , … ,𝜎 𝑥

Affine functions ℎ 𝑥 𝐴 𝑥 𝑏 where ℎ :ℝ → ℝ

Definition: We say that 𝒩:ℝ → ℝ is a fully connected neural network if

𝒩 𝑥 ℎ ∘ 𝜎 ∘ ℎ ∘ 𝜎 ∘ ⋯∘ 𝜎 ∘ ℎ 𝑥

Depth of 𝓝 := 𝐿

Width of 𝓝 := Maximal dimension max 𝑤



Approximation Theory of Group Invariant Neural Networks

Universality Theorem [Cybenko 1989, Pinkus 1999,many others in between]

If the activation function: 𝜎:ℝ → ℝ is continuous and not polynomial

then for every compact 𝐾 ⊆ ℝ , continuous 𝑓:𝐾 → ℝ and 𝜖 0,

There exists a fully connected neural network 𝒩:ℝ → ℝ of depth L=1 (and arbitrarily large width)

𝒩 𝑥 ℎ ∘ 𝜎 ∘ ℎ 𝑥

Such that 
𝑓 𝑥 𝒩 𝑥 𝜖,   ∀𝑥 ∈ 𝐾 

Universality- provides justification for choosing neural networks as a function space for any continuous 
learning task.



Approximation Theory of Group Invariant Neural Networks

Beyond universality- rates of approximation (More recent research)

Given 𝑓:𝐾 → ℝ which is Lispschitz/smooth/fractal and 𝜖 what width 𝑊 𝜖 and depth 𝐿 𝜖

are necessary to achieve an 𝜖 approximation?
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min
∈

𝑓 𝑥 ℎ 𝑥

Invariant networks: 

Construct 𝐻 𝐻 so that all ℎ ∈ 𝐻 are invariant to the 

symmetries of 𝑓

(e.g., Convolutional Neural Networks for translation 

invariance)

Many other examples..

Approximation Theory of Group Invariant Neural Networks

Popular model class: Convolutional Neural Networks



Economic networksSocial networks

Networks of neuronsInformation networks:  
Web & citations

Biomedical networks

Internet

Invariant networks example 2: Learning on Graphs

Will Hamilton, McGill and Mila

9

𝑣

𝑣

𝑣

𝑣

𝑣

𝑣

𝑣

𝑣

Graph Neural Networks : Graph valued functions typically invariant to node relabeling



Main example for today: point sets
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points

𝑋 𝑥 , 𝑥 , … , 𝑥 ∼ 𝜎∗𝑋 𝑥 , 𝑥 , … 𝑥

𝜎 ∈ 𝑆 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠



Orthogonal invariance
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𝑋 𝑥 , 𝑥 , … , 𝑥 ∼ 𝑅∗𝑋 𝑅𝑥 ,𝑅𝑥 , …𝑅𝑥

𝑅 ∈ 𝑂 𝑑 𝑅 ∈ ℝ | 𝑅𝑅 𝐼



Special Orthogonal=Rotation invariance
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𝑋 𝑥 , 𝑥 , … , 𝑥 ∼ 𝑅∗𝑋 𝑅𝑥 ,𝑅𝑥 , …𝑅𝑥

𝑅 ∈ 𝑆𝑂 𝑑 𝑅 ∈ ℝ | 𝑅𝑅 𝐼 , det 𝑅 1



Rotation+Permutation invariance
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𝑋 𝑥 , 𝑥 , … , 𝑥 ∼ 𝑅,𝜎 ∗ 𝑋 𝑅𝑥 ,𝑅𝑥 , …𝑅𝑥

Point set symmetries:

Permutation  𝑆

Orthogonal   𝑂 𝑑

Rotation        𝑆𝑂 𝑑

Orthogonal+Permutation

Rotation+Permutation



Scientific applications (Chemistry, Physics)

Molecule=`point cloud+graph’

[Neural Message Passing for Quantum Chemistry Gilmer et al. 2017] 



Symmetry preserving architectures for point sets
Point set networks (permutation invariant)
[PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, Qi et al. 2016]
[Deep sets, Zaheer et al. 2017]
[Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks, Lee et al. 2019]
…

PointNet/DeepSets On 𝑥 , … , 𝑥 consider permutation invariant functions of the form

𝑥 , … , 𝑥 ↦ 𝒩 ∑ 𝒩 𝑥  

Or  𝑥 , … , 𝑥 ↦ 𝒩 max 𝒩 𝑥 | 𝑖 1, …𝑛

Useful principle: Invariance cannot be `ruined’ by composition (by 𝒩 in this example)



Symmetry preserving architectures for point sets 2
Point set networks (rotation invariant)
Not so much…

Point set networks (rotations+permutation invariant)
[Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds, Thomas et al. 
2018]
[E(n) Equivariant Graph Neural Networks, Satorras et al. 2021]
[Directional Message Passing for Molecular Graphs, Gasteiger et al. 2020]
…



Approximation Theory of Group Invariant Neural Networks
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Universality of invariant machine learning
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Continuous invariant 
functions

Continuous functions

=

=



Example: Universality for permutation invariant point set functions

𝑥 , … , 𝑥 ↦ 𝒩 𝒩 𝑥  

Question: Can any continuous permutation invariant 𝑓:ℝ → ℝ

𝑓 𝑥 , … , 𝑥 𝑓 𝑥 , … , 𝑥 for every permutation 𝜏

Be approximated by functions of the form



Throughout we will assume…
𝐺,𝑉 are nice, meaning

• 𝑉 is a real finite dimensional vector space 

e.g., 𝑉 ℝ

• 𝐺 is a compact matrix group defined by polynomial equations

e.g., 𝑂 𝑑 𝑅 ∈ ℝ 𝑅𝑅 𝐼

• The map 𝑔, 𝑣 ↦ 𝑔𝑣 is polynomial
e.g., 𝑅,𝑋 ↦ 𝑅𝑋



Standard approach: Invariant Universality via 
generators of the invariant ring

[Universal Approximations of Invariant Maps by Neural Networks, Yarotsky 2022]
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Theorem [Hilbert, 1890]

Let 𝑉,𝐺 be nice,  then there exist a finite number of invariant polynomials 𝐹 , … ,𝐹 :𝑉 → ℝ such that all invariant 

polynomials are of the form 

𝑞 𝑣 𝑝 𝐹 𝑣 , … ,𝐹 𝑣 , for some 𝑝:ℝ → ℝ

Remark

𝐹 , … ,𝐹 are called the generators of the ring 

𝑅 𝑉,𝐺 𝐹:𝑉 → ℝ  are 𝐺 invariant polynomials}



Universality of invariant machine learning via 
generators of the invariant ring

[Universal Approximations of Invariant Maps by Neural Networks, Yarotsky 2022]
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Corollary

Let 𝑉,𝐺 be nice, and 𝐹 , …𝐹 be generators of the invariant ring. Then any continuous invariant function 𝑓:𝑉 → ℝ

can be approximated on compact subsets of 𝑉 to arbitrary accuracy by 

𝒩 𝐹 𝑣 , … ,𝐹 𝑣 , for some neural network 𝒩:ℝ → ℝ



Universality of invariant machine learning via 
generators of the invariant ring

[Universal Approximations of Invariant Maps by Neural Networks, Yarotsky 2022]
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Issues

• Can we explicitly compute the generators 𝐹 , … ,𝐹 ?

(often yes. In invariant theory this will be called `the first fundamental theorem for 𝑉,𝐺 ′)

• How does 𝑁 depend on dim 𝑉 ?

(often this is very bad… we will see examples)

• Do we want to use polynomials for approximation?

(let’s ignore this for now)



Point set `Orthogonal Universality via generators’

Group: 𝑂 𝑑 𝑅 ∈ ℝ 𝑅𝑅 𝐼

Action:  𝑅∗ 𝑥 , … , 𝑥 𝑅𝑥 , … ,𝑅𝑥

∼ 𝒏𝟐 Generators:

𝑥 , 𝑥    1 𝑖 𝑗 𝑛

Universality: All continuous 𝑂 𝑑 invariant functions 𝑓 can be approximated by functions of the form

𝒩 𝑥 , 𝑥 , 𝑥 , 𝑥 , … , 𝑥 , 𝑥

Where 𝒩 is a (fully connected) neural network



Point set `Special Orthogonal Universality via generators’

Group: S𝑂 𝑑 𝑅 ∈ ℝ 𝑅𝑅 𝐼   𝑎𝑛𝑑 det 𝑅 1

Action:  𝑅∗ 𝑥 , … , 𝑥 𝑅𝑥 , … ,𝑅𝑥

∼ 𝒏
𝒅   Generators: 

𝑥 , 𝑥 ,   1 𝑖 𝑗 𝑛 and det 𝑥 , … , 𝑥   𝑖 𝑖 ⋯ 𝑖

Universality: All continuous S𝑂 𝑑 invariant functions 𝑓 can be approximated by functions of the form

𝒩 𝑥 , 𝑥 , 𝑥 , 𝑥 , … , 𝑥 , 𝑥 , det 𝑥 , … , 𝑥 , … det 𝑥  , … , 𝑥  

Where 𝒩 is a (fully connected) neural network



Point set `Permutation Universality via generators’

Group: S 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠  𝜏: 1, … ,𝑛 → 1, … ,𝑛

Action:  𝜏∗ 𝑥 , … , 𝑥 𝑥 , … , 𝑥

𝒎 𝒏,𝒅 𝒏 𝒅
𝒅   Generators: 

𝑥 , … , 𝑥 ↦ ∑ 𝑝 𝑥 where 𝑝 , … ,𝑝 form a basis for the space of polynomials of degree 𝑛 in 

𝑑 variables

Universality: All continuous 𝑆 invariant functions can be approximated by

𝒩 ∑ 𝑝 𝑥 ,∑ 𝑝 𝑥 , …∑ 𝑝 𝑥

Or 𝒩 ∑ 𝒩  𝑥  



Number of generators for point set actions

Num of generatorsGroup action on ℝ
∼ 𝑛𝑂 𝑑

∼
𝑛
𝑑

𝑆𝑂 𝑑

𝑛 𝑑
𝑑

𝑆



Universality of invariant machine learning via 
generating invariants

Definition (Separating invariants)

Let 𝐺 be a group acting on 𝑉. We say that H , … ,𝐻 :𝑉 → ℝ are 𝑉,𝐺  separating  invariants if

• Invariant: if 𝑢 𝑣 then H 𝑢 𝐻 𝑣 ,∀𝑖 1, … ,𝑚

• Separating: if H 𝑣 𝐻 𝑢 ,∀𝑖 1, … ,𝑚 then 𝑣 𝑢

Invariance means that ⁄ ∋ 𝑣 ↦ 𝐻 𝑣 , … ,𝐻 𝑣 is well defined

Separating means that it is injective on   ⁄

separating
Advocates: [Complete set of translation invariant measurements with Lipschitz bounds, Cahill et al. 2020]

[Group invariant max-filtering, Cahill et al. 2022]
[Low Dimensional Invariant Embeddings for Universal Geometric Learning, Dym and Gortler 2022]



Example: 𝐺 𝑂 2 acts on 𝑉 ℝ via 𝑅∗ 𝑥 , 𝑥 𝑅𝑥 ,𝑅𝑥

What invariants can we suggest? Are they separating?

How about:

𝐻 𝑥 , 𝑥 𝑥 and 𝐻 𝑥 , 𝑥 𝑥 ?

We get separation by adding

𝐻 𝑥 , 𝑥 𝑥 𝑥



Separation vs generation: sufficiency for universality
We saw

Let 𝑉,𝐺 be nice, and 𝐹 , …𝐹 be generators of the invariant ring. Then any continuous invariant function 𝑓:𝑉 → ℝ

can be approximated on compact subsets of 𝑉 to arbitrary accuracy by 

𝒩 𝐹 𝑣 , … ,𝐹 𝑣 , for some neural network 𝒩:ℝ → ℝ

and 𝐻 , … ,𝐻 be  continuous separating invariants

𝒩 𝐻 𝑣 , …𝐻 𝑣

Remark: This in fact implies the generator-based theorem, since generators are always separators



Separation vs generation: cardinality

Theorem [E. S. Dufresne 2008]

If 𝑉,𝐺 are nice, then there always exist polynomial separating invariants 𝐻 , … ,𝐻 :𝑉 → ℝ of cardinality

𝑚 2 dim 𝑉 1



Partial solution: low dimensional-separation via 
generation+`linear compression’

𝑣 ∈ 𝑉 𝐹 𝑣 , … ,𝐹 𝑣 𝐻 𝑣 , … ,𝐻 𝑣

Evaluate 
generators

Random linear 
projection



Complexity 
per separator?

Num of 
separators

Num of 
generators

Group action 
on ℝ

𝑛2𝑛 ⋅ 𝑑 1𝑛𝑂 𝑑

n
𝑛
𝑑

2𝑛 ⋅ 𝑑 1n
𝑛
𝑑

𝑆𝑂 𝑑

𝑛 𝑑
𝑑

2𝑛 ⋅ 𝑑 1𝑛 𝑑
𝑑

𝑆

Intermediate conclusions

Can we do better? Yes

Let’s 
start 
here



Efficient invariants: 
Example: R ∈ 𝑆𝑂 𝑑 acts on 𝐗 𝒙𝟏, … ,𝒙𝒏 ∈ ℝ 𝑑 𝑛

𝑅∗ 𝒙𝟏, …𝒙𝒏 𝑅𝒙𝟏, … ,𝑅𝒙𝒏

Generators: ∼

𝒙𝒊 𝒙𝒋  𝑎𝑛𝑑 𝒙𝒋  and det 𝒙𝒊𝟏 , …𝒙𝒊𝒅
Continuous family of separating invariants:

𝐻 𝒙𝟏, … ,𝒙𝒏;𝒘,𝑾 𝒘𝟏𝒙𝟏 ⋯ 𝒘𝒏𝒙𝒏 det 𝑿𝑾

Random separators: For almost all 𝒘 𝟏 ,𝑾 𝟏 … ,𝒘 𝒎 ,𝑾 𝒎  ,𝑚 2𝑛𝑑 1

𝐻 𝒙𝟏, … ,𝒙𝒏;𝒘 𝒊 ,𝑾 𝒊 are invariant and separating!!!



Complexity 
per separator?

Num of 
separators

Num of 
generators

Group action on ℝ

2𝑛 ⋅ 𝑑 1𝑛𝑂 𝑑
2𝑛 ⋅ 𝑑 1n

𝑛
𝑑

𝑆𝑂 𝑑

2𝑛 ⋅ 𝑑 1𝑛 𝑑
𝑑

𝑆

𝒙𝒊 𝒙𝒋  𝑎𝑛𝑑 𝒙𝒋  and det 𝒙𝒊𝟏 , …𝒙𝒊𝒅

𝒘𝟏𝒙𝟏 ⋯ 𝒘𝒏𝒙𝒏 det 𝑿𝑾𝑛𝑑



Efficient Invariants: SO(d) and beyond

Definition: Let 𝑉,𝐺 be nice. We sat that a function 𝐻:𝑉 ℝ → ℝ is a continuous family of separating 

invariants if it satisfies the following conditions: 

• Invariance: If 𝑣 𝑣′ then 𝐻 𝑣;𝑤 𝐻 𝑣′;𝑤 for all 𝑤 ∈ ℝ

• Separation: If 𝑣 𝑣′ then there exists 𝑤 ∈ ℝ such that 𝐻 𝑣;𝑤 𝐻 𝑣 ;𝑤

For the action of SO d on ℝ , the following is a continuous family of separating invariants

𝐻 𝐱𝟏, … , 𝐱𝐧;𝐰,𝐖 𝐰𝟏𝐱𝟏 ⋯ 𝐰𝐧𝐱𝐧 det 𝐗𝐖



Finite Witness Theorem
Finite Witness Theorem [Dym and Gortler 2022] (weakened version):

Let 𝑉,𝐺 be nice. Let  𝐻:𝑉 ℝ → ℝ be a family of separating polynomial invariants. 

Set 𝑚 2 dim 𝑉 1. Then for Lebesgue almost every 𝑤 , … ,𝑤 ∈ ℝ , the functions 𝐻 , …𝐻

defined by

𝐻 𝑣 𝐻 𝑣;𝑤

are separating invariants.

Remarks

• Cardinality is often not optimal

• Proof idea comes from [On signal reconstruction without phase, Balan, Casazza and Edidin 2006] relies 

on Real Algebraic Geometry



Finite Witness Theorem [Dym and Gortler 2022] (weakened version):

Let 𝑉,𝐺 be nice. Let  H:𝑉 ℝ → ℝ be a family of separating polynomial invariants. 

Set 𝑚 2 dim 𝑉 1. Then for Lebesgue almost every 𝑤 , … ,𝑤 ∈ ℝ , the functions 𝐻 , …𝐻 defined by

𝐻 𝑣 𝐻 𝑣;𝑤

are separating invariants.

Proof idea:

• Consider the `lifted bad set’

𝑩 𝒗,𝒗 ,𝒘 𝟏 , …𝒘 𝒎 ∈ 𝑽 𝑽 ℝ𝒅𝒘 𝒎 𝒗 𝑮 𝒗   𝒃𝒖𝒕  𝑯 𝒗;𝒘 𝒊 𝑯 𝒗′;𝒘 𝒊 ,∀𝒊 𝟏…𝒎

• This set is a subset of a 𝟐𝐝𝐢𝐦 𝑽 𝒎𝒅𝒘 dimensional vector space defined by 𝒎 equations

“therefore” 𝐝𝐢𝐦 𝑩 𝒎𝒅𝒘 𝟐𝐝𝐢𝐦 𝑽 𝒎 𝒎𝒅𝒘 𝟏

• The dimension of the `projected bad set’ is no larger

𝑩𝒑𝒓𝒐𝒋 𝒘 𝟏 , …𝒘 𝒎 ∈ ℝ𝒅𝒘 𝒎 ∃ 𝒗,𝒗  𝒔. 𝒕.𝒗 𝑮 𝒗   𝒃𝒖𝒕  𝑯 𝒗;𝒘 𝒊 𝑯 𝒗′;𝒘 𝒊 ,∀𝒊 𝟏…𝒎

• 𝒅𝒊𝒎 𝑩𝒑𝒓𝒐𝒋 𝒎𝒅𝒘 𝟏 𝒅𝒊𝒎 ℝ𝒅𝒘 𝒎)

• Most 𝒘 𝟏 , …𝒘 𝒎  are not in 𝑩𝒑𝒓𝒐𝒋, and so are separating



Finite Witness Theorem [Dym and Gortler 2022] (weakened version):

Let 𝑉,𝐺 be nice. Let  H:𝑉 ℝ → ℝ be a continuous family of separating polynomial invariants. 

Set 𝑚 2 dim 𝑉 1. Then for Lebesgue almost every 𝑤 , … ,𝑤 ∈ ℝ , the functions 𝐻 , …𝐻 defined by

𝐻 𝑣 𝐻 𝑣;𝑤

are separating invariants.

Proof idea (inspired by phase retrieval paper):

• Consider the `lifted bad set’

𝑩 𝒗,𝒗 ,𝒘 𝟏 , …𝒘 𝒎 ∈ 𝑽 𝑽 ℝ𝒅𝒘 𝒎 𝒗 𝑮 𝒗   𝒃𝒖𝒕  𝑯 𝒗;𝒘 𝒊 𝑯 𝒗′;𝒘 𝒊 ,∀𝒊 𝟏…𝒎

• This set is a subset of a 𝟐𝐝𝐢𝐦 𝑽 𝒎𝒅𝒘 dimensional vector space defined by 𝒎 equations

“therefore” 𝐝𝐢𝐦 𝑩 𝒎𝒅𝒘 𝟐𝐝𝐢𝐦 𝑽 𝒎 𝒎𝒅𝒘 𝟏

• The dimension of the `projected bad set’ is no larger

𝑩𝒑𝒓𝒐𝒋 𝒘 𝟏 , …𝒘 𝒎 ∈ ℝ𝒅𝒘 𝒎 ∃ 𝒗,𝒗  𝒔. 𝒕.𝒗 𝑮 𝒗   𝒃𝒖𝒕  𝑯 𝒗;𝒘 𝒊 𝑯 𝒗′;𝒘 𝒊 ,∀𝒊 𝟏…𝒎

• 𝒅𝒊𝒎 𝑩𝒑𝒓𝒐𝒋 𝒎𝒅𝒘 𝟏 𝒅𝒊𝒎 ℝ𝒅𝒘 𝒎)

• Most 𝒘 𝟏 , …𝒘 𝒎  are not in 𝑩𝒑𝒓𝒐𝒋, and so are separating

Real algebraic geometry

Full Proof



Complexity 
per separator?

Num of 
separators

Num of 
generators

Group action 
on ℝ

𝑛 ⋅ 𝑑2𝑛 ⋅ 𝑑 1𝑛𝑂 𝑑
𝑛 ⋅ 𝑑2𝑛 ⋅ 𝑑 1n

𝑛
𝑑

𝑆𝑂 𝑑

𝑛 ⋅ 𝑙𝑜𝑔 𝑛2𝑛 ⋅ 𝑑 1𝑛 𝑑
𝑑

𝑆

Finite Witness Theorem-Applications



Recent work- Analytic Finite Witness Theorem
Analtyic Finite Witness Theorem [Amir, Gortler, Avni, Ravina, Dym  2023] (weakened version):

Let 𝑉,𝐺 be nice. Let  𝐻:𝑉 ℝ → ℝ be a continuous family of separating polynomial invariants. 

Set 𝑚 2 dim 𝑉 1. Then for Lebesgue almost every 𝑤 , … ,𝑤 ∈ ℝ , the functions 𝐻 , …𝐻

defined by

𝐻 𝑣 𝐻 𝑣;𝑤

are separating invariants.

`Proof’

Real Algebraic Geometry ↦ Real analytic geometry, o-minimal systems and related concepts

Analytic



Application: Permutation invariant networks 
(with analytic activations)

Theorem [Amir, Gortler, Avni, Ravina, Dym  2023] 

Let 𝑑,𝑛 be natural numbers and set 𝑚 2𝑛𝑑 1.

If 𝜎:ℝ ↦ ℝ is analytic and not polynomial, then for Lebesgue almost every 𝐴 ∈ ℝ and 𝑏 ∈ ℝ

the permutation invariant function

ℝ ∋ 𝑥 , … , 𝑥 ↦ 𝜎 𝐴𝑥 𝑏

is separating



Finite Witness Theorem
Analtyic Finite Witness Theorem-stronger (but not strongest) version

Let 𝑉,𝐺 be nice. Let  H:𝑉 ℝ → ℝ be a continuous family of separating analytic invariants. Set 𝑚

2 dim 𝑉 1. Then for Lebesgue almost every 𝑤 , … ,𝑤 ∈ ℝ , the functions 𝐻 , …𝐻 defined by

𝐻 𝑣 𝐻 𝑣;𝑤

are separating invariants.

Can be a low dimensional subset of some higher 
dimensional vector space, providing it is `reasonable’
e.g., a countable union of sets defined by polynomial and 
analytic equalities and inequalities
Or image of these sets under an analytic functions



Adding to the table…
Complexity 
per separator?

Num of 
separators

Num of 
generators

Group action 
on ℝ

𝑛 ⋅ 𝑑2𝑛 ⋅ 𝑑 1𝑛𝑂 𝑑
𝑛 ⋅ 𝑑2𝑛 ⋅ 𝑑 1n

𝑛
𝑑

𝑆𝑂 𝑑

𝑛 𝑑 log 𝑛2𝑛 ⋅ 𝑑 1𝑛 𝑑
𝑑

𝑆

𝒏𝒅2𝑛 ⋅ 𝑑 1?𝑂 𝑑 𝑆
𝒏𝒅2𝑛 ⋅ 𝑑 1?𝑆𝑂 𝑑 𝑆



Parting questions
• Separating invariants are injective mappings 𝑓:𝑉/𝐺 → 𝑅 . Do they preserve distances?

• Separating invariants for surfaces? (one example: conformal welding)
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Thank you!
[Low Dimensional Invariant Embeddings for Universal 

Geometric Learning
Dym and  Gortler 2022]

[Complete Neural Networks for Euclidean Graphs
Hordan, Amir, Gortler, and Dym 2023]

[Neural Injective Functions for Multisets, Measures and Graphs 
via a Finite Witness Theorem.

Amir, Gortler, Avni, Ravina and Dym 2023]



separation

Generically separating
Geometric Message Passing

Fully separating
𝑑 1 order geometric message 

passing



Geometric message passing
e.g. EGNN [E(n) equivariant graph neural networks, Sattoras et al. 2021]

Input: 𝑥 , … , 𝑥 ∈ ℝ

set ℎ , … ,ℎ 0

ℎ 𝑓 ℎ , ℎ , 𝑥 𝑥 , 𝑗 1, …𝑛 (repeat 𝑇 times)

ℎ 𝑥 , … , 𝑥 𝑓 ℎ , … ,ℎ

ℎ 𝑥 , … , 𝑥 is 𝑂 𝑑 𝑆 invariant  



Geometric message passing-separation
e.g. EGNN [E(n) equivariant graph neural networks, Sattoras et al. 2021]

Permutation invariant and separating

Input: 𝑥 , … , 𝑥 ∈ ℝ

set ℎ , … ,ℎ 0

ℎ 𝑓 ℎ , ℎ , 𝑥 𝑥 , 𝑗 1, …𝑛 (repeat 𝑇 times)

ℎ 𝑓 ℎ , … ,ℎ



`Hard’ to separate

-1-2210
-10011
0-2201

-1-2210
-10011
0-220-1

Dist Sort

[Incompleteness of Atomic Structure Representations. Physical Review Letters   
Pozdynakov et al. 2020]

• Cannot be separated by MPNN with 𝑇 1

• Can be separated by MPNN with 𝑇 2



`Harder’

Dist Sort (PDD)

[Incompleteness of graph neural networks
for points clouds in three dimensions, Pozdnyakov and Ceriotti 2022]

Cannot be separated by MPNN for any 𝑇



Geometric K-order message passing
[Sign and Basis Invariant Networks for Spectral Graph Representation Learning, Lim et al. 2022]

[Is distance matrix enough for geometric deep learning, Li et al. 2023]

Assume K 3 for notation simplicity

ℎ 𝑖, 𝑗,𝑘 𝑋
⟨𝑥 , 𝑥 ⟩ ⟨𝑥 , 𝑥 ⟩ ⟨𝑥 , 𝑥 ⟩
⟨𝑥 , 𝑥 ⟩ ⟨𝑥 , 𝑥 ⟩ ⟨𝑥 , 𝑥 ⟩
⟨𝑥 , 𝑥 ⟩ ⟨𝑥 , 𝑥 ⟩ ⟨𝑥 , 𝑥 ⟩

ℎ 𝑖, 𝑗,𝑘 𝑋 𝑓 ℎ 𝑖, 𝑗,𝑘 ,
ℎ 𝑠, 𝑗,𝑘
ℎ 𝑖, 𝑠,𝑘
ℎ 𝑖, 𝑗, 𝑠

,  𝑠 1, … ,𝑛

ℎ 𝑓  ℎ 𝑖, 𝑗,𝑘 𝑖, 𝑗,𝑘 ∈ 𝑛
Permutation invariant
+separating



Theorem [Hordan, Amir, Gortler, Dym, 2023]

For every 𝑋,𝑌 ∈ ℝ we have that the d-order message passing with 𝑇 1 is separating:

It gives the same output  ℎ 𝑋 ℎ 𝑌 if and only if 𝑋,𝑌 are related by a permutation 

and orthogonal transformation.

A modified 𝑑 1 message passing algorithm is also separating

Theorem [Rose et al. 2023]

The original 𝑑 1 message passing algorithm is also separating



Complexity

• Full 𝑂 𝑑 𝑆 separation with 𝑑 1 𝑊𝐿 requires computing 2𝑛𝑑 1 invariants 
with computational complexity of 𝑛 each, using our permutation invariant separating 
functions

• This also uses the dependence of the theorem on intrinsic dimension. Considering 
extrinsic dimension only would lead to exponential blowup 



Separation experiment
Hard

Sort

Harder

Sort
HarderHard

NoYesMPNN

YesYes𝑑 1 MPNN



Separation of existing invariant architectures:

Dataset composed of two point clouds which are hard to separate+rotations+permutations+noise

𝑂 𝑑 𝑆 Invariant architectures

𝑑 1 𝑀𝑃𝑁𝑁 𝑀𝑃𝑁𝑁



We didn’t discuss… 

[Permutation invariant representations with applications to graph deep learning, Balan Haghani Singh 2022]
[Group-invariant max flitering, Cahill Iverson Dixon and Packer]

• Generic separation: Separation up to a set of measure zero. Need only dim 𝑉 1 invariants

• Stability: Invariant and separating 𝐻:𝑉 → ℝ can be identified with  𝐻: ⁄ → ℝ injective.

Is 𝐻 bi-Lipschitz with respect to 

𝑑 𝑣 , 𝑣 min
∈

| 𝑔𝑣 𝑣 |



TODO



ℎ                ℎ               ℎ     ℎ output

ambient intrinsic intrinsic … intrinsic

ℎ                ℎ               ℎ     ℎ output

ambient ambient ambient … ambient

dimension                       𝟔𝒏                   𝟔𝒏                  𝟔𝒏          𝟔𝒏                   𝟔𝒏

dimension                       𝒏                    𝒏𝟐                  𝒏𝟑…                     

ℎ 𝑓 ℎ , ℎ , 𝑥 𝑥 , 𝑗 1, …𝑛 (repeat 𝑇 times)

Permutation invariant and separating



Separation of existing architectures: (when) 
does it happen?

Theoretical separation   Yes (ours) Yes (ours) No No ?                Sort of ?                      ? 

Dataset composed of two point clouds which are hard to separate+rotations+permutations+noise

𝑂 𝑑 𝑆 Invariant architectures



Proof of theorem (intuition)



𝑿 ∈ ℝ𝟑 𝒏

𝑓
∼ 𝒏𝟒 dimensional

∼ 𝟔𝒏 dimensional

ℎ 𝑖, 𝑗,𝑘 𝑋 𝑓 ℎ 𝑖, 𝑗, 𝑘 ,
ℎ 𝑠, 𝑗,𝑘
ℎ 𝑖, 𝑠,𝑘
ℎ 𝑖, 𝑗, 𝑠

,  𝑠 1, … ,𝑛

ℎ 𝑓  ℎ 𝑖, 𝑗,𝑘 𝑖, 𝑗,𝑘 ∈ 𝑛

Full separation (1): Cardinality

𝑓



Phase retrieval



Better solution: imported from phase retrieval
Phase retrieval: we want to reconstruct a signal  𝒛 ∈ ℂ from phaseless linear measurements

𝐻 𝒛 𝒘 , 𝒛 , 𝑖 1, …𝑚

𝑺𝟏 invariance: For all 𝜃  we have that 𝐻 𝑒 𝒛 𝐻 𝒛 so we can only hope for reconstruction up to a 
global phase factor, that is 

𝐻 𝒛 𝐻 𝒛  𝒛 𝑒 𝒛 for some 𝜃

In other words, we would like 𝐻 , …𝐻 to be separating



Better solution: imported from phase retrieval
Theorem [On signal reconstruction without phase, Balan, Casazza and Edidin 2006]

If 𝑚 4𝑛 2 then for Lebesgue almost all 𝑤 , … ,𝑤 ∈ ℝ the functions 𝐻 , …𝐻 defined by

𝐻 𝒛 𝒘 , 𝒛 , 𝑖 1, …𝑚

are separating with respect to the action of 𝑆 on ℂ

Remark: In our context we think of 𝑉 ℂ is a real vector space of dimension 2𝑛. So

𝑚 4𝑛 2 2 dim 𝑉 1 4𝑛 1

Remark: Note that all invariant are obtained by taking sample of  𝐻 𝒛;𝒘 which is polynomial in both its 

argument 𝒛 and its parameters 𝒘



Separation vs. generation for phase retrieval
Theorem [On signal reconstruction without phase, Balan, Casazza and Edidin 2006]

If 𝑚 4𝑛 2 then for Lebesgue almost all 𝑤 , … ,𝑤 ∈ ℝ the functions 𝐻 , …𝐻 defined by

𝐻 𝒛 𝒘 , 𝒛 , 𝑖 1, …𝑚

are separating with respect to the action of 𝑆 on ℂ

In contrast, there are ∼ 𝑛 generators for the ring of invariant polynomials: 

𝐻 , 𝑧 , … , 𝑧 𝑧 𝑧



Invariant universality rephrased
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Assume 𝑮 acts on 𝑽

Orbit: 𝑣 𝑤 ∈ 𝑉|∃𝑔 ∈ 𝐺, 𝑤 𝑔𝑣  

Quotient space: ⁄ 𝑣 |  𝑣 ∈ 𝑉

If 𝒇:𝑽 → 𝒀 is invariant then it induces  a well-defined 𝒇: 𝑽 𝑮⁄ → 𝒀 
via

𝑓 𝑣 𝑓 𝑣



Invariant universality via Invariant 
embeddings

If 𝑭: 𝑽 𝑮⁄ → ℝ𝒎  is invariant and injective, then any 𝒇: 𝑽 𝑮⁄ → 𝒀  is of the form

𝒇 𝒗 𝒉 ∘ 𝑭 𝒗 , for an appropriate 𝒉:ℝ𝒎 → 𝒀 
On the image of 𝑭 we have  𝒉 𝒇 ∘ 𝑭 𝟏

Goal: Find injective 𝑭: 𝑽 𝑮⁄ → ℝ𝒎



Invariant embeddings and separating 
invariants

Goal: Find injective 𝑭: 𝑽 𝑮⁄ → ℝ𝒎

Goal: Find invariant and separating 𝑭:𝑽 → ℝ𝒎

• Invariant: if 𝑤 𝑣 then 𝐹 𝑣 𝐹 𝑤

• Separating: If 𝐹 𝑣 𝐹 𝑤 then 𝑤 𝑣



Conclusion: things we didn’t discuss

• Stability

• Equivariance

• Performance



Invariance vs. equivariance



Equivariance: For Physics simulation

𝜏=0 𝜏=1





N-body problem

𝜏=0 𝜏=1

Equivariant to 
• Permutation
• Translation
• Orthogonal
• Lorenz!


