

SNAKING OF CONTACT

 DEFECTSTimothy Roberts

Brown University

Bjorn Sandstede
Brown University

OUTLINE

Motivation

The Brusselator and Contact Defects

Swift-Hohenburg
\square
\square Brusselator

Future Directions

MOTIVATION

[Glass 1996] Electrochemical potentials of the heart.

[Ertl 1991] Oxidation layers on platinum alloys.

We are interested in the existence, stability and interaction of spiral and target waves.
[Lee et al. 1996] Slime mould populations

11: 45

MOTIVATION

[Perraud et al. (1993)] (a) Experimental space-time diagram of the CIMA reaction. (b-d) Numerical results obtained from the Brusselator

THE BRUSSELATOR

$$
\begin{aligned}
U_{t} & =D U_{x x}+E-(B+1) U+V U^{2} \\
V_{t} & =V_{x x}+B U-V U^{2}
\end{aligned}
$$

"prototype of any system leading to dissipative structures... analagous to the harmonic oscillator as a prototype in classical or quantum

mechanics."
[Auchmuty and Nicholis (1975)]

THE BRUSSELATOR

- Tzou et al (2013) noticed that contact defects
exist and appear to snake

SWIFT-HOHENBERG

$$
U_{t}=-\left(1+\partial_{x}^{2}\right)^{2} U-\mu U+\nu U^{2}-U^{3} \quad[\text { Beck et al (2009) }]
$$

- Standing waves: time derivative zero
- 4-dim phase space

PDE Solution

SWIFT-HOHENBERG

$$
U_{t}=-\left(1+\partial_{x}^{2}\right)^{2} U-\mu U+\nu U^{2}-U^{3} \quad[\text { Beck et al (2009)] }
$$

- Standing waves: time derivative zero
- 4-dim phase space

PDE Solution

Phase Space

SWIFT-HOHENBERG

$$
U_{t}=-\left(1+\partial_{x}^{2}\right)^{2} U-\mu U+\nu U^{2}-U^{3} \quad[\text { Beck et al (2009)] }
$$

- Standing waves: time derivative zero
- 4-dim phase space

PDE Solution

S W IF T - H O H E N B ER G

$$
U_{t}=-\left(1+\partial_{x}^{2}\right)^{2} U-\mu U+\nu U^{2}-U^{3} \quad[\text { Beck et al (2009)] }
$$

- Standing waves: time derivative zero
- 4-dim phase space

PDE Solution

SWIFT-HOHENBERG

[Beck et al (2009)]

Snakes of symmetric solutions joined by "rungs" of asymmetric solutions.

INFINITE DIMENSIONS

$$
\begin{aligned}
& u_{t}=D u_{x x}+f(u) \\
& \quad \\
& \quad \downarrow \\
& u_{x}=v \\
& v_{x}=D^{-1}\left(u_{t}-f(u)\right)
\end{aligned}
$$

- The Brusselator can be written as a first-order equation
- We cannot remove the time derivatives.
- Our phase space is the space of periodic functions.
- We still have geometry!

INFINITE DIMENSIONS

PDE Solution

Phase Space

INFINITE DIMENSIONS

PDE Solution

Phase Space

INFINITE DIMENSIONS

PDE Solution

Phase Space

THE BRUSSELATOR

Prediction:

- Asymmetric solutions exists in 2-parameter families.
- They travel at small speeds and have variable wavenumber and phase shifted background states.

FUTURE DIRECTIONS

- Numerics: Can we verify our predictions hold?
- How do the asymmetric solutions connect?
- Source Defect case
- Spectrum and Stability

[Perraud et al (1993)]

REFERENCES

- Auchmuty, J. F. G., \& Nicolis, G. (1975). Bifurcation analysis of nonlinear reaction-diffusion equations-I. Evolution equations and the steady state solutions. Bulletin of Mathematical Biology, 37(4), 323-365. https://doi.org/10.1007/BF02459519
- Beck, M., Knobloch, J., Lloyd, D. J. B., Sandstede, B., \& Wagenknecht, T. (2009). Snakes, Ladders, and Isolas of Localized Patterns. SIAM Journal on Mathematical Analysis, 41(3), 936-972. https://doi.org/10.1137/080713306
- ErtI, G. (1991). Oscillatory Kinetics and Spatio-Temporal Self-Organization in Reactions at Solid Surfaces. Science, 254(5039), 1750-1755. https://doi.org/10.1126/science.254.5039.1750
- Glass, L. (1996). Dynamics of Cardiac Arrhythmias. Physics Today, 49(8), 40-45. https://doi.org/10.1063/1.881510
- Lee, K. J., Cox, E. C., \& Goldstein, R. E. (1996). Competing Patterns of Signaling Activity in Dictyostelium Discoideum. Physical Review Letters, 76(7), 1174-1177. https://doi.org/10.1103/PhysRevLett.76.1174
- Perraud, J.-J., De Wit, A., Dulos, E., De Kepper, P., Dewel, G., \& Borckmans, P. (1993). One-dimensional "spirals": Novel asynchronous chemical wave sources. Physical Review Letters, 71(8), 1272-1275. https://doi.org/10.1103/PhysRevLett. 71.1272
- Tzou, J. C., Ma, Y.-P., Bayliss, A., Matkowsky, B. J., \& Volpert, V. A. (2013). Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model. Physical Review E, 87(2), 022908. https://doi.org/10.1103/PhysRevE.87.022908

SWIFT-HOHENBERG:

EQUILIBRIA

Persistence: Nearby the fronts - we
find defects.

SWIFT-HOHENBERG:
SNAKING

