Concept Whitening for Interpretable Image Recognition

Interpretable ML Lab, Duke University

Zhi Chen

Juke

Cynthia Rudin

concept based - human reason in concepts

• Single neuron (Zhou et al, 2014; 2018)

impure!

• Single neuron (Zhou et al, 2014; 2018)

single neuron of standard NN - single concept

- Linear combination of neurons (Kim et al, 2017; Zhou et al, 2018)
 - better than single neuron

- Linear combination of neurons (Kim et al, 2017; Zhou et al, 2018)
 - reality: concept vectors may point to the same direction

The idea

- Why not do it by ourselves?
- Create a disentangled latent space that its axes represent known concepts

- Step 1: Whitening transformation
 - Decorrelate the latent space
 - Separate the concepts
- Step 2: Rotation transformation
 - Align the concepts to corresponding axes
 - Maintain the decorrelation property

Mean-centered latent features

$$\widetilde{Z}_{d \times n} = Z_{d \times n} - \mu \, \mathbf{1}_{n \times 1}^{T}$$

Learning the parameters

• Sample mean μ and whitening matrix W

- Training phase: compute on the fly, support back-propagation (Huang et al)
- Testing phase: exponential moving average of mini-batches (loffe & Szegedy)
- Orthogonal matrix ${oldsymbol Q}$
 - maximizing concept activation under orthogonality constraint

$$\max_{\boldsymbol{q}_{1},\boldsymbol{q}_{2,...,q_{k}}} \sum_{j=1}^{k} \frac{1}{n_{j}} \boldsymbol{q}_{j}^{T} \boldsymbol{W} \boldsymbol{Z}_{c_{j}} \boldsymbol{1}_{n_{j} \times 1}$$

s.t. $\boldsymbol{Q}^{T} \boldsymbol{Q} = \boldsymbol{I}_{d}$

 Z_{c_j} : samples of concept j $W Z_{c_j}$: after whitening $q_j^T W Z_{c_j}$: projection on axis j $\frac{1}{n_j} q_j^T W Z_{c_j} \mathbf{1}_{n_j \times 1}$: average activation

Q can be trained by gradient descent on Stiefel manifold (Wen & Yin, 2013)

What's the cost of interpretability?

Main task performance

- accuracy is on par with standard CNNs
 - different datasets, backbone architectures, layers, #concepts
- warm-start from pretrained model
 - replace BN with CW
 - only one additional epoch of further training

What do the learned concepts look like?

Most activated

16th layer

• Not only objects - weather

• Not only objects - material

2nd layer Most activated airplane bed I'YYYY SOI

How to quantitatively measure the quality of the learned concepts?

Concept separation

Concept separation

directly build a concept

BatchNorm (avg inter-sim = 0.74)

uke

auxiliary concept classification loss (avg inter-sim = 0.74)

CW (avg inter-sim = 0.05)

- 1.0

-0.8

- 0.6

-0.4

- 0.2

- 0.0

AUC of the activation measures concept purity

Concept purity

What can we use this model for?

Reasoning process

airplane

airplane

Concept importance

• Variable importance of axis j

Concept importance

- Scene classification
 - Places365

Concept importance

- Skin lesion malignancy
 - ISIC dataset
 - axis 1: age < 20
 - axis 2: size >= 10 mm
 - not most important

Model intervention and editing

- Concept Bottleneck Model (Koh et. al , 2020)
 - they didn't disentangle
 - concept-based models can do test-time intervention

doctors can change the model when it is wrong

Summary: Concept Whitening

- Better interpretability
 - concepts are disentangled in the latent space
- > No sacrifice in accuracy
 - accuracy is on par with standard CNNs
- ► Easy to use

ike

- warm-start from pretrained model requires only one additional epoch of further training

Links

- Nature Machine Intelligence paper
 - https://rdcu.be/cbOKj
- ≻ Code
 - https://github.com/zhiCHEN96/ConceptWhitening

Thank you

Zhi Chen

Yijie Bei

Cynthia Rudin

Thank you to Carlo Tomasi, Guillermo Sapiro, Wilson Zhang, Lesia Semenova, Harsh Parikh, Chudi Zhong, and Oscar Li.

Funded by MIT-Lincoln Laboratory and the National Science Foundation

