INTERPRETABLE Al IN PHYSICS

Savannah Thais
BIRS Interpretability in Al Workshop
05/05/2022

O’




Physics and ML are concerned
with characterizing the true
probability distributions of

nature, how do we understand

which model Is most accurate
and predictive?
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Particle Physics
Data



Particle Physics Data

- The Stand o 009 @ H
mathematically (probabilistically) up charm top guon | Higgs
describes the fundamental A [ [ [
constituents of all visible matter - @ ® -0 @
and most forces in the universe down J{_stenee J{_Sotem photon

. But there are Still many Open f)1.511MeVch :1105.7MeV/(:2 :11.777GeVch (9)1.2GeVlc7'
questions and -9 .. W|.® | @ 2
electron muon tau Z boson 8
W th 2 <2.2eV/c? <0.17 MeV/c? <15.5 MeV/c? 80.4 GeV/c? 8

- ywveuseine .. W .| ®
tO CO”eCt tO T electron mlil(_)h t?l_Jr W boson 3

. | neutrino neutrino neutrino (U]
study these tensions

1. Accelerate protons to

L = '% Wp,v WMv = % Buv Bp\/ = % Gp,v G[.lV
2. the accelerated particles + W (i8-8 Wu—g YiBu—g TGy ) W

3. E=mc?, so the high energy collisions
0w b 12+ [ 12-2] ¢ |*

4. the decay products with
yP - (viwii o Wir + Viyide pr + conjugate )
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Particle Collisions at the LHC




Particle Physics and ML

Raw data consists of energy deposits in different types of
detectors, specialized software must then reconstruct what

happened in the original collision I
1. Object construction: identify Parton level '
detector data belonging to i
individual particle and its decays g |
2. Object identification/tagging: Al S | =
identify what type of particle “ ‘p\ FREiR t  Erisiay doposifciia
created the reconstructed data . S

3. Eventreconstruction: using
physics knowledge, extrapolate to
what likely happened at the original
collision

- All of these steps are inherently
probabilistic

- We ultimately want to know if the

model is discovering something
new about the universe

- And if it's respecting what we already
know

Charged Hadron (e.g.Pion)
— — — - Neutral Hadron {e.g. Neutron)
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Feature
Importance and
Relevance
Propagation
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Particles as Images

- Heavy particles hadronize into collimated sprays (jets) and
are absorbed in the granular calorimeter
- Want to distinguish different types of jets based on their energy patterns

- Can achieve higher classification accuracy using CV
- Standard approach uses cuts on physics-inspired features

- ‘Unroll’ the detector and map each cell to an image pixel
- Apply preprocessing (normalization, rotation, translation) to standardize
- Train CNN to classify jets (simplify to binary classification)

250 < pT/GeV <300 GeV, 65 < mass/GeV <95
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Correlation of Deep Network output with pixel activations.
1V €[250,300, matched to QCD, my, €(65,95) GeV

CNN Interpretation T
- Look at correlation of CNN output with standard
physics features - it's learning thing we expect to be : -
important - - o]
- Look at average of images with highest activations ] i
for last hidden layer - presence of secondary core is = 9w o o "

informative

Correlation of Deep Network output with pixel activations.
pf’ €[250,300] matched to QCD, my, €(65,95 GeV

- Look at per pixel correlation with CNN output (doesn't
map to a known physical function) o

- Reweight samples to remove known physical variables - 3 =
the radiation around the second core seems to matter i = ok
- Look at only jets with W-like mass > radiation between 1 L
cores seems to matter = learning about color flow? .

250 < pT/GeV <300 GeV, 65 <mass/GeV <95

QCD, 15=13TeV,Pythia8 99.33% signal 99.33% signal 99.00% signal 99.33% signal

4
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Adding In Expertise

« Augment the CNN with physics-
motivated features after initial prediction
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- Use LRP to understand what information

the network is using

- Can you replace the learned representation
with engineered features

- Demonstrates the network learns
expected physical relationships

- But image representation is most important
feature 2 some new information
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Implications and Limitations

- We can (sort of) check if a model is learning about
physics features we know

- But how do we interpret what else it is learning
- No clear way to map image relevances to mathematical information

- No way to identify if relevances are due to true
generalizable physics or statistical artifacts

- These methods don’t characterize model performance on
edge cases or difficult samples
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Using Physics
Knowledge as a
Basis
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Building a Physical Model

- JUNIPR builds jets by clustering components into a binary tree

- Then learns the probability of that clustering being found in the sample
- Maximize the log likelihood over the training data (can be used for

discrimination with likelihood ratio thresholding) PO (K [k, ) = Pana (fasc] ) ®
. e . - X Panother (m® "))
- Can look at the classification probability at _ P (KR ) 10)
different branchings to understand what =~ 2% =«
information is relevant to the decision P “k=z
. o theta
- Expected three prong structure is most P k = phi
important B 5 ol T hsulelie
- Can look at what information is used at £ I
each branching & 100 =

- Multiplicity matters most, but angle (width) 0 20 4§ramhmg E?QP :

e hard scattering
n .53
.51
0.51
partonic decays, e.g. .52
t — bW E((O.Sl
e parton shower 0.51 o sy/o.sl
luti .
evolution _ 050 0.72 0.71 . e .
0.46 ; \L\m 51
0.53 e sep—=25L 051
0.50 0. 51\0 51
e colour singlets .52
e colourless clusters %
e cluster fission (i
0.5
st

0.52

1
20 GeV 500 GeV paper
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mailto:https://arxiv.org/abs/1906.10137

Constructing Learned Information
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- Use a CNN trained on low level information (jet images) to guide the

construction of a simplified classifier based on high level interpretable

features

- Use average decision ordering to maximize the similarity between the

decision boundaries of the two models

- Use a black box guided search: iteratively selecting HL features that

maximize ADO with the LL classifier
- At each search step separate samples where HL and LL classifiers disagree

- The bulk of the CNN’s power can be captured by 6 known jet features
~ g("))

Signal/Background Pairs

DO[f, g](z, z")

ADO[fa g] = /dZE dz’ psig(l') pbkg(x/) DO[f, g] (:Ea xl)‘

BBN

No

Yes

BBN

Black-Box
Guided
Search

Observable AUC ADO|[CNN, Obs.]
M. 0.898 £ 0.004 0.807
Ol 0.660 & 0.006 0.584
@ 0.604 + 0.007 0.548
D=1 0.790 + 0.005 0.743
=2 0.807 =+ 0.005 0.762
=1 0.662 =+ 0.006 0.600
6HL 0.9504 + 0.0002 0.971
CNN 0.9531 =+ 0.0002 1.000
488HL 0.9535 + 0.0002 0.978
7HLblack-box 0.9528 £ 0.0003 0.971



mailto:https://arxiv.org/abs/2010.11998
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Constructing Learned Information

- Define a basis space that captures a broad spectrum of physically
interpretable information

- Energy Flow Polynomials (EFPs): functions of momentum fraction of
calorimeter cell and pairwise angular distance between cells

- Define a subspace of samples where 6-feature NN did not match
CNN performance and search for EFP with max ADO

- Identifies a new EFP that seems to help on edge cases

- Can use black box guided search directly on space of EFPs
- Some EFPs identified are substantially different than traditional jet features

Tteration ()] EFP | kB Chrom #|ADO[EFP,CNN]x, , AUC[EFP][ADOHLN,, CNNx,, AUC[HLN,]

0 My +pr| - - - - - 0.9259 0.9119
1 2 I 3 0.8144 0.8190 0.9570 0.9382
941 2 / 02 2 0.6377 0.8106 0.9673 0.9458
O :
3 J === Black-box Guided 3 C 0 - 1 0.5460 0.6737 0.9692 0.9476
0.931 4 —— Brute Force o2e .
‘ _ 4 —r |11 2 0.5274 0.8464 0.9712 0.9487
—— Truth Guided :
0.921 --- CNN 5 S S R | 0.5450 0.5882 0.9714 0.9504
""" 6 HL 6 11y 4 0.5382 0.7678 0.9734 0.9523
0.91
7 > |-1i 2 0.5561 0.5957 0.9741 0.9528
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Implications and Limitations

- These methods give us a specific quantification on what the
network is learning in terms of what we already know

- By directly parametrizing the information in terms of known
features we ensure learned information is not a statistical
artifact

- Building a robust classifier with a reduced feature set enables
better uncertainty quantification

- For some problems we don’t have a nice basis space of
features to search over

- These bases don’t provide full coverage, unable to characterize other
learned information
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Mapping Back to
Math



Savannah Thais 05/05/2022 18

fx)=x

Symbolic Regression

- Finds an analytic equation that mimics —%
the predictions of a trained ML model fo =% 032

- Find the analytic function that maps your
inputs to the outputs of your model

- By cleverly setting up your ML model you
reduce the space of functions to search over £06) = cos(x — 0.32)
- Typically done with a genetic algorithm '

- Recursively build a function using basis
space of input variables, operators, and
constants (through crossover and mutation)

- Minimize error between function and ML

®

7S

'>a

prediction f(x) = x + cos(x — 0.32)
- Result is a set of possible equations ° )
- Can enforce constraints like penalizing >

complexity
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Learning Astrophysics u,, z,

1. Our inputs are the
positions of the bodies

2. They are converted
into pairwise distances

3. Our model tries to
guess a mass for
each body

4. It then also guesses a
force, that is a

function of distance — —
and masses M2’ an M3, aj
5. Using Newton’s laws of 6. Finally, it compares this
motion F=Ma predicted acceleration,
_ (Z ) with the true Mﬂm'zed _ )1/
!t converts tht_e forces acceleration from the a(pred) — a(true
into accelerations data
paper


mailto:https://arxiv.org/abs/2006.11287
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Learning Astrophysics

Legend

o Data Vector
O Latent Vector

Il Ncural Network (MLP)

Graph Network
Nodes

Pairs of nodes
Edge model (¢°)
—--- Messages (e])

Pool
Concatenate with node
Node model (")

Updated nodes

Output state

' Approximate with
symbolic regression

Analogy to
Newtonian Mechanics

Particles
Two interacting particles (i, j)
Compute force F;

Sum into net force F ¢ ;

Acceleration a; = F e, i /m;
Compute next timestep
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Extracting the Physics

g
o
1

=
> x
5 - (r+Cy) &
825 N E
E. Fr+C1)] W
1z ~

Co) - (Cszl—") =

2.0 1 , 3
: Cimgmyx HE‘
%? - - C,‘,n:q.m]:r l“
8 ' - Cl + Con:g myzT ::-
< 8
- -
© 1.0 - l I
I ] 5
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Ugj 0.5 -5 T

l l 1 gl — NN + SR
Newtonian gravity
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- Apply symbolic regression to the GNN messages (forces) with a
constraint to balance accuracy and equation complexity

- Can substitute learned equation for the force guess to improve the
simulator and the mass predictions (node predictions)
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Implications and Limitations

 This process had been successfully applied to more complex
systems (estimating galaxies dark matter halo)

- ‘New’ equations could be used to guide future experiments

- Can we validate an equation’s predictions are accurate, does it describe a
new particle or force with additional implications?

- How do we know which equation to pick (smallest error might not
always be the correct equation)

- Simplicity of an equation as a decision factor is a big assumption

« How do we decide what constraints and priors to incorporate into
the model

- Doesn’t allow for the possibility that any of these constraints are wrong

- How do you account for uncertainties/mismodelings in the
synthetic data or reconstruction software

- Is the ML model decision actually describing nature
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My Current
Problem




Savannah Thais 05/05/2022 24

Equivariance in GNNs

Invariance Equivariance
flpg(x)) = f(x) fpg(x)) = pg (f(x))
- Many physics datasets are ¥ X

governed by natural

.
symmetries ;
- Invariance: output of a model f
doesn’t change when inputs y 4 y L
transformed under symmetry
- Equivariance: output of model PR

changes in a specific way when
inputs transformed under symmetry =t.
- Constraining the functions
learned by a network could
help reduce model size and
training resources
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VecNet

Built an architecture that abstracts out different GNN design
choices (including equivariance) as hyperparameters

=
> |
o | L+ (0,1)
> | {
edges
—
> g scalars
g d Si41,
9 vectors
g mg hidden
5 v v =
i
=
o
Ll My
E h 8 O(h @ 1299 B
w

Paper
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Building the Most Efficient Model

¢ LOOked at tOp Iet tagglng The effect of a Lorentz boost in the z-direction,

- Each jet candidate has up to 200 ¢ v —y 0 0\ [t
: 2y |-ywv v 00]]|=z i
constituents ] S A - T=—
: - ! g i iDha
- Enforced Lorentz equivariance ? =
N Descrlbed by O+(1 ,3) group Spacetlme interval:
w2 0 0\2 3 ' 1\ 2
- Conduct hyperparameter sweep vg =" = (o = 1)" = 2 (v — i)
and importance analysis on accuracy €5
ant = e - .
daccuracy and ant factor model size  Nparams
Hyperparameter AUC Ant Factor
Importance Coefficient Importance Coefficient ioqel Accuracy AUC €5 Nparams Ant
Hidden width 0.344 0.044 0.443 -0.092 RcchXt 0.936 0.984 1122+47 1.46M 0.0007
Vector width 0.193 -0.055 0.232 Qi e U e a T as P
Scalar width 0.194 -0.005 0.226 -0.056 LGN 0920 0964 43595 45k 0.007
Batch norm 0.017 -0.006 0.016 -0.01 VecNet (Ours) 0935 0984 4046 633k 0.006
Layer norm 0.029 0.006 0.034 -0.001 0931 0981 3482 1ok 0229
Num. node layers 0.157 0.126 0.01 0.014
Num. edge layers 0.056 0.036 0.023 0.01

LR decay factor 0.012 -0.057 0.016 0.086
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Semi-Equivariance

We find there is a non-trivial optimum combining equivariant
and non-equivariant information

- Most resource efficient configuration combined 4 hidden channels, 2
vector channels, and 8 scalar channels
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51-114 F-125F 51-114
G 09800 &
£ 225 e £ 2251 g
c © e
< -175< 0.9795
> 1022 = 2 1022 S
= ‘ ‘ 200 ® = =
-2. =
g 4.10 ‘_C3 g 4.10 0.9790 ©
=225 8 E
2-4 E 2-4 09785
-2.50
0-2 0-2 0.9780
-2.75

2-4

~N
(=]

02

4-10

10-22
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—
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<

2251

51-114

114-255
10-22

22-51
51-114
114-255

Hidden Width Higden Width
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What to do?

- Want to characterize what the non-equivariant model
channels are learning

- Thought: is this just a feature of constrained optimization
problems being harder to solve?

. |deas:

- Local white-box approximators (but EFPs and other jet features
should be equivariant)

- Graph rewiring (does changing the allowed information flow affect
the decision)

- Relevance propagation (but how to interpret)
- Suggestions?!
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Thank yout!

Happy to answer any questions!

DX sthais@princeton.edu £/ @basicsciencesav
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E(N) Approach to Equivariance

- Develops an architecture that is translation, rotation,
and reflection equivariant . .
+ Without requiring parameterizing the basis space of the ™~ . (BB, x| ai:)
model transformations using spherical harmonics/groupx"" =x+C_ (xi =) ¢ (my;)
representations 5 =t
- Provides relative square distance of node e
coordinates (equivariant quantity) as input to the  &*' = ¢ (i, m)
edge convolution
- Node positions are updated as weighted sum of relative

distance
- Maintains equivariance without limiting the space of vi1_ 4, m)vits o3 (- x) 6, (my)
convolutions (better expressivity) A
- Can extend to vector quantities on nodes H Y
Original Paper
| | GNN | Radial Field | TEN | Schnet | EGNN ]
Bge | mi; = dc(hlibliag) | mi; = aalir ey | mo = S Wbt | my = outir el | ™9 = el 5 liv 1% aig)
m;; = r,')(.'—).r(m'j)
Age m; = eN () ™ii my = 3 jeki M m; = 3 j5i Mij m; =35 Mij mm __(;):j;f mmJJ
Node | Bl gunlm) | xl=xiim | B —wlRiime | BEFN = gu(nl,mo) A o)

| | Non-eguivariant | E(n)-Equivariant | SE(3)-Equivariant | E(n)-Invariant | E(n)-Equivariant
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