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Spin chains, Hamiltonians, ground states
Finite spin chain on [a, b] ⊂ Z, Hilbert space H[a,b] =

⊗b
x=a Cn, n ≥ 2,

spins of magnitude n = 2S + 1, SU(2) spin matrices S i
x , i = 1, 2, 3,

x ∈ [a, b].

Translation-invariant nearest neighbor interaction is given by
h = h∗ ∈ Mn(C)⊗Mn(C) = B(H[x,x+1]).

Hamiltonian: H[a,b] =
∑b−1

x=a hx,x+1. Interested in ground states.

Heisenberg model: hx,x+1 = Sx · Sx+1 = S1
x S

1
x+1 + S2

x S
2
x+1 + S3

x S
3
x+1,

n-dimensional spin matrices.

AKLT model, n = 3:
hx,x+1 = 1

2Sx · Sx+1 + 1
6 (Sx · Sx+1)2 + 1

31l = P
(2)
x,x+1.

Most general isotropic nearest neighbor interaction for n = 3:
hx,x+1 = cosφSx · Sx+1 + sinφ(Sx · Sx+1)2.
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Figure: Ground state phase diagram
for the S = 1 chain (n = 3) with
nearest-neighbor interactions
cosφSx · Sx+1 + sinφ(Sx · Sx+1)2.

I φ = 0 Heisenberg AF chain,
Haldane phase (Haldane, 1983)

I tanφ = 1/3, AKLT point
(Affleck-Kennedy-Lieb-Tasaki,

1987,1988), FF, MPS, gapped
I tanφ = 1, solvable, gapless,

SU(3) invariant, (Sutherland,

1975)
I φ ∈ [π/2, 3π/2], ferromagnetic,

FF, gapless
I φ = −π/2, solvable, SU(3)

invariant, Temperley-Lieb
algebra, dimerized, gapped
(Klümper; Affleck,1990)

I φ− = −π/4 gapless,
Bethe-ansatz, (Takhtajan;

Babujian, 1982)
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Dimerization
If a pair interaction favors a maximally entangled state (such as a spin
singlet), monogamy of entanglement sets up a competition between
pairings. In one dimension, this often leads to an instability and/or to
spontaneous breaking of translation symmetry. In the family of O(n)
chains here, translation symmetry breaking occurs, called dimerization.
For finite chains of 2` spins the ground states can be viewed as chain of
dimers:

-3-4 -2 -1 0 1 2 3 4 5

-3 -2 -1 0 2 3 4

` = 5, odd

` = 4, even
1

The actual ground states need not consist of maximally entangled pairs.
For the O(n) chains maximally entangled pairs dominate for large n.
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Stability of gapped ground states
Gapped ground state phases are open regions in Hamiltonian space (not
isolated special points). In particular. their gap is stable.
For gapped, frustration-free models satisfying no-local order condition
good general stability results exists:

Yarotsky 2006, Bravyi-Hastings-Michalakis 2010, Michalakis-Zwolak 2013,

Szehr-Wolf 2015, Fröhlich-Pizzo 2018-20, N-Sims-Young 2020

These results prove the AKLT point is part of an open region on the red
phase of the n = 3 phase diagram.
The uniqueness condition of the gapped ground state can be relaxed (
N-Sims-Young 2020) but we have no general stability results yet that do
not require frustration free property.

The point φ = −π/2 with dimerization is not frustration free:

〈hx,x+1〉 > inf spec(hx,x+1).
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O(n) chains and generalizations of the AKLT model
There is a local unitary change of basis in which the AKLT interaction is
given by

h = T − 2Q,

where T is the swap operator and Q is the projection onto
1√
3

(e1 ⊗ e1 + e0 ⊗ e0 + e−1 ⊗ e−1).

This generalizes to n-dimensional spins and arbitrary coupling constants
as follows

uT + vQ, u, v ∈ R

where Q is the projection to

ψ =
1√
n

n∑
α=1

|α, α〉.

Both T and Q commute with the natural action of O(n) on the spins in
this basis. It is the general O(n) invariant nearest neighbor interaction for
n ≥ 2, which was studied by Tu & Zhang, 2008.
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Figure: Ground state phase diagram
for the chain with nearest-neighbor
interactions uT + vQ for n ≥ 3.

I v = −2nu/(n − 2), n ≥ 3, Bethe
ansatz point (Reshetikhin, 1983)

I v = −2u: frustration free point,
equivalent to ⊥ projection onto
symmetric vectors 	 one. Unique
g.s. if n odd; two 2-periodic g.s.
for even n; spectral gap in all
cases and stable phase
(N-Sims-Young, 2020).

I u = 0, v = −1. Equivalent to the
SU(n) −P(0) models aka
Temperley-Lieb chain; Affleck,

1990, Nepomechie-Pimenta 2016).
Dimerized for all n ≥ 3
(Aizenman, Duminil-Copin, Warzel,

2020). New result here: a proof
of stability for large n
(Björnberg-Mühlbacher-N-Ueltschi,

arXiv:2101.11464).
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Proving Stability
To date, there is no single approach for proving stability of gapped ground
states that covers the generic situation, not even in one dimension.
Limiting property: frustration-freeness (FF) (classical configurations,
AKLT chain, Toric Code Model)
Other special properties can sometimes be exploited, such as
representation of Tre−βH as a classical partition function (aka Stoquastic
Hamiltonians), with special monotonicity properties, this applies to −P(0)

model (Aizenman, Duminil-Copin, Warzel 2020).
In our phase diagram the point (0,−1) (u = 0) is not FF, but it has the
special properties and this has allowed ADW to settle the dimerization
question for all cases (all n ≥ 3).
In (N-Ueltschi, 2017) we used a Peierls argument to prove dimerization for
n ≥ 17 for the models with u = 0.
The new result extends this to small |u| and sufficiently large n by a
cluster expansion, which also yields a spectral gap and exponential decay
of correlations (in space and time).
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Main Results (Björnberg-Mühlbacher-N-Ueltschi, arXiv:2101.11464,

CMP2021)
Model: chain of n-dimensional spins with O(n)-invariant nearest neighbor
interaction h = uT + vQ, u, v ∈ R, T is the swap operator and Q
projects onto ψ = n−1/2

∑n
α=1 |α, α〉.

Finite chains of 2` spins, with Hamiltonian: H` =
∑`−1

x=−`+1 hx,x+1.
Consider ground states as limits of Gibbs states:

〈A〉`,β,u =
TrAe−βH`

Tre−βH`
.

Basic observables: generators of O(n):

Lα,α
′

= |α〉〈α′| − |α′〉〈α|, 1 ≤ α < α′ ≤ n.

Theorem (Dimerization)
There exist constants n0, u0, c > 0 (independent of `) such that for
n > n0, v = −1, and |u| < u0, we have that for all 1 ≤ α < α′ ≤ n,

lim
β→∞

[
〈Lα,α

′

0 Lα,α
′

1 〉`,β,u − 〈Lα,α
′

−1 Lα,α
′

0 〉`,β,u
]

> c for ` odd;

lim
β→∞

[
〈Lα,α

′

0 Lα,α
′

1 〉`,β,u − 〈Lα,α
′

−1 Lα,α
′

0 〉`,β,u
]

< −c for ` even.
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Theorem (Exponential decay of correlations)
There exist constants n0, u0, c1, c2,C > 0 (independent of `) such that
for n > n0, v = −1, and |u| < u0, we have

lim
β→∞

∣∣〈Lα,α′

x etH`Lα,α
′

y e−tH`〉`,β,u
∣∣ ≤ Ce−c1|x−y |−c2|t|

for all ` ∈ N, all x , y ∈ {−`+ 1, . . . , `}, all 1 ≤ α < α′ ≤ n, and all
t ∈ R.

In fact, the decay of correlations between any two local observables is
bounded by an exponential with a fixed rate.
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Let E
(`)
0 < E

(`)
1 < . . . be the eigenvalues of H[−`+1,`], and define the

ground state gap ∆(`) by

∆(`) = E
(`)
1 − E

(`)
0 .

The gap is obviously positive but is there is a positive lower bound
independent of `?

Theorem (Spectral gap)
There exist constants n0, u0, c > 0 (independent of `) such that for
n > n0, v = −1, and |u| < u0, we have

(a) E
(`)
0 is non-degenerate.

(b) ∆(`) ≥ c for all `.
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‘Random’ loop representation (Toth 1993, Aizenman-N 1994,

Ueltschi 2013)
First, the case (u, v) = (0,−1).

Consider intervals of the form [−`+ 1, `] (2` spins), and denote the
Hamiltonian by H`, and let ψ` be a normalized eigenvector of its smallest
eigenvalue, which turns out to be simple. Then

|ψ`〉〈ψ`| = lim
β→∞

e−2βH`

Tre−2βH`
,

and therefore, with A = Qx,x+1, or any other observable,

〈ψ`,Aψ`〉 = Tr|ψ`〉〈ψ`|A = lim
β→∞

Tre−βH`Ae−βH`

Tre−2βH`
.



14

Both the numerator and the denominator can be given a nice
representation by writing (for integer β)

e−βH` = lim
N→∞

(1l− 1

N
H`)

βN = lim
N→∞

(
1l +

1

N

`−1∑
x=−`+1

Qx,x+1

)βN
.

The (2`)βN terms in the RHS resulting from expanding the product are
labeled by a set Ω`,N of diagrams we call random loop configurations,
which are helpful to calculate the trace of each term using the matrix
representation of each factor Qx,x+1:

Q =
1

n

n∑
α,β=1

|α, α〉〈β, β|.
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The trace of each term, labeled by ω ∈ Ω`,N , is positive and depends
only on the number of factors Q, denoted by |ω|, and the number of
loops in ω, denoted by L(ω). This allows us to define a probability
measure on Ω`,N . It is given by

µβ,`,N(ω) =
1

ZN(β, `)

(
1
N

)|ω|
nL(ω)−|ω|,

with
ZN(β, `) =

∑
ω∈Ω`,N

(
1
N

)|ω|
nL(ω)−|ω|.
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For fixed |ω|, the limit N →∞ is described by Lebesgue measure dx⊗|ω|

on the family of time-intervals labeled by edges, (−β, β]×(2`−1), and it is
convenient to include a normalization factor so we get a probability
measure on the configurations of loops:

dρ0(ω) = e2β(2`−1)dx⊗|ω|.

The partition function then becomes

lim
N→∞

ZN(β, `) = Z (β, `) =

∫
Ω`,β

dρ0(ω)nL(ω)−|ω|.
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Generalizing the representation to the spins with nearest-neighbor
interaction −uT − Q, u ∈ R is straightforward.
Graphically we represent the two types of terms by crosses and double
bars:

T = , Q =

The trace of a product of T ’s and Q’s at different nearest neighbor pairs
is again easy to compute and the result has again a simple relationship to
a space-time picture of loops:

Z (β, `, u) =

∫
Ω`,β

dρu(ω)nL(ω)−|ω |,

with
dρu(ω) = e(1+u)2β(2`−1)u|ω |dx⊗|ω|.

Two important differences: (i) when u < 0 we now have a signed
measure on the configuration of loops; (ii) the loops intersect and the
time orientation of the lines is not ‘bipartite’. The latter reflects the
presence of both ferro- and antiferromagnetic interactions.
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Correlations
The basic correlation functions are integrals of indicator functions of
‘events’ for loop configurations.

x
+←→ y : the set of configurations ω where the top of (x , 0) is connected

to the bottom of (y , 0);

x
−←→ y : the set of configurations ω where the top of (x , 0) is connected

to the top of (y , 0)

Proposition
For the spin chain of length 2` with interaction
hx,x+1 = −uTx,x+1 − Qx,x+1, we have:

(a) Tre−2βH` = e2β(1+u)(2`|−1)Z (β, `, u).

(b) For all 1 ≤ α < α′ ≤ n, we have

Tr Lα,α
′

x Lα,α
′

y e−2βH`

= 2
ne

2β(1+u)(2`|−1)

∫
Ω`,β

dρu(ω) nL(ω)−|ω |(1l[x −←→ y ]− 1l[x
+←→ y ]

)
.
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short loops, long loops, winding loops

`

β

−β
−`+1

- the winding loop are those that
are not contractible (blue and
orange)

- the long loops are those that are
winding or visit 3 or more sites
(red, blue, orange)

- short loops are those that are
not long (green, brown, purple)

For large β, winding loops become negligible.

If there were only short loops, the measure would clearly be dominated by
a perfectly dimerized state.

The challenge is to show that dimerization survives in spite of the
non-vanishing contributions of long loops.
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Contours
In the case u = 0, long loops can serve as contours separating one
dimerized phase from the other:

The short loops outside and inside
the contour are out of phase.
A Peierls argument using such
contours was used to prove
dimerization for n ≥ 17
(N-Ueltschi, 2017).
Later, special properties of the
random loop measure were used
to prove dimerization for all n ≥ 3
(Aizenman, Duminil-Copin, Warzel,

2020).
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Clusters
For u 6= 0, configurations contain crosses ( ), which may be crossings of
different loops or self-crossings. Similarly, the top and bottom part of a
double bar ( ), may belong to the same loop or to different loops. Since
these distinction are non-local, we define clusters of long loops that share
a or a .

As in the case u = 0, the short loops describe the reference dimerized
states. A convergent cluster expansion of the partition function is the
tool that allows us to prove that short loops dominate (for large n and
small |u|).
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Other spin chains
What if we kept the basis where the dominating term is −P(0) (the
SU(n) chain, the Temperley-Lieb chain)?
For odd n the the singlet state on which P := P(0) projects, and the
model is unitarily equivalent, including the term −uT .
For even n, the singlet state is anti-symmetric. There is no translation
invariant change of basis that will transform into something of the form
Q we used so far, but there is an alternating one:

(1l⊗ V )P(1l⊗ V ∗) = Q, and (V ⊗ 1l)P(V ∗ ⊗ 1l) = Q

with
V |α〉 = (−1)S−α| − α〉.

Therefore the chains with interactions uT + vP are unitarily equivalent to
chains with interactions uT̃ + vQ. It turns that T̃ satisfies

T̃ = (1l⊗ V )T (1l⊗ V ∗) = (1l⊗ V )(V ∗ ⊗ 1l)T = −(V ⊗ V )T .



25

In comparison to T , T̃ introduces additional signs associated with
crosses in the definition of the measure.

α

α

α

α

−α

−α

−α−α
−α

factor 〈α|V | − α〉 = (−1)S+α

factor 〈−α|V |α〉 = (−1)S−α

Figure: Left: the crosses are separated by an even number of double bars which
yields the factor (−1)S−α(−1)S+α = −1. Right: the crosses are separated by
an odd number of double bars which yields the factor 1.

This changes the measure and the ground states but, fortunately, no
requires no change in the analysis to prove all the analogous results for
this family of spin chains.
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Discussion

I The proofs rely on an expansion of e−βH as an integral over random
loop configurations on Z× R with respect to a measure that is
positive for u ≥ 0 and signed for u < 0. Uses a cluster expansion.

I Stability of the frustration-free point in the phase diagram can be
proved by the Bravyi-Hastings-Michalakis strategy adapted to
situations with symmetry broken ground states.

I Stability is a non-trivial property.

I Topic of current research: characterize periodic ground state phases.


