BIRS Workshop on Interpretability in AI

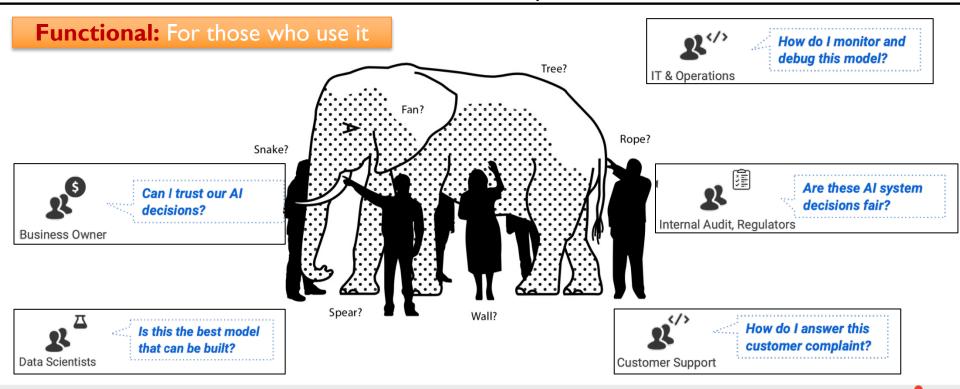
Causal Perspectives in Explaining Neural Network Models

4 May 2022

Vineeth N Balasubramanian Department of Computer Science and Engineering/Artificial Intelligence Indian Institute of Technology, Hyderabad

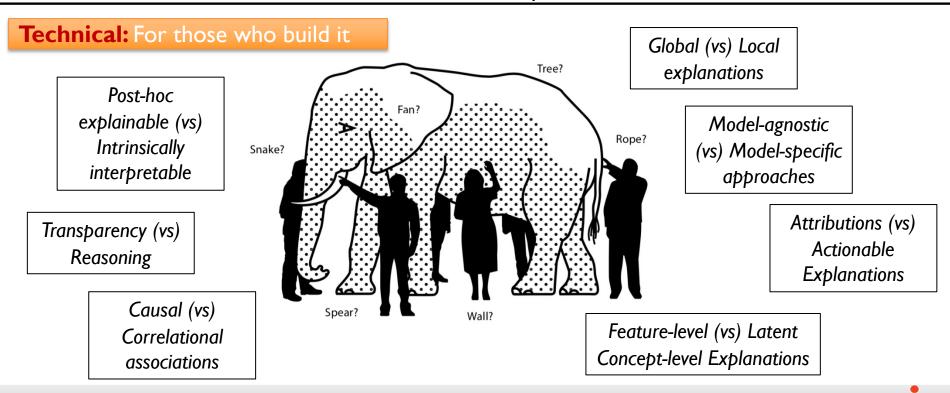
The Elephant in the Room

What is it really?



The Elephant in the Room

What is it really?



Viewing XAI from Different Perspectives

Our Efforts

Intrinsic Interpretability **Post-hoc Explainability** Causa * [WACV 2018] GradCAM++: Generic * [CVPR 2022] Ante-hoc explainability method for visual explanations for CNN via concepts Non-(models * [CVPR 2022] Transferring concepts * [IEEE Trans on Biometrics 2021] in knowledge distillation tasks Explainability Canonical saliency maps for face in Deep recognition/processing models * [AAAI 2022] Causally disentangled * **[AISTATS 2022]** Submodular representations Learning ensembles of attribution methods * [CVPR'W 2021] Dataset for causal Causal representation learning * [WACV 2022] Mitigating bias * [ICML 2019] Causal attributions in through causal perspectives neural networks * [arXiv 2022] Causal regularizers

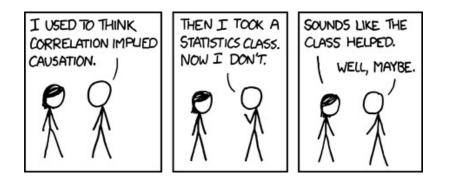
<u>Non-Causa</u>

Causal

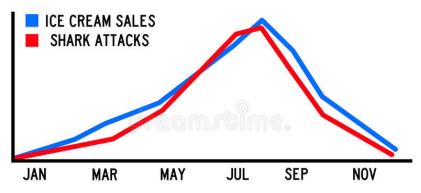
Complementarity of explanations and robustness [AAAI 2021, NeurIPS 2021]

Causation vs Correlation in XAI

- Is feature correlation to output a true indicator of explainability?
- Or do we need to find causal relationships in the analyzed data-output pairs?



CORRELATION IS NOT CAUSATION!



Both ice cream sales and shark attacks increase when the weather is hot and sunny, but they are not caused by each other (they are caused by good weather, with lots of people at the beach, both eating ice cream and having a swim in the sea)

The Three Layer Causal Hierarchy

Causality in Machine Learning

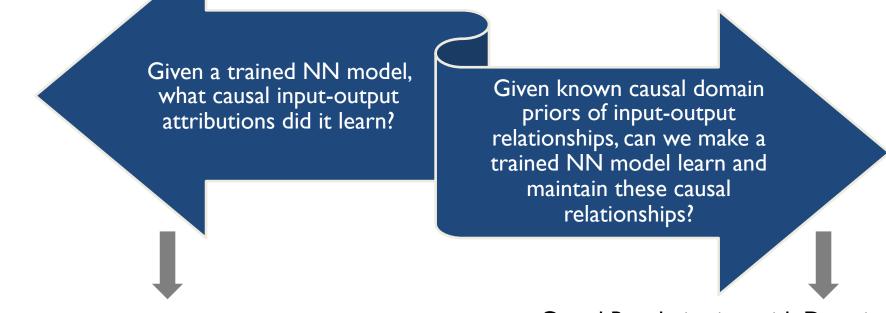
Level (Symbol)	Typical Activity	Typical Questions	Examples
$\begin{array}{c} \text{(Symbol)} \\ \hline 1. \text{ Association} \\ P(y x) \end{array}$	Seeing	What is? How would seeing X change my belief in Y ?	What does a symptom tell me about a disease? What does a survey tell us about the election results?
2. Intervention $P(y do(x), z)$	Doing Intervening	What if? What if I do X ?	What if I take aspirin, will my headache be cured? What if we ban cigarettes?
3. Counterfactuals $P(y_x x',y')$	Imagining, Retrospection	Why? Was it X that caused Y? What if I had acted differently?	Was it the aspirin that stopped my headache? Would Kennedy be alive had Oswald not shot him? What if I had not been smok- ing the past 2 years?

Figure 1: The Causal Hierarchy. Questions at level i can only be answered if information from level i or higher is available.

Judea Pearl, The Seven Tools of Causal Inference with Reflections on Machine Learning, 2018 Judea Pearl, The Book of Why: The New Science of Cause and Effect, 2018

Causal Perspectives in XAI

Our Recent Efforts

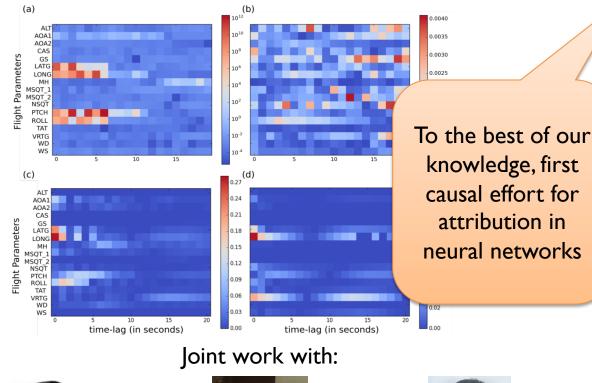


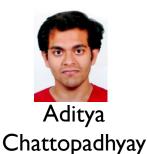
Causal Attributions in Neural Networks ICML 2019

Causal Regularization with Domain Priors arXiv, 2022 (under review)

Causal Attributions in Neural Networks

ICML 2019





Piyushi Manupriya

Sarkar

Causal Attributions of Neural Network Models

What does this mean?

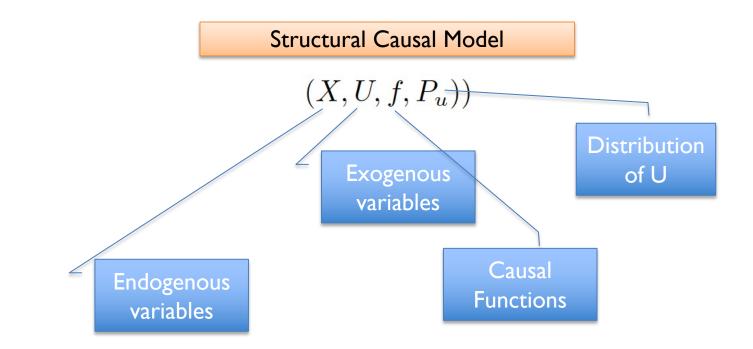
- Attribution: Effect of an input feature on prediction function's output
 - Inherently a causal question!
- Existing attribution methods
 - Gradient-based
 - "How much would perturbing a particular input affect the output?" Not a causal analysis
 - Using surrogate models (or interpretable regressors)
 - Correlation-based again

Causal Attributions of Neural Network Models

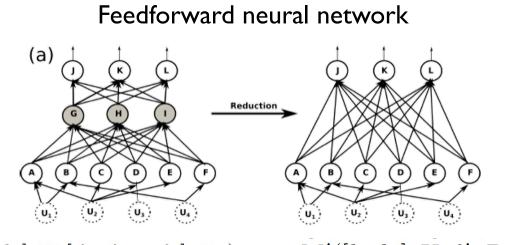
What does this mean?

- Our objective: What are the causal attributions learned by a trained neural network model?
 - To the best of our knowledge, first such effort
- Assume a setting that is often valid
 - Input dimensions are causally independent of each other (they can be jointly caused by a latent confounder)
- Show how this can be done with feedforward networks as well as RNNs

Structural Causal Model



Neural Network as a SCM

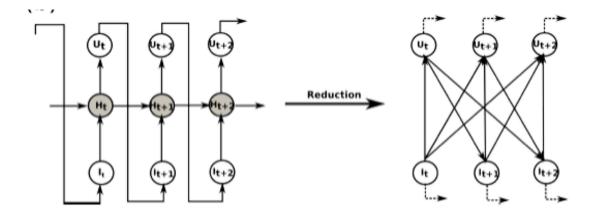


 $M([l_1, l_2, ..., l_n], U, [f_1, f_2, ..., f_n], P_U) \qquad M'([l_1, l_n], U, f', P_U)$

- l_i neurons in layer I
- f_i corresponding causal functions

Neural Network as a SCM

Recurrent neural network



Gradient-Based Attribution

Individual Causal Effect

 Gradient-based and Perturbation-based attribution methods – special cases of Individual Causal Effect

$$ICE_{do(x_i=\alpha)}^y = y_{x_i=\alpha}(u) - y(u)$$

- Setting α to $u_i + \epsilon$
- Such methods are sensitive and cannot give global attributions

Causal Attribution

ACE: Average Causal Effect

For binary variables:

$$\mathbb{E}[y|do(x=1)] - \mathbb{E}[y|do(x=0)]$$

For continuous variables:

$$ACE_{do(x_i=\alpha)}^y = \mathbb{E}[y|do(x_i=\alpha)] - baseline_{x_i}$$

where baseline is defined as:

$$\mathbb{E}_{x_i}[\mathbb{E}_y[y|do(x_i = \alpha)]]$$

the average ACE across all x_i

Interventional expectation: Non-trivial to compute

Computing ACE

$$\mathbb{E}[y|do(x_i = \alpha)] = \int_y yp(y|do(x_i = \alpha))dy$$

Interventional expectation: Non-trivial to compute

Let: $y = f'_{y}(x_{1}, x_{2}, ..., x_{k})$ Consider the formula of the formula

Consider the Taylor-series expansion: $f'_y(l_1) \approx f'_y(\mu) + \nabla^T f'_y(\mu)(l_1 - \mu) + \frac{1}{2}(l_1 - \mu)^T \nabla^2 f'_y(\mu)(l_1 - \mu)$ Marginalizing over all other input neurons:

$$\mathbb{E}[f'_y(l_1)|do(x_i = \alpha)] \approx f'_y(\mu) + \frac{1}{2}Tr(\nabla^2 f'_y(\mu) \mathbb{E}[(l_1 - \mu)(l_1 - \mu)^T|do(x_i = \alpha)]$$

Computing ACE

$$\mathbb{E}[y|do(x_i = \alpha)] = \int_y yp(y|do(x_i = \alpha))dy \longrightarrow \mathbb{E}[f'_y(l_1)|do(x_i = \alpha)] \approx f'_y(\mu) + \frac{1}{2}Tr(\nabla^2 f'_y(\mu) \mathbb{E}[(l_1 - \mu)(l_1 - \mu)^T|do(x_i = \alpha)])$$

- Intervened input neuron is d-separated from other input neurons; what does this give us?
- Given an intervention on a particular variable, the probability distribution of all other input neurons doesn't change, i.e. for $x_j \neq x_i$ $P(x_j | do(x_i = \alpha)) = P(x_j)$
- Interventional means and covariances of non-intervened neurons same as observational means and covariances — Can be pre-computed

Causal Regressors

Computing the baseline

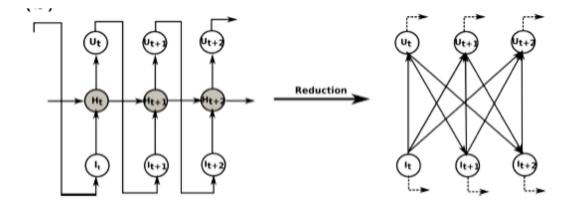
$$ACE_{do(x_i=\alpha)}^y = \mathbb{E}[y|do(x_i=\alpha)] - baseline_{x_i}$$

where baseline is defined as:

 $\mathbb{E}_{x_i}[\mathbb{E}_y[y|do(x_i = \alpha)]]$

We use causal regressors (Bayesian regression) to obtain baseline using different intervention values, α , from its range

What about RNNs?



Depends on a particular RNN architecture. Where output does not feed into input, same idea can be used.

Scaling to Large Data

Computation of ACE requires Hessian:

$$\mathbb{E}[f'_y(l_1)|do(x_i = \alpha)] \approx f'_y(\mu) + \frac{1}{2}Tr(\nabla^2 f'_y(\mu)) \mathbb{E}[(l_1 - \mu)(l_1 - \mu)^T|do(x_i = \alpha)])$$

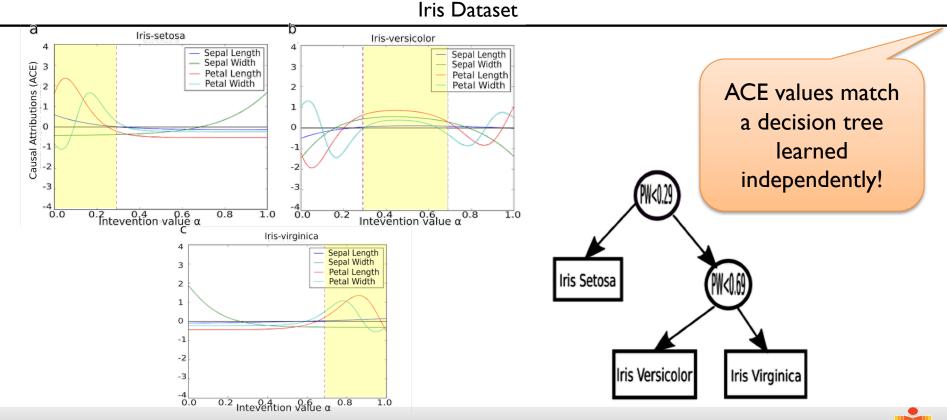
However, we only need

$$\sum_{i=1}^{k} \sum_{j=1}^{k} \nabla^2 f'_y(\mu)_{ij} Cov(x_i, x_j | do(x_l = \alpha))$$

To this end, consider eigendecomposition of covariance matrix:

$$Cov(\mathbf{x}, \mathbf{x} | do(x_l = \alpha)) = \sum_{r=1}^{\kappa} \lambda_r e_r e_r^T \qquad \text{Let} \quad v_r = \lambda^{1/2} e_r$$
$$\lim_{\epsilon \to 0} \frac{1}{\epsilon^2} \left(f'_y(\mu - \epsilon v_r) + f'_y(\mu + \epsilon v_r) - 2f'_y(\mu) \right) = v_r^T \nabla^2 f'_y(\mu) v_r$$

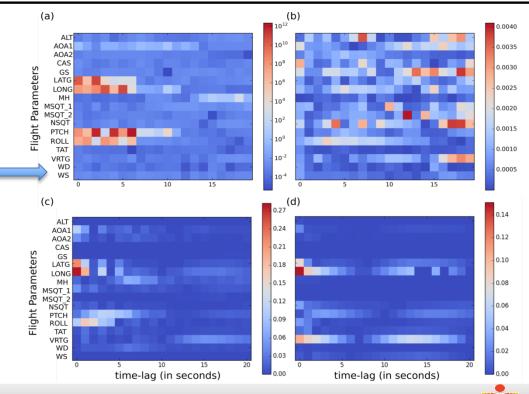
Results



Results

Aircraft Data (NASA Dashlink Dataset)

FDR report: "....due to slippery runway, the pilot could not apply timely brakes, resulting in a steep acceleration in the airplane post-touchdown..."



Axioms of Attribution

- Completeness
- Sensitivity
- Implementation Invariance
- Symmetry Preservation
- Input Invariance

Proposed method satisfies all important axioms (almost)

Sundararajan et al, ICML 2017; Kindermans et al, 2017

Completeness: For any input x, the sum of the feature attributions equals F(x): $F(x) = \sum_{i} A_{i}^{F}(x)$

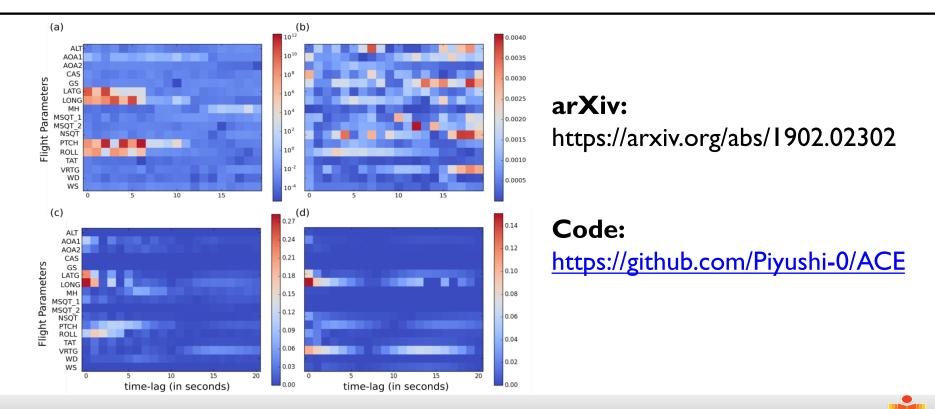
Sensitivity: If x has only one non-zero feature and $F(x) \neq 0$, then the attribution to that feature should be non-zero.

Implementation Invariance: When two neural networks compute the same mathematical function F(x), regardless of how differently they are implemented, the attributions to all features should always be identical.

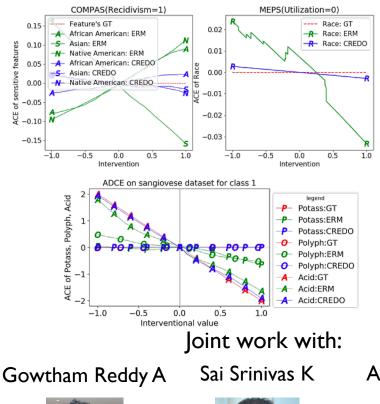
Symmetry–Preserving: For any input x where the values of two symmetric features are the same, their attributions should be identical as well.

Gradient-based methods violate Axiom 2; DeepLIFT and LRP violate Axiom 3

More Details



Causal Regularization with Domain Priors



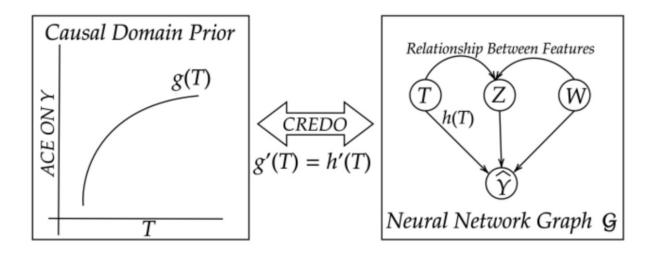
To the best of our knowledge, first effort to integrate causal knowledge for attribution in neural networks

arXiv 2022 (under review)

Amit Sharma

Key Idea

• Match causal effects learned by a neural network to effects we want it to learn



CREDO: Causal **RE**gularization with **DO**main Priors

Causal Graph and Effects

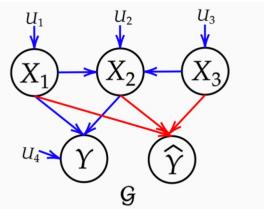


Figure 5: Causal graph \mathcal{G} representing input features X_1, X_2, X_3 , true output Y and NN output \hat{Y} (Blue arrows = true causal relationships, Red arrows = relationships learned by traditional NN (without CREDO).

We regularize for three kinds of causal effect in NN models:

- Controlled direct effect
- Natural direct effect
- Total causal effect

Matching Controlled Direct Effect

Definition

Let
$$Y_{x=\alpha} := Y | do(x = \alpha)$$

(Controlled Direct Effect in NN). Controlled Direct Effect (NN - CDE)measures the causal effect of treatment T at an intervention t (i.e., do(T = t)) on \hat{Y} when all parents of \hat{Y} except T $(PA^{\hat{Y}})$ are intervened to pre-defined control values α . Average Controlled Direct Effect (NN - ACDE) is defined as: $NN - ACDE_{t,PA^{\hat{Y}}=\alpha}^{\hat{Y}} :=$ $\mathbb{E}_{U}[\hat{Y}_{t,PA^{\hat{Y}}=\alpha}] - \mathbb{E}_{U}[\hat{Y}_{t^{*},PA^{\hat{Y}}=\alpha}] = \hat{Y}_{t,PA^{\hat{Y}}=\alpha} - \hat{Y}_{t^{*},PA^{\hat{Y}}=\alpha}$.

$$NN - ACDE_t^{\hat{Y}} := \mathbb{E}_{PA^{\hat{Y}}}[\hat{Y}_{t, PA^{\hat{Y}}}] - \mathbb{E}_{PA^{\hat{Y}}}[\hat{Y}_{t^*, PA^{\hat{Y}}}]$$

Regularizing for Controlled Direct Effect

Proposition

(ACDE Identifiability in Neural Networks) For a neural network with output \hat{Y} , the ACDE of a feature T at t on \hat{Y} is identifiable and given by $ACDE_t^{\hat{Y}} = \mathbb{E}_{PA^{\hat{Y}}}[\hat{Y}|t, PA^{\hat{Y}}] - \mathbb{E}_{PA^{\hat{Y}}}[\hat{Y}|t^*, PA^{\hat{Y}}].$

Proposition

(ACDE Regularization in Neural Networks) The n^{th} partial derivative of ACDE of T at t on \hat{Y} is equal to the expected value of n^{th} partial derivative of \hat{Y} w.r.t. T at t, that is: $\frac{\partial^n ACDE_t^{\hat{Y}}}{\partial t^n} = \mathbb{E}_{PA^{\hat{Y}}} \left[\frac{\partial^n [\hat{Y}(t, PA^{\hat{Y}})]}{\partial t^n} \right].$

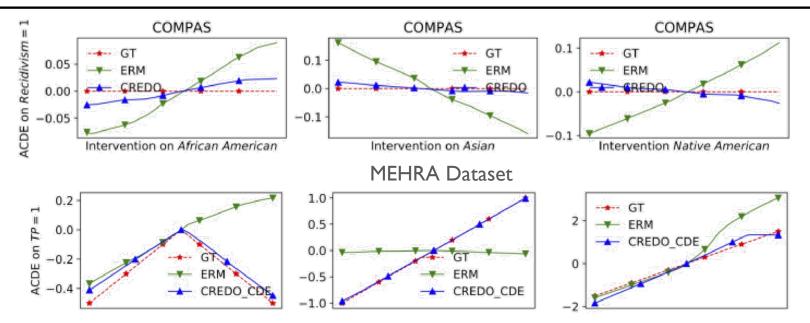
Our Regularizer

$$\hat{\theta} = \arg\min_{\theta} ERM + \lambda \frac{1}{N} \sum_{j=1}^{N} \max\{0, \|\nabla_j f \odot M - \delta G^j\|_1 - \epsilon\}$$

where $\nabla_j f$ is the $C \times d$ Jacobian of f w.r.t. x^j ; M is a $C \times d$ binary matrix that acts as an indicator of features for which prior knowledge is available; \odot represents the element-wise (Hadamard) product; N is the size of training data; and ϵ is a hyperparameter to allow a margin of error.

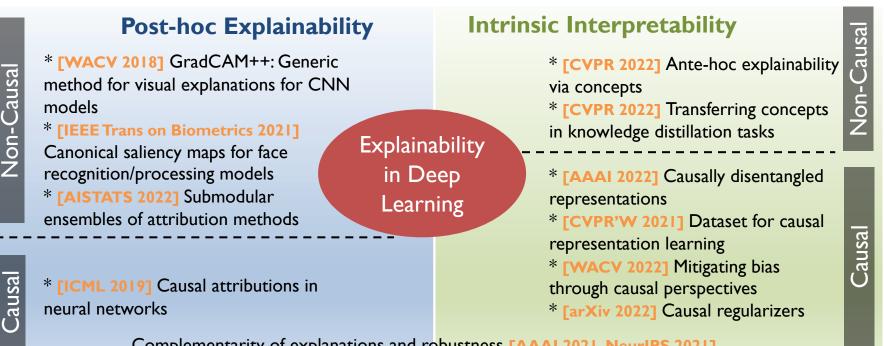
Algorithm 1 CREDO Regularizer **Result:** Regularizers for ACDE, ANDE, ATCE in f. **Input:** $\mathcal{D} = \{(x^j, y^j)\}_{i=1}^N, y^j \in \{0, 1, \dots, C\}, x^j \sim X^j;$ $\mathbb{Q} = \{i | \exists g_i^c \text{ for some } c\}; \mathbb{G} = \{g_i^c | g_i^c \text{ is prior for } i^{th} \text{ fea-}$ ture w.r.t. class c}; $\mathbb{F} = \{f^1, \dots, f^K\}$ is the set of structural equations of the underlying causal model s.t f^i describes Z^i ; ϵ is a hyperparameter **Initialize:** $j = 1, \delta G^j = 0_{c \times d} \forall j = 1, ..., N, M = 0_{c \times d}$ while $j \leq N$ do foreach $i \in \mathbb{O}$ do foreach $g_i^c \in \mathbb{G}$ do $\delta G^j[c,i] = \nabla g^c_i \Big|_{x^j_i}; M[c,i] = 1$ case 1: regularizing ACDE do $\nabla_j f[c,i] = \frac{\partial Y}{\partial x_i}|_{x^j}$ case 2: regularizing ANDE do /* causal graph is known */ $t = x_i$ $\nabla_j f[c,i] = \frac{\partial \hat{Y}}{\partial x_i} \Big|_{(t^j, z^j_{\star^*}, w^j)}$ case 3: regularizing ATCE do /* causal graph is known */ $\nabla_j f[c,i] = \left[\frac{d\hat{Y}}{dx_i} + \sum_{l=1}^K \frac{\partial \hat{Y}}{\partial Z^l} \frac{df^l}{dx_i} \right]|_{x^j}$ end end j = j + 1end return $\frac{1}{N} \sum_{j=1}^{N} max\{0, ||\nabla_j f \odot M - \delta G^j||_1 - \epsilon\}$

Sample Results



CREDO shows promising performance in matching causal domain priors with no significant impact on model accuracy/training time

Viewing from Different Perspectives: Our Efforts



Complementarity of explanations and robustness [AAAI 2021, NeurIPS 2021]

Thank you!

Questions?

vineethnb@cse.iith.ac.in

http://www.iith.ac.in/~vineethnb

