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Physics and ML are concerned 
with characterizing the true 
probability distributions of 

nature, how do we understand 
which model is most accurate 

and predictive? 
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Particle Physics 
Data
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Particle Physics Data
• The Standard Model 

mathematically (probabilistically) 
describes the fundamental 
constituents of all visible matter 
and most forces in the universe
• But there are still many open 

questions and tensions between 
predictions and nature

• We use the Large Hadron Collider 
to collect massive datasets to 
study these tensions

1. Accelerate protons to .99x the speed 
of light

2. Collide the accelerated particles
3. E=mc2, so the high energy collisions 

create rare, exciting particles
4. Measure the decay products with 

specialized detectors.
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Particle Collisions at the LHC
1. Accelerate charged particles (electrons, protons) to .99x the speed 

of light!
2. Collide the accelerated particles
3. E=mc2, so the high energy collisions create rare, exciting particles

(sometimes).
4. Measure the decay products with specialized detectors.

Savannah Thais  05/05/2022 5



Particle Physics and ML
Raw data consists of energy deposits in different types of 

detectors, specialized software must then reconstruct what 
happened in the original collision 
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1. Object construction: identify 
detector data belonging to 
individual particle and its decays

2. Object identification/tagging: 
identify what type of particle 
created the reconstructed data 

3. Event reconstruction: using 
physics knowledge, extrapolate to 
what likely happened at the original 
collision

• All of these steps are inherently 
probabilistic

• We ultimately want to know if the 
model is discovering something 
new about the universe
• And if it’s respecting what we already 

know 
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Feature 
Importance and 

Relevance 
Propagation
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Particles as Images
• Heavy particles hadronize into collimated sprays (jets) and 

are absorbed in the granular calorimeter 
• Want to distinguish different types of jets based on their energy patterns

• Can achieve higher classification accuracy using CV
• Standard approach uses cuts on physics-inspired features

• ‘Unroll’ the detector and map each cell to an image pixel
• Apply preprocessing (normalization, rotation, translation) to standardize
• Train CNN to classify jets (simplify to binary classification)

Savannah Thais  05/05/2022

paper

8

mailto:https://arxiv.org/abs/1511.05190


CNN Interpretation
• Look at correlation of CNN output with standard 

physics features à it’s learning thing we expect to be 
important 

• Look at average of images with highest activations 
for last hidden layer à presence of secondary core is 
informative 

• Look at per pixel correlation with CNN output (doesn’t 
map to a known physical function)
• Reweight samples to remove known physical variables à

the radiation around the second core seems to matter
• Look at only jets with W-like mass à radiation between 

cores seems to matter à learning about color flow? 
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Adding In Expertise
• Augment the CNN with physics-

motivated features after initial prediction
• Use LRP to understand what information 

the network is using
• Can you replace the learned representation 

with engineered features
• Demonstrates the network learns 

expected physical relationships
• But image representation is most important 

feature à some new information
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Implications and Limitations
• We can (sort of) check if a model is learning about 

physics features we know

• But how do we interpret what else it is learning
• No clear way to map image relevances to mathematical information

• No way to identify if relevances are due to true 
generalizable physics or statistical artifacts 

• These methods don’t characterize model performance on 
edge cases or difficult samples 
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Using Physics 
Knowledge as a 

Basis
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Building a Physical Model
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• Can look at the classification probability at 
different branchings to understand what 
information is relevant to the decision
• Expected three prong structure is most 

important
• Can look at what information is used at 

each branching
• Multiplicity matters most, but angle (width) 

also contributes 

• JUNIPR builds jets by clustering components into a binary tree
• Then learns the probability of that clustering being found in the sample
• Maximize the log likelihood over the training data (can be used for 

discrimination with likelihood ratio thresholding)
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Constructing Learned Information
• Use a CNN trained on low level information (jet images) to guide the 

construction of a simplified classifier based on high level interpretable 
features
• Use average decision ordering to maximize the similarity between the 

decision boundaries of the two models 
• Use a black box guided search: iteratively selecting HL features that 

maximize ADO with the LL classifier
• At each search step separate samples where HL and LL classifiers disagree

• The bulk of the CNN’s power can be captured by 6 known jet features

Savannah Thais  05/05/2022

paper

14

mailto:https://arxiv.org/abs/2010.11998


Constructing Learned Information
• Define a basis space that captures a broad spectrum of physically 

interpretable information
• Energy Flow Polynomials (EFPs): functions of momentum fraction of 

calorimeter cell and pairwise angular distance between cells
• Define a subspace of samples where 6-feature NN did not match 

CNN performance and search for EFP with max ADO
• Identifies a new EFP that seems to help on edge cases 

• Can use black box guided search directly on space of EFPs
• Some EFPs identified are substantially different than traditional jet features
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Implications and Limitations
• These methods give us a specific quantification on what the 

network is learning in terms of what we already know

• By directly parametrizing the information in terms of known 
features we ensure learned information is not a statistical 
artifact

• Building a robust classifier with a reduced feature set enables 
better uncertainty quantification 

• For some problems we don’t have a nice basis space of 
features to search over
• These bases don’t provide full coverage, unable to characterize other 

learned information 
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Mapping Back to 
Math
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Symbolic Regression
• Finds an analytic equation that mimics 

the predictions of a trained ML model
• Find the analytic function that maps your 

inputs to the outputs of your model
• By cleverly setting up your ML model you 

reduce the space of functions to search over
• Typically done with a genetic algorithm

• Recursively build a function using basis 
space of input variables, operators, and 
constants (through crossover and mutation)

• Minimize error between function and ML 
prediction

• Result is a set of possible equations 
• Can enforce constraints like penalizing 

complexity
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Learning Astrophysics
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Extracting the Physics

• Apply symbolic regression to the GNN messages (forces) with a 
constraint to balance accuracy and equation complexity

• Can substitute learned equation for the force guess to improve the 
simulator and the mass predictions (node predictions)
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Implications and Limitations
• This process had been successfully applied to more complex 

systems (estimating galaxies dark matter halo)

• ‘New’ equations could be used to guide future experiments
• Can we validate an equation’s predictions are accurate, does it describe a 

new particle or force with additional implications?

• How do we know which equation to pick (smallest error might not 
always be the correct equation)
• Simplicity of an equation as a decision factor is a big assumption 

• How do we decide what constraints and priors to incorporate into 
the model
• Doesn’t allow for the possibility that any of these constraints are wrong

• How do you account for uncertainties/mismodelings in the 
synthetic data or reconstruction software
• Is the ML model decision actually describing nature 
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My Current 
Problem
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Equivariance in GNNs
• Many physics datasets are 

governed by natural 
symmetries
• Invariance: output of a model 

doesn’t change when inputs 
transformed under symmetry

• Equivariance: output of model 
changes in a specific way when 
inputs transformed under symmetry  

• Constraining the functions 
learned by a network could 
help reduce model size and 
training resources 
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VecNet
Built an architecture that abstracts out different GNN design 

choices (including equivariance) as hyperparameters 
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Building the Most Efficient Model
• Looked at top jet tagging

• Each jet candidate has up to 200 
constituents 

• Enforced Lorentz equivariance 
• Described by O+(1,3) group

• Conduct hyperparameter sweep 
and importance analysis on 
accuracy and ant factor
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https://zenodo.org/record/2603256


Semi-Equivariance
We find there is a non-trivial optimum combining equivariant 

and non-equivariant information 
• Most resource efficient configuration combined 4 hidden channels, 2 

vector channels, and 8 scalar channels 
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What to do?
• Want to characterize what the non-equivariant model 

channels are learning 

• Thought: is this just a feature of constrained optimization 
problems being harder to solve? 

• Ideas:
• Local white-box approximators (but EFPs and other jet features 

should be equivariant)
• Graph rewiring (does changing the allowed information flow affect 

the decision)
• Relevance propagation (but how to interpret)
• Suggestions?!
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Thank you! 
•Happy to answer any questions!

• sthais@princeton.edu @basicsciencesav
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E(N) Approach to Equivariance
• Develops an architecture that is translation, rotation, 

and reflection equivariant
• Without requiring parameterizing the basis space of the 

model transformations using spherical harmonics/group 
representations

• Provides relative square distance of node 
coordinates (equivariant quantity) as input to the 
edge convolution
• Node positions are updated as weighted sum of relative 

distance
• Maintains equivariance without limiting the space of 

convolutions (better expressivity)
• Can extend to vector quantities on nodes 
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