Sample-Specific Models for Interpretable Analysis with Applications to Disease Subtyping

May 5, 2022 Banff International Research Station

Ben Lengerich, <u>blengeri@mit.edu</u> Computational Biology Lab, MIT

NYU Langone

Health

"Death by Round Numbers"

Microsoft^{*}

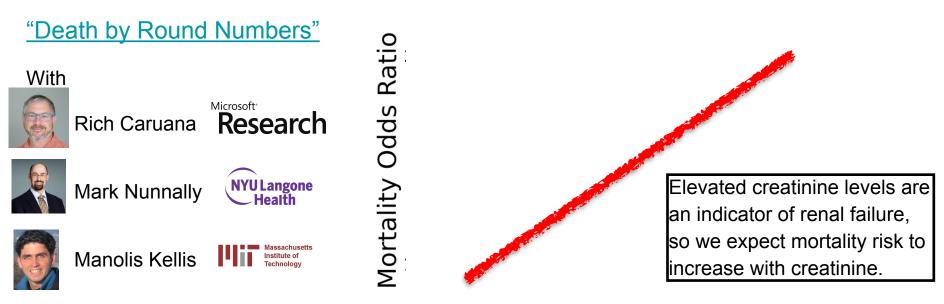
"Death by Round Numbers"

Elevated creatinine levels are an indicator of renal failure, so we expect mortality risk to increase with creatinine.

Elevated creatinine levels are an indicator of renal failure, so we expect mortality risk to increase with creatinine.

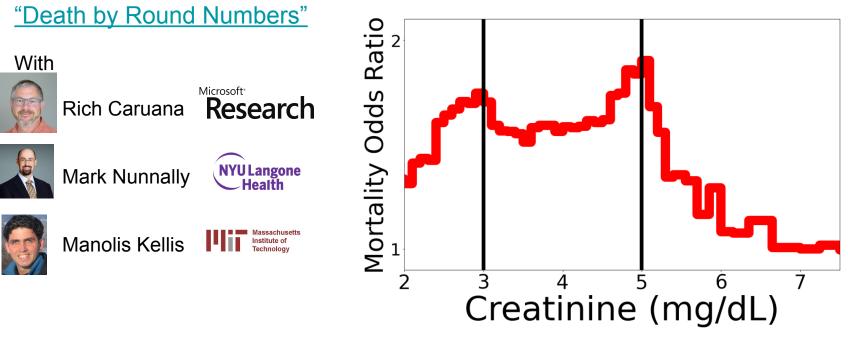
Creatinine (mg/dL)

Computer Science and Artificial Intelligence Lab



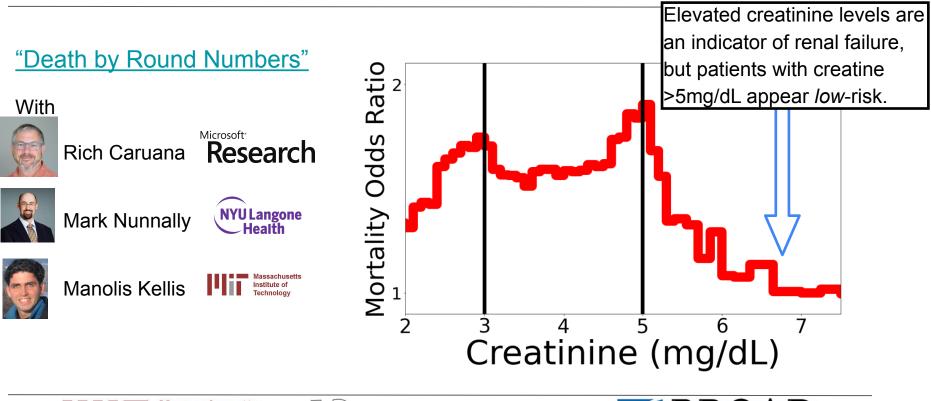
Creatinine (mg/dL)

Creatinine (mg/dL)



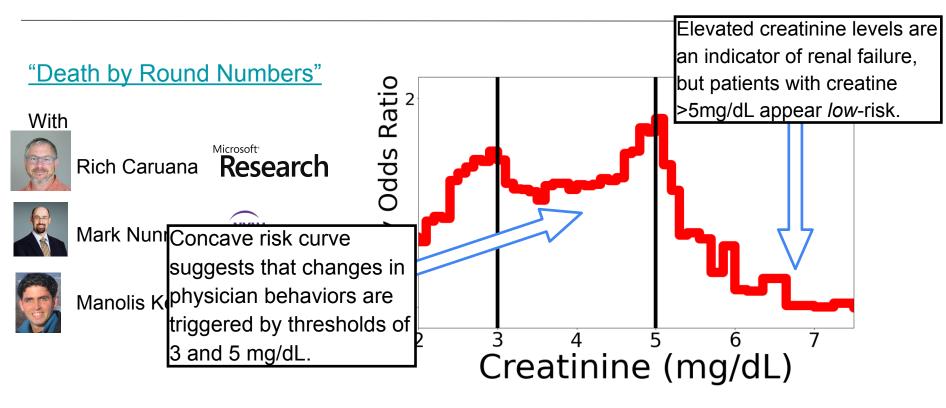
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Lab



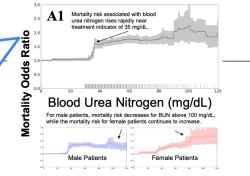
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Lab

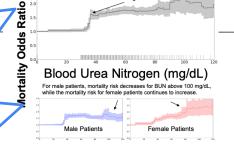


Computer Science and Artificial Intelligence Lab

 Risk jumps, then flattens at BUN 35 mg/dL



- Risk jumps, then flattens at BUN 35 mg/dL
- Risk decreases for men BUN>100^C mg/dL, but for women risk continues climbing

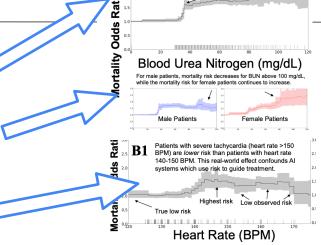


Mortality risk associated with blood urea nitrogen rises rapidly near

treatment indicator of 35 mg/dL.

AI

- Risk jumps, then flattens at BUN 35 mg/dL
- Risk decreases for men BUN>100 mg/dL, but for women risk continues climbing
- Severe tachycardia is good?

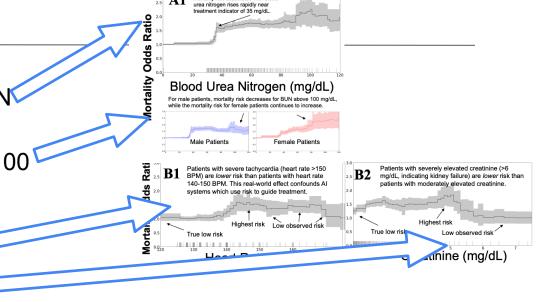


0

Mortality risk associated with blood urea nitrogen rises rapidly near

treatment indicator of 35 mg/dL.

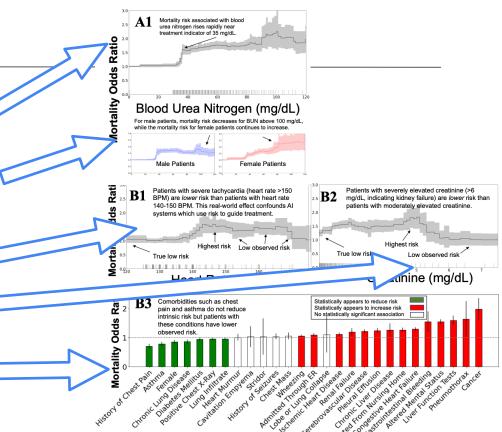
- Risk jumps, then flattens at BUNS
 35 mg/dL
- Risk decreases for men BUN>100 mg/dL, but for women risk continues climbing
- Severe tachycardia is good?
- Elevated creatinine is good?



Mortality risk associated with blood

A1

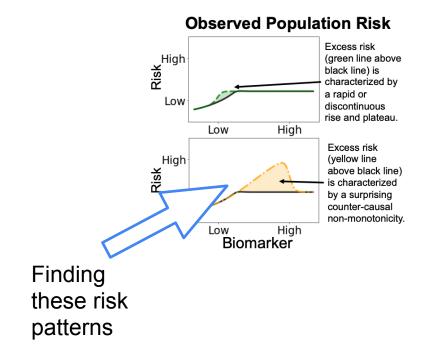
- Risk jumps, then flattens at BUNS
 35 mg/dL
- Risk decreases for men BUN>100 mg/dL, but for women risk continues climbing
- Severe tachycardia is good?
- Elevated creatinine is good?
- History of chest pain, asthma, chronic lung disease are good?



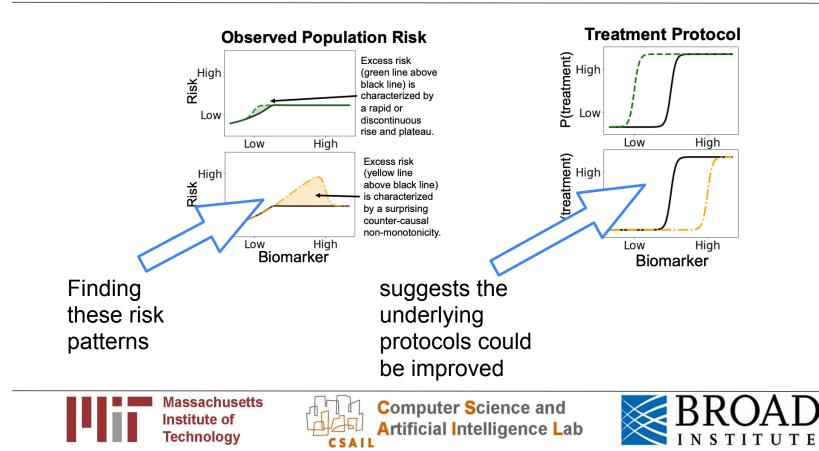
Computer Science and Artificial Intelligence Lab

Interpretability turns these confounding problems into opportunities

Interpretability turns these confounding problems into opportunities



Interpretability turns these confounding problems into opportunities



What if interactions matter?

If interactions do matter...Black-box Models?

Fit black-box model with non-linear decision surface

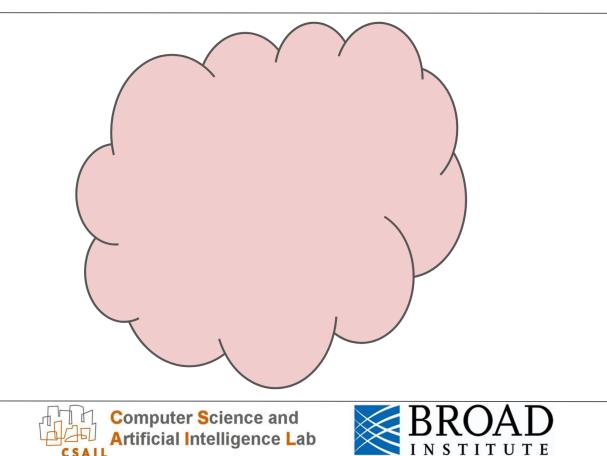
If interactions do matter...Black-box Models?

Fit black-box model with non-linear decision surface

Massachusetts

Institute of

Technology



If interactions do matter...Black-box Models?

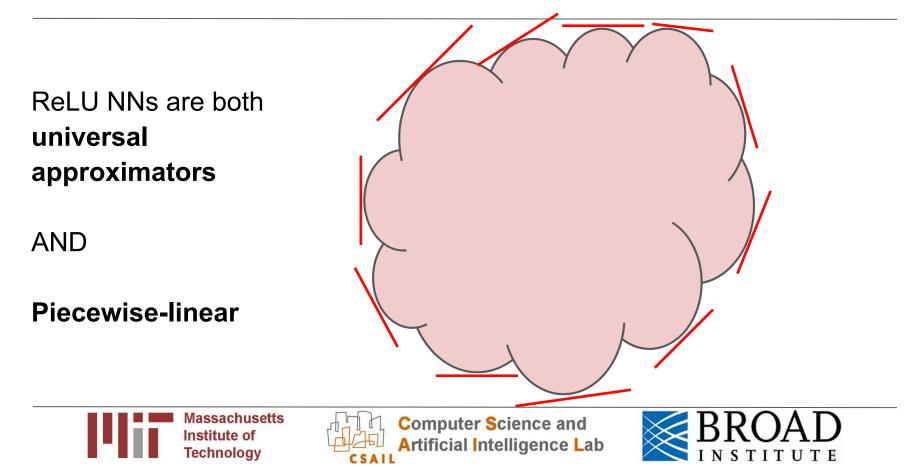
Fit black-box model with non-linear decision surface

Then interpret with locallylinear models

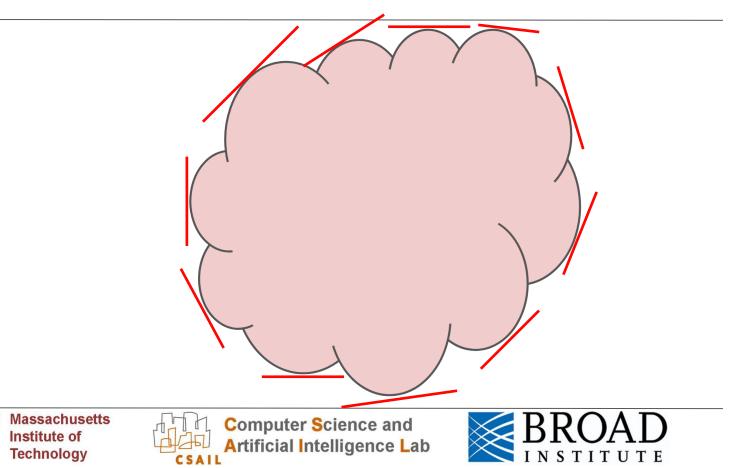
LIME, Ribeiro et al. 2016

Computer Science and Artificial Intelligence Lab

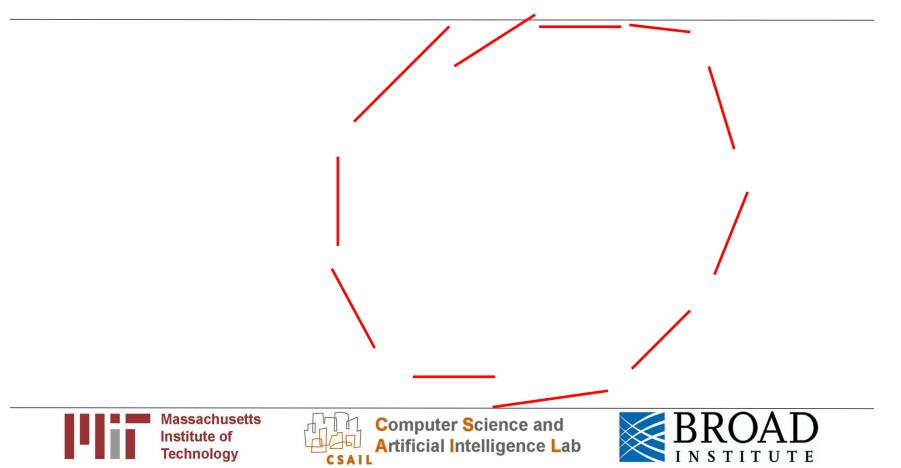
Locally-Linear Models Sacrifice Nothing?



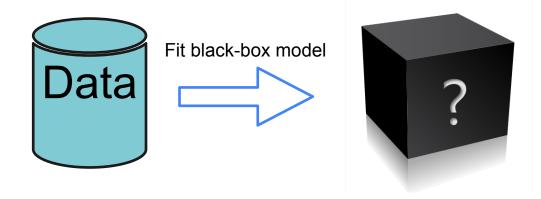
So what's the point of the black-box model?

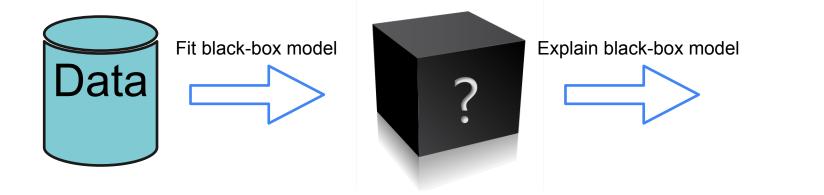


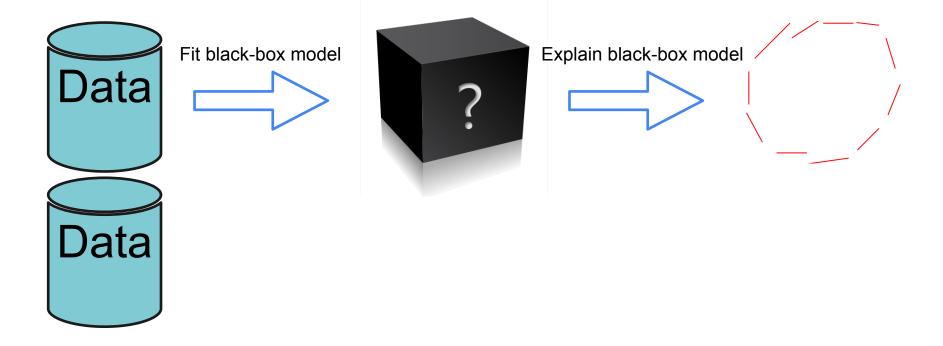
So what's the point of the black-box model?

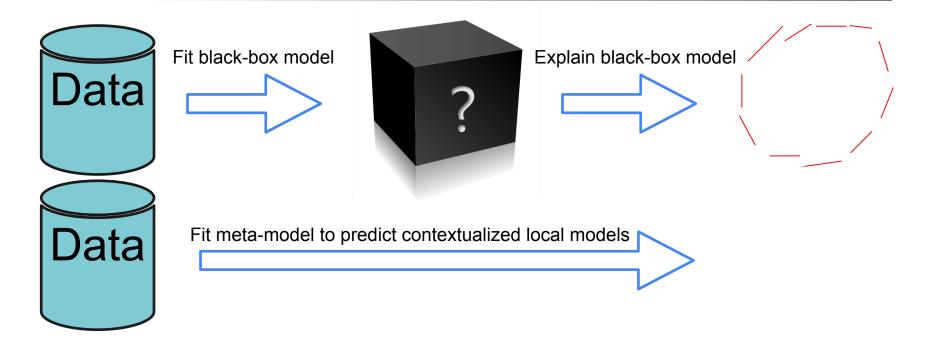


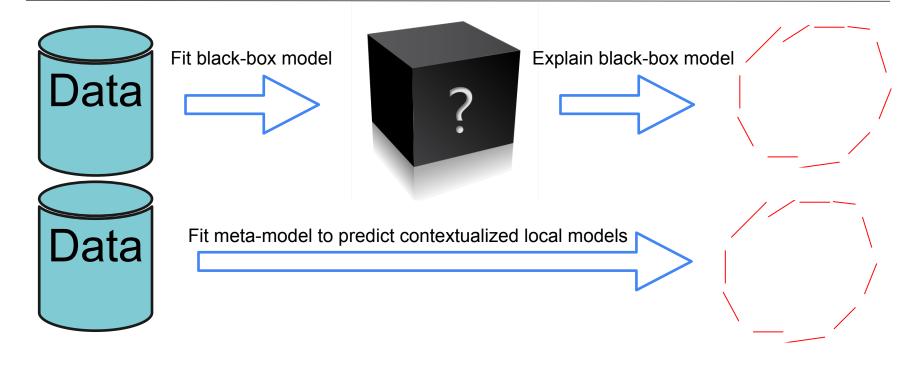


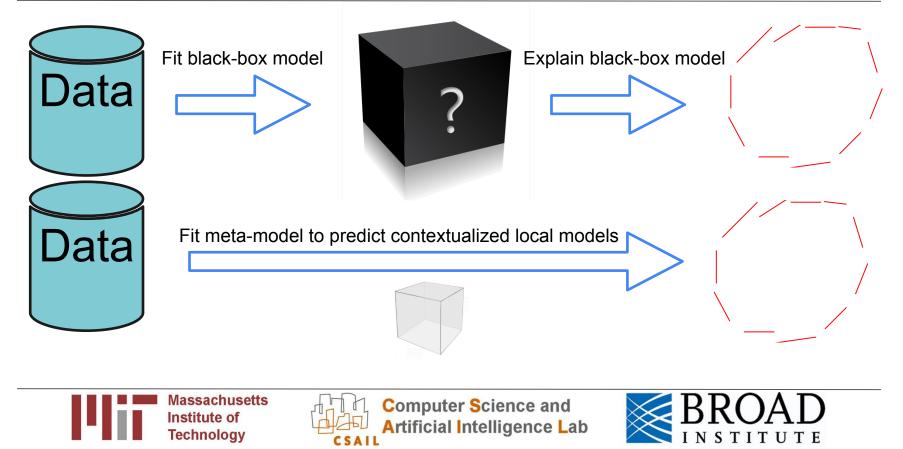






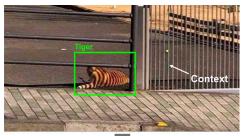






What are local models? 3 Philosophies:

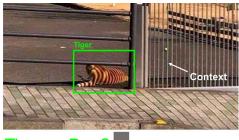
1 Local models are incorrect, obscured by context factors



Tiger or Dog?

What are local models? 3 Philosophies:

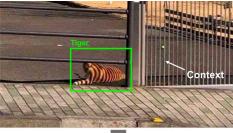
1 Local models are incorrect, obscured by context factors



Tiger or Dog?

Solution: Subtract out influence of unseen context factors to estimate universal effects

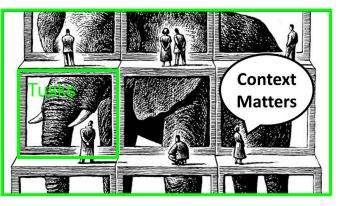
1 Local models are incorrect, obscured by context factors



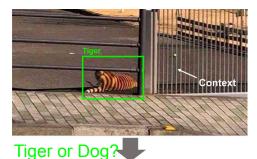
Tiger or Dog?

Solution: Subtract out influence of unseen context factors to estimate universal effects

2 Local models are context-specific views of a universal phenomena

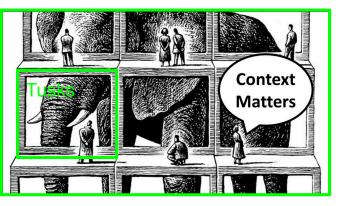


1 Local models are incorrect, obscured by context factors



Solution: Subtract out influence of unseen context factors to estimate universal effects

2 Local models are context-specific views of a universal phenomena



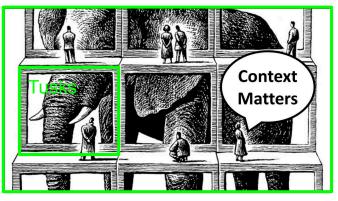
Elephant

Solution: Context-specific models -> reconstruct into global model

- 1 Local models are incorrect, obscured by context factors
 - Hgor Context

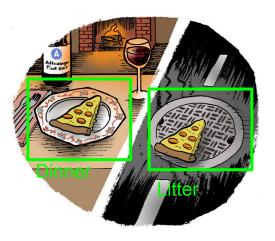
Solution: Subtract out influence of unseen context factors to estimate universal effects

2 Local models are context-specific views of a universal phenomena



Elephant

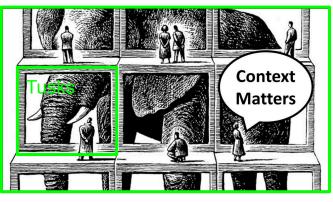
Solution: Context-specific models -> reconstruct into global model 3 Local models are accurate views of context-specific phenomena



- Local models are incorrect, obscured by context factors
- Context

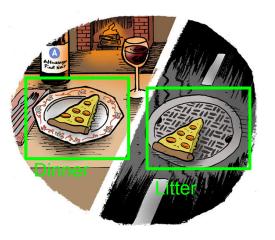
Solution: Subtract out influence of unseen context factors to estimate universal effects

2 Local models are context-specific views of a universal phenomena



Elephant

3 Local models are accurate views of context-specific phenomena

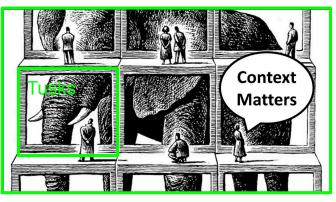


Solution: Context-specific models -> reconstruct into global model Solution: Context-specific models -> context-specific effects

- Local models are incorrect, obscured by context factors
- Herr Context

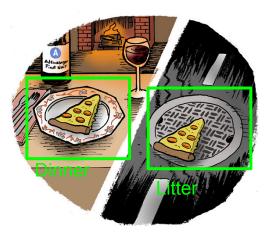
Solution: Subtract out influence of unseen context factors to estimate universal effects

2 Local models are context-specific views of a universal phenomena



Elephant

3 Local models are accurate views of context-specific phenomena



Solution: Context-specific models -> reconstruct into global model

Solution: Context-specific models -> context-specific effects

Computer Science and Artificial Intelligence Lab

• Varying-coefficients linear model [Hastie 1993]:

• Varying-coefficients linear model [Hastie 1993]:

$$Y = \beta X + \epsilon$$
, where $\beta = C\phi$

• Varying-coefficients linear model [Hastie 1993]:

$$Y = \beta X + \epsilon$$
, where $\beta = C\phi$

• Let's put it on modern ML steroids

• Varying-coefficients linear model [Hastie 1993]:

$$Y = \beta X + \epsilon$$
, where $\beta = C\phi$

- Let's put it on modern ML steroids
 - If we can solve technical problems: dimensionality, stability, etc

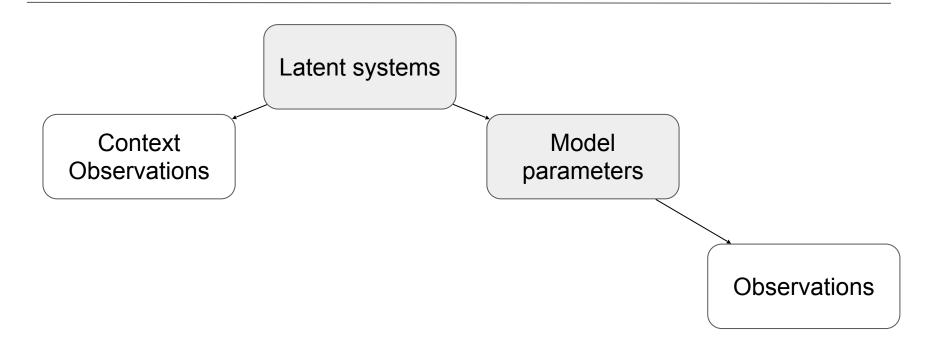
• Varying-coefficients linear model [Hastie 1993]:

$$Y = \beta X + \epsilon$$
, where $\beta = C\phi$

- Let's put it on modern ML steroids
 - If we can solve technical problems: dimensionality, stability, etc
 - Then backprop allows us to make any model class contextualized

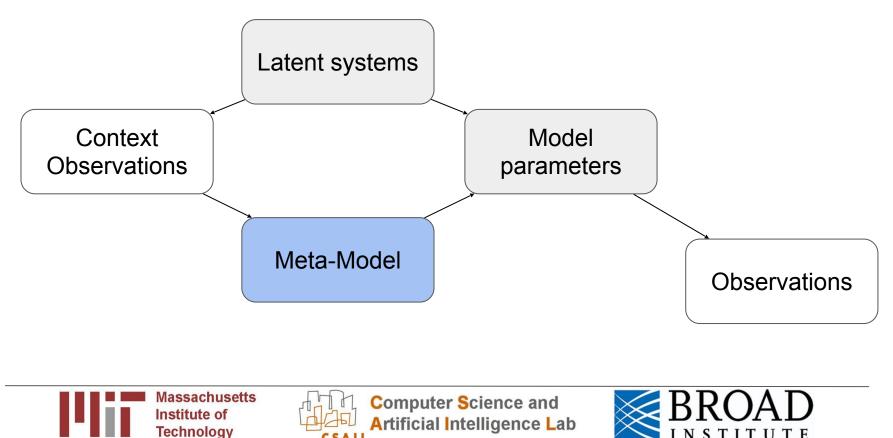
Our Solution: Contextualized Machine Learning

Contextualized Machine Learning



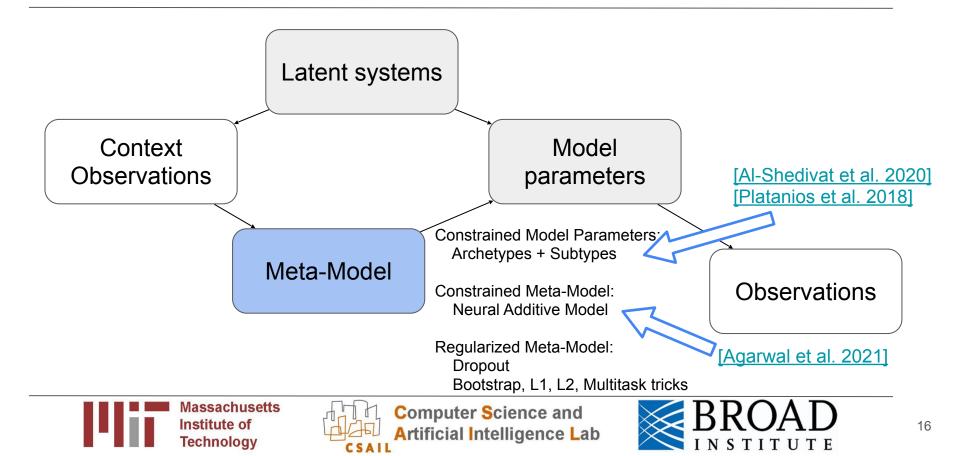
14

Contextualized Machine Learning



CSAIL

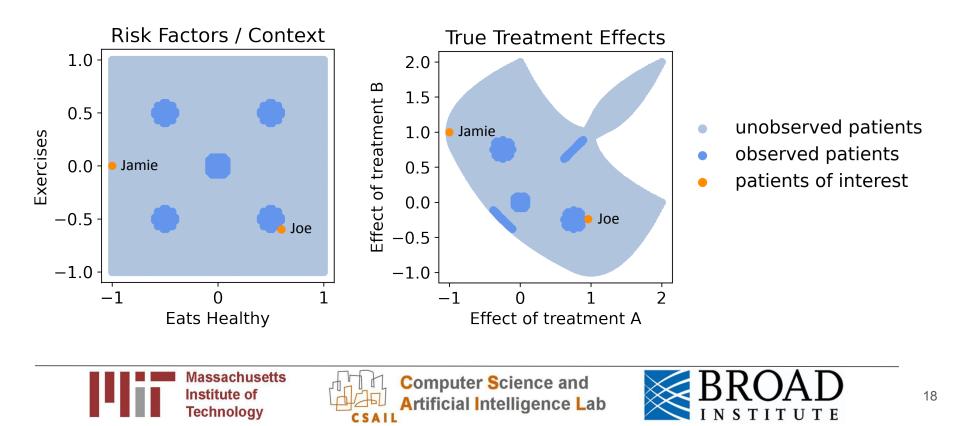
Contextualized Machine Learning



Toy Example: Heterogeneous Treatment Effects

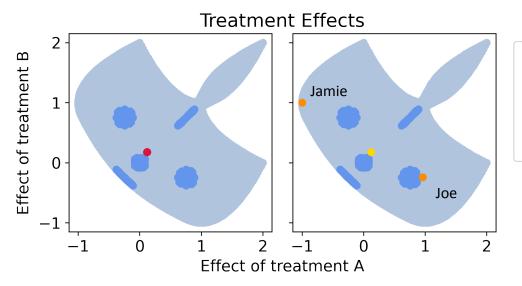
17

Toy Example: Heterogeneous Treatment Effects



Population Model: No Heterogeneity

Learn a single (population) model by solving
$$Y = X \hat{eta} + \hat{\mu}$$

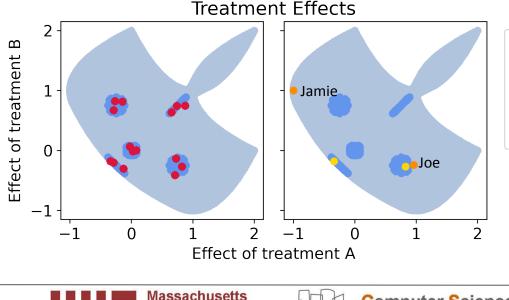


- true effects (unobserved patients)
- true effects (observed patients)
- predicted effects (unobserved patients)
- true effects (patients of interest)
- predicted effects (patients of interest)

Computer Science and Artificial Intelligence Lab

Cluster-Based Models: Limited Heterogeneity

Cluster *C*, then for each cluster solve
$$Y_c = X_c \stackrel{\wedge}{eta}_c + \hat{\mu}_c$$



- true effects (unobserved patients)
- true effects (observed patients)
- predicted effects (unobserved patients)
- true effects (patients of interest)
- predicted effects (patients of interest)

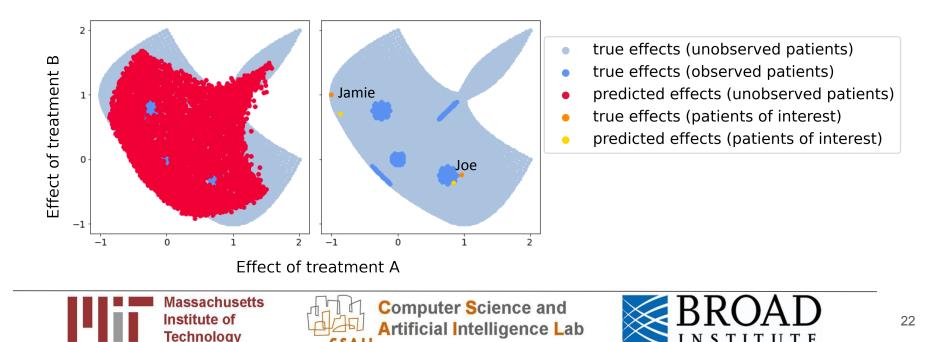
Computer Science and Artificial Intelligence Lab

Implicit Models: Unorganized

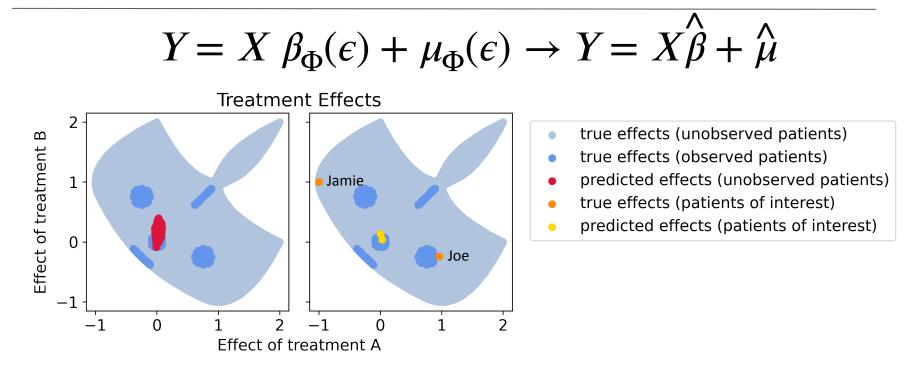


Context Encoder: Generalizability by Learning Latent Structure

 $Y = X \beta_{\Phi}(C, \epsilon) + \mu_{\Phi}(C, \epsilon)$

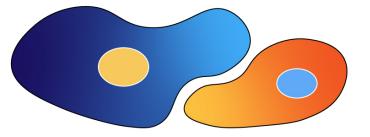


In the worst case, context encoders recapitulate the population model



Massachusetts Institute of Technology Computer Science and Artificial Intelligence Lab

23



Contextualized Heterogeneous Modeling Toolbox

contextualized.ml

With Caleb Ellington, Eric Xing, Manolis Kellis

Contextualized Regression in Contextualized.ML

sklearn-like interface:

Contextualized Regression in Contextualized.ML

sklearn-like interface:

Common keywords:

- n_bootstraps
- n_archetypes
- link function
- meta-model type
- multitask sharing strategy

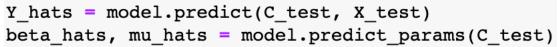
Contextualized Regression in Contextualized.ML

sklearn-like interface:

Common keywords:

Making predictions:

- n_bootstraps
- n_archetypes
- link function
- meta-model type
- multitask sharing strategy

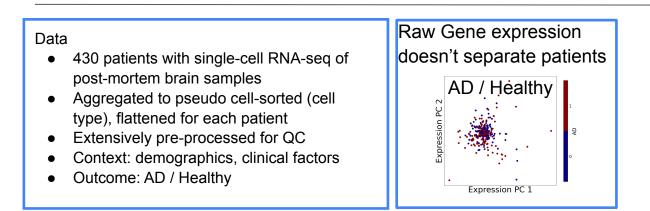


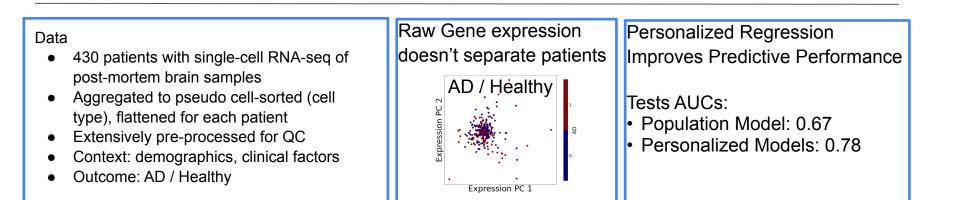
Disease Subtyping Vignette 1: Alzheimer's Disease

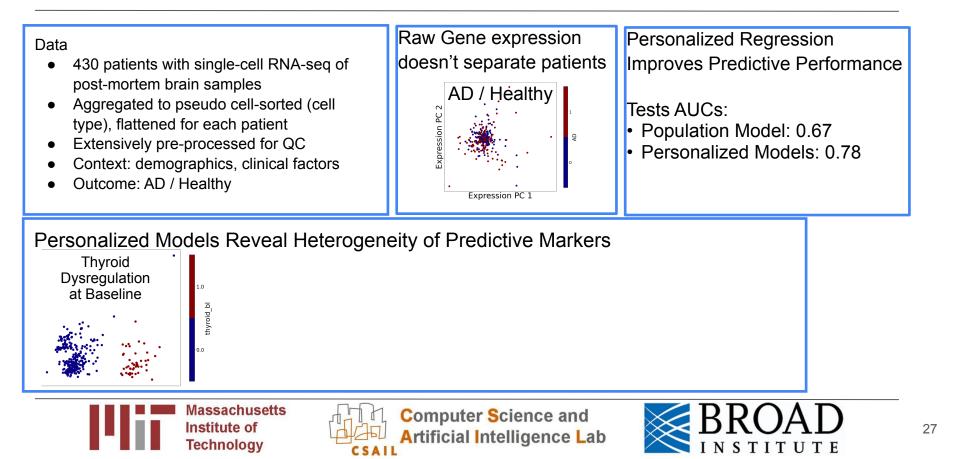
With Yosuke Tanigawa, Na Sun, Carles Boix, Leyla Akay, Manolis Kellis

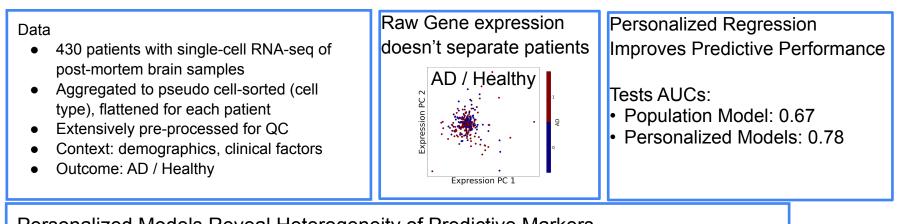
Data

- 430 patients with single-cell RNA-seq of post-mortem brain samples
- Aggregated to pseudo cell-sorted (cell type), flattened for each patient
- Extensively pre-processed for QC
- Context: demographics, clinical factors
- Outcome: AD / Healthy

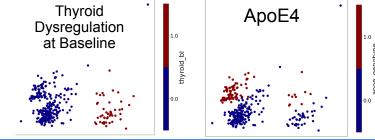




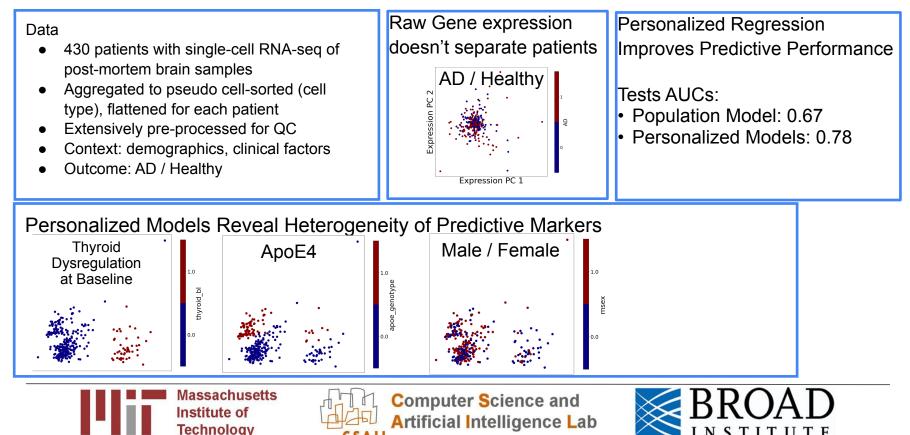


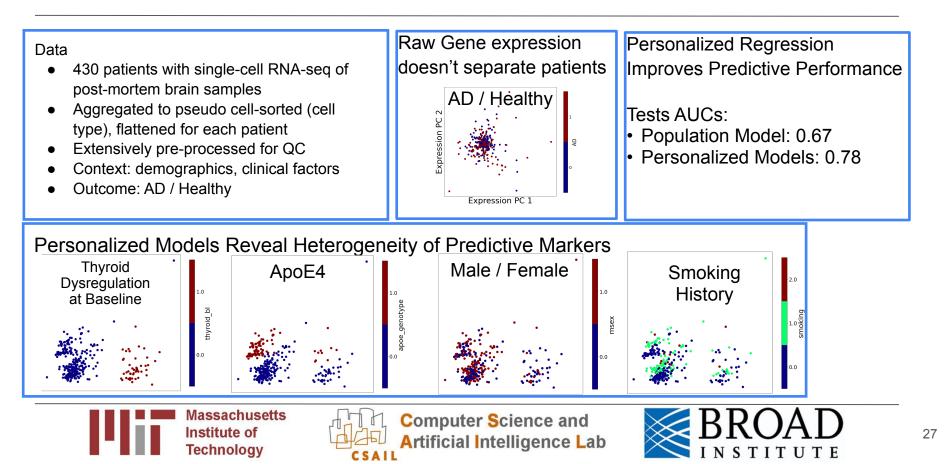


Personalized Models Reveal Heterogeneity of Predictive Markers



Computer Science and Artificial Intelligence Lab





Disease Subtyping Vignette 2: <u>Personalized Treatment Benefits in Covid-19</u>

With Mark Nunnally, Yin Aphinyanaphongs, Caleb Ellington, Rich Caruana

28

Personalized Treatment Benefits in Covid-19

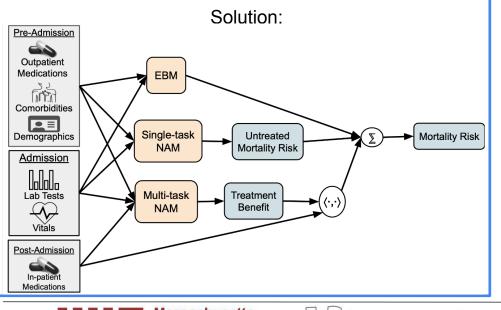
Tree-based EBMs are **great** at modeling healthcare data, but not differentiable. Can we combine EBM benefits with contextualized treatment estimation?

Solution:

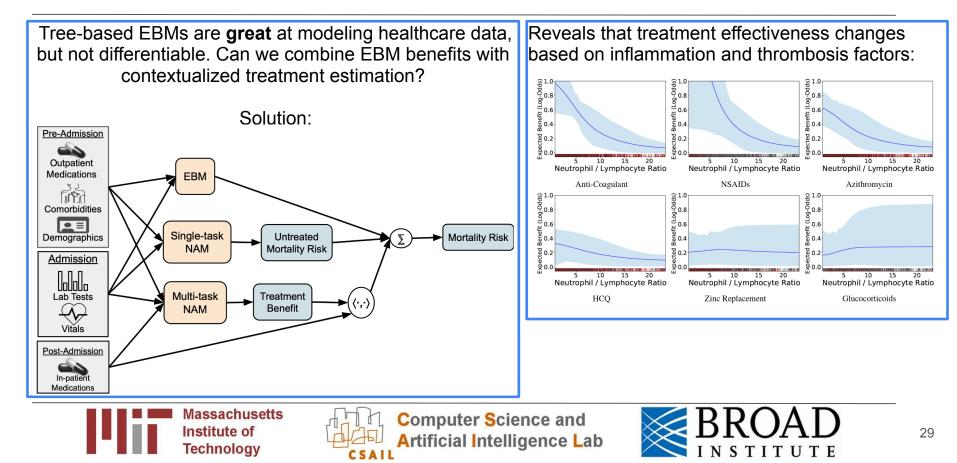
Computer Science and Artificial Intelligence Lab

Personalized Treatment Benefits in Covid-19

Tree-based EBMs are **great** at modeling healthcare data, but not differentiable. Can we combine EBM benefits with contextualized treatment estimation?



Personalized Treatment Benefits in Covid-19



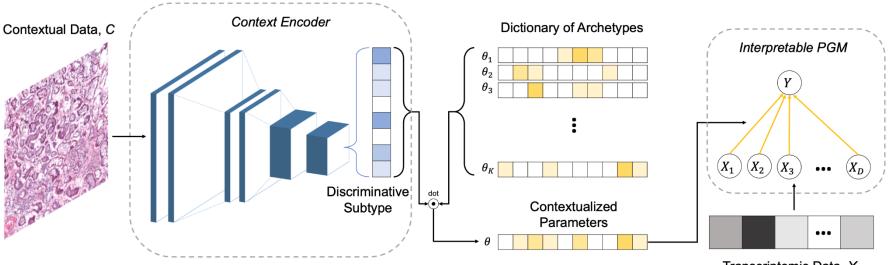
Disease Subtyping Vignette 3: Discriminative Subtypes of Lung Cancer

With Maruan Al-Shedivat, Amir Alavi, Jennifer Williams, Sami Labbaki, Eric Xing

Carnegie Mellon University

Discriminative Subtypes Connect Histopathology and Transcriptomics

3-way Classification Task: Adenocarcinoma / Squamous Cell Carcinoma / Healthy



Transcriptomic Data, X

Computer Science and Artificial Intelligence Lab

Discriminative Subtypes Reveal Biological Patterns

Sample-specific models improve classification
performance on held-out (test) patients

Model (Data)	Accuracy (%)	Macro F1
CEN (H+T)	96.18	96.97
Concatenated (H+T)	95.32	93.65
Ensemble (H+T)	94.61	90.23
Logistic Regression (T)	94.05	91.40
InceptionV3 (H)	69.14	65.85

Discriminative Subtypes Reveal Biological Patterns

Sample-specific models improve classification performance on held-out (test) patients

Model (Data)	Accuracy (%)	Macro F1
CEN (H+T)	96.18	96.97
Concatenated (H+T)	95.32	93.65
Ensemble (H+T)	94.61	90.23
Logistic Regression (T)	94.05	91.40
InceptionV3 (H)	69.14	65.85

Transcriptomic Archetypes focus on biologically-relevant processes

Archetype	Term ID	Term Name	P-Va
1	KEGG:04071 KEGG:04310	Sphingolipid signaling pathway Wnt signaling pathway	0.037
6	REAC:R-HSA-6802952	Signaling by BRAF and RAF fusions	0.039
8	TF:M06732	Factor: ZNF304	0.023
12	REAC:R-HSA-8939236 GO:0010629	RUNX1 regulates transcription of genes involved in differentiation of HSCs negative regulation of gene expression	0.022
13	TF:M09657_1	Factor: Smad4	0.004
15	GO:0071385	cellular response to glucocorticoid stimulus	0.013
17	REAC:R-HSA-400206	Regulation of lipid metabolism by PPAR α	0.018
18	TF:M04726_1	Factor: REST	0.00
19	TF:M05327_1	Factor: WT1	0.02
21	TF:M01224_1	Factor: P50:RELA-P65	0.03
25	TF:M09611_0	Factor: ER81	0.003
26	KEGG:04215	Apoptosis - multiple species	0.00
28	GO:0051240	positive regulation of multicellular organismal process	0.000
30	REAC:R-HSA-4791275	Signaling by WNT in cancer	0.045

Discriminative Subtypes Reveal Biological Patterns

Sample-specific models improve classification performance on held-out (test) patients

Model (Data)	Accuracy (%)	Macro F1
CEN (H+T)	96.18	96.97
Concatenated (H+T)	95.32	93.65
Ensemble (H+T)	94.61	90.23
Logistic Regression (T)	94.05	91.40
InceptionV3 (H)	69.14	65.85

Archetypal Models connect Transcriptomics to Morphology

Massachusetts

Institute of

Technology

RUNX1 SMAD4 **WNT**

biologically-relevant processes			
Archetype Term ID	Term Name	P-Val	
1 KEGG:04071 KEGG:04310	Sphingolipid signaling pathway Wnt signaling pathway	0.037 0.049	
6 REAC:R-HSA-6802952	Signaling by BRAF and RAF fusions	0.039	
8 TF:M06732	Factor: ZNF304	0.023	
	RUNX1 regulates transcription of genes	0.000	

Transcriptomic Archetypes focus on

Arcnetype	Ierm ID	Ierm Name	P-vai
1	KEGG:04071 KEGG:04310	Sphingolipid signaling pathway Wnt signaling pathway	0.037
6	REAC:R-HSA-6802952	Signaling by BRAF and RAF fusions	0.039
8	TF:M06732	Factor: ZNF304	0.023
12	REAC:R-HSA-8939236	RUNX1 regulates transcription of genes involved in differentiation of HSCs	0.022
	GO:0010629	negative regulation of gene expression	0.039
13	TF:M09657_1	Factor: Smad4	0.004
15	GO:0071385	cellular response to glucocorticoid stimulus	0.013
17	REAC:R-HSA-400206	Regulation of lipid metabolism by PPAR α	0.018
18	TF:M04726_1	Factor: REST	0.001
19	TF:M05327_1	Factor: WT1	0.025
21	TF:M01224_1	Factor: P50:RELA-P65	0.034
25	TF:M09611_0	Factor: ER81	0.003
26	KEGG:04215	Apoptosis - multiple species	0.006
28	GO:0051240	positive regulation of multicellular organismal process	0.006
30	REAC:R-HSA-4791275	Signaling by WNT in cancer	0.045

Computer Science and Artificial Intelligence Lab SAIL

Disease Subtyping Vignette 4: <u>Contextualized Network Inference</u>

With Caleb Ellington, Bryon Aragam, Eric Xing, Manolis Kellis

Context-Specific Bayesian Networks

- Bayesian Networks (BNs) are directed acyclic graphs (DAGs) which factorize joint distributions into sets of parent and children nodes.
- Context-Specific BNs use context C to allow the parameters and/or structure of the BNs to vary:

$$P(X,C) = \int_{W} dW P(X|W) P(W|C) P(C),$$

• where P(X|W) = BN(X|W)

Massachusetts Institute of Technology

Context-Specific Bayesian Networks

Assume that context-specific BNs lie on a subspace measured by a latent variable $Z \in \mathbb{R}^k$ with $C \perp (X, W) | Z$. Then

$$P(W|X,C) \propto P(X|W) \int_{Z} dZ P(W|Z) P(Z|C)$$

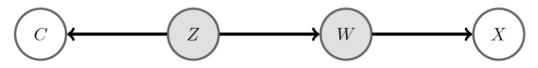


Figure 2: Graphical Model. Contextual covariates C and observations X are observed, while subtype Z and BN parameters W are latent.

How can we define tractable P(W|Z), P(Z|C)?

Massachusetts Institute of Technology

Solution: Model context-specific BN parameters as the output of a smooth function:

 $P(X \mid C) = \mathsf{BN}(X \mid \phi_{\theta}(C))$

Challenge: How to ensure that learned ϕ_{θ} outputs BNs?

Difficult because BNs are directed *acyclic* graphs (DAGs) — a global constraint which must consider all entries in the adjacency matrix *simultaneously* and thus is not naturally amenable to local gradient-based updates.

Solution: Smooth DAG-ness regularizer

[Zheng et al 2018] showed that "DAG"-ness can be encoded as a smooth function:

 $tr(e^{W \cdot W})$

NOTEARS: <u>Non-combinatorial Optimization via Trace Exponential and</u> <u>Augmented lagRangian for Structure learning</u>

Computer Science and Artificial Intelligence Lab

Define the DAG for sample i as:

Define the DAG for sample i as:

$$W^{i} = \phi_{\theta}(C^{i}) = \sum_{k=1}^{K} \sigma(f_{\theta}(C^{i}))_{k} W_{k}$$
 Archetype Networks Sample Subtype

Define the DAG for sample i as:

$$W^{i} = \phi_{\theta}(C^{i}) = \sum_{k=1}^{K} \sigma(f_{\theta}(C^{i}))_{k} W_{k}$$
 Archetype Networks Sample Subtype

Giving us the optimization:

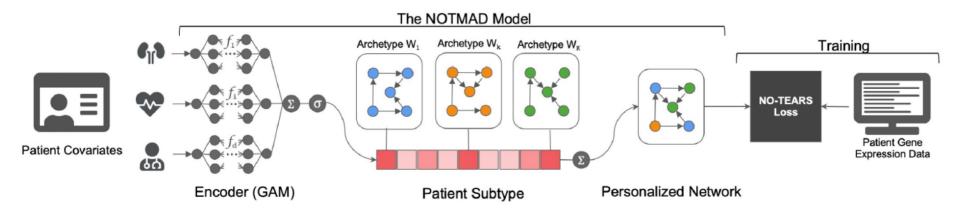
$$\arg\min_{\theta, W_{1:k}} \sum_{i=1}^{n} \frac{\alpha}{2} (X^{i} - X^{i} \phi_{\theta}(C^{i}))^{2} + \beta \operatorname{tr} \left(e^{\phi_{\theta}(C^{i}) \cdot \phi_{\theta}(C^{i})} \right) + \sum_{k=1}^{K} \gamma |W_{k}|_{1}$$

Data Likeliihood (Squared Error)

DAG-ness

Archetype Sparsity

Computer Science and Artificial Intelligence Lab

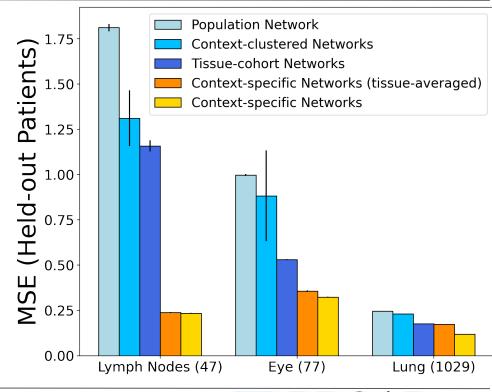


Computer Science and Artificial Intelligence Lab

39

Personalized Networks allow us to ask about gene network heterogeneity

- The Cancer Genome Atlas
- Context: patient demographics, immune cell proportions
- Network data: bulk RNA-seq
- Plot: samples grouped by cancer tissue-of-origin, (#) indicates the number of samples from that tissue in the training set
- Lower MSE (mean squared error) is better



Computer Science and Artificial Intelligence Lab

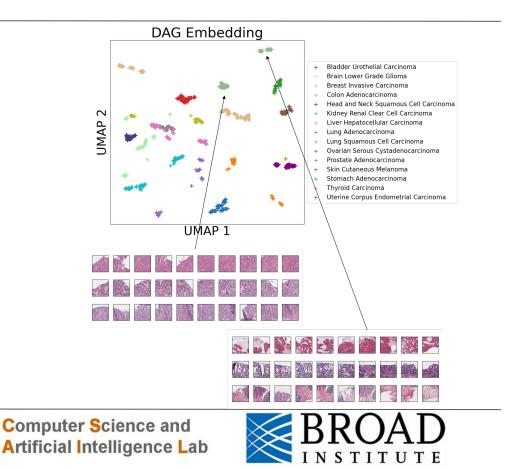
40

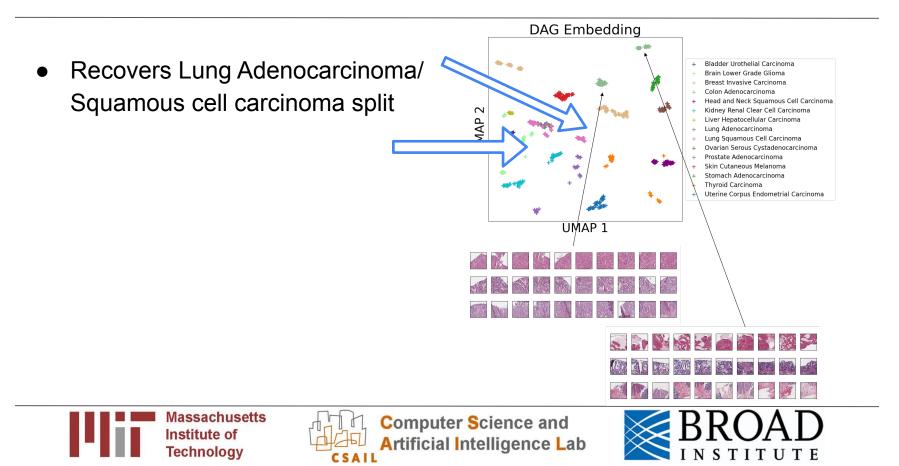
Massachusetts

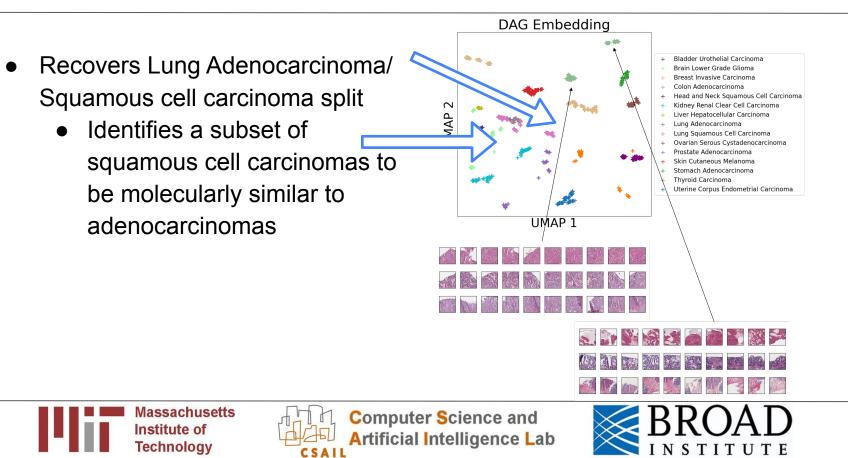
CSAIL

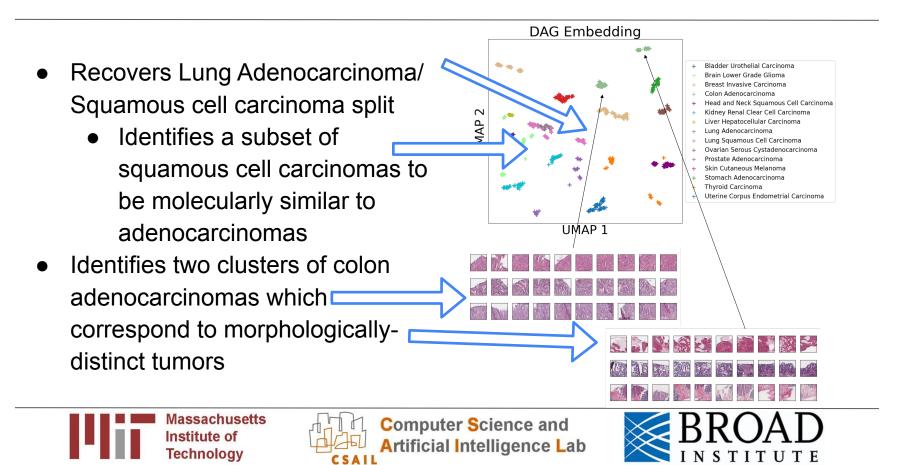
Institute of

Technology









Contextualized Heterogeneous Modeling Toolbox

contextualized.ml

With Caleb Ellington, Eric Xing, Manolis Kellis

Thank you!

- Computational Biology Lab @MIT
 - Manolis Kellis
 - Jackie Yang
 - Yosuke Tanigawa
- Microsoft Research
 - Rich Caruana
 - Anthony Platanios
 - Harsha Nori
- SAILING Lab @CMU
 - Eric Xing
 - Caleb Ellington
 - Maruan Al-Shedivat
 - Bryon Aragam

contextualized.ml

Demos online Pull requests/issues welcome <u>blengeri@mit.edu</u>

