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Scalar perturbations

» Scalar fields: Investigate the evolution of solutions to the wave equation
Oyt =0

on Reissner—Nordstrom or Kerr backgrounds.
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» Motivation: In harmonic gauge Ogz" = 0 the vacuum equations take the
form

UgGuv = Nl“/(gv dg).

» Observational signatures at null infinity
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Scalar perturbations
» Asymptotics: Schematically, we are looking for estimates of the form:
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Similar estimates for the projections 1, of the angular decomposition
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» Goal: To show the relevance of conservation laws

» Applications:

» Upper bounds for stability considerations (black hole exterior)
> Lower bounds for strong cosmic censorship (black hole interior)

» Results and methods in physical space.

Schwarzschild — sub-extremal Reissner—Nordstrom (RN) — extremal RN
— sub-extremal Kerr — extremal Kerr
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Learning from Minkowski
The wave equation on Minkowski gives

o [0 ((r%0.)" (ri)) ] =0
and hence
9, ((29,)" (ree))

is conserved in the u direction. So @ = 0 (SHP).

N

u (%
‘(\) 0 v\/'
TP (U, V) =
//Q

(20, () (s 0) = 0 o

/7

4/28



What about black holes?

Positivity of ADM mass makes a big difference.

Additional issues include the redshift effect at the horizon
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What about black holes?

and the trapping effect at the photon sphere.
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What about black holes?

» Contributors: Dafermos, Rodnianski, Andersson, Tataru, Moschidis, Blue,
Holzegel, Shlapentokh-Rothman, Sbierski, Fournodavlos, Dyatlov, Hafner,
Bony, Smulevici, Klainerman, lonescu, Tohaneanu, Sterbenz, Soffer, Schlue,
Luk, Oh, Finster, Kamran, Smoller, Yau, Donninger, Schlag, Vasy, Hintz,
Metcalfe, Wald, Franzen, Teixeira da Costa, ...

» Decay for all |a] < M (Dafermos—Rodnianski—Shlapentokh-Rothman)
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Late-time asymptotics

Theorem (Angelopoulos, A., Gajic)

If ¢ is a solution to the wave equation on a Schwarzschild space-time with
smooth compactly supported initial data then

Asymptotics in the exterior region

Yl Ylr=r iz
81V W] -7 | =8IV W] 77 | 2LV W] 72+ 8MISV [y] log T - 7

Comments:
> Generically IV 4] #0
> Correlated asymptotics along H* (1) ~ 8T [4)] - 772) and T
(r ~ —21D[] - 772).
» Asymptotics recover semi-analytical work of Leaver.

» Independently obtained by Hintz.
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1Y) in terms of the initial data on ¢ =0

For initial data on the hypersurface t = 0, with non-trivial support on the bifur-
cation sphere, we have

1) =2 bdQ+ %/ o rdrds.
A Jr—qy 1 - 24

Am {t=0}NSgr r
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1Y) in terms of the radiation field on Z+

M

o rip dQddr

4w TZ+n{r>0}

» The late time tails are dictated by the weak-field dynamics, namely by
dynamics at very large 7.
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1 . .
I(() )[w] in terms of conservation laws
It turns out that the function

folyl() = lim 0%, (rv0)

is constant, that is independent of u. This yields a conservation law along Z™.
The associated constant

Io[¢] == Io[¢)](u) (1)

is called the Newman—Penrose constant of .
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Now,

IV ] = Io[T 1]
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Price's law

Theorem (Angelopoulos, A., Gajic)

If ¢ is a solution to the wave equation on a Schwarzschild space-time with
smooth compactly supported initial data then

Asymptotics in the exterior region

Yeln Yelr=r Tie|z
A@M) IV - 7D | ARV Y] 7D | BV [y] 7

> T[](0, d) = lim,—s o0 7200 (qe0u (qe—100 (-..(q10u (r1)e)...)))) with qo ~ 72.
» Almost sharp decay rates by Donninger, Schlag and Soffer.
» Sharp decay rates by Hintz.
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Schwarzschild asymptotics

Theorem
If 1 is a solution to the wave equation on a Schwarzschild space-time with
smooth compactly supported initial data then

Asymptotics in the exterior region

pln Ylr=r Tz
=8IV -7 | =8IV -3 | =20V ] - 72 4+ 8MISV Y] log T - 772
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R-N asymptotics

Theorem
If 1 is a solution to the wave equation on a sub-extremal R-N space-time with

smooth compactly supported initial data then

Asymptotics in the exterior region

hln Ylr=r rilz

—8IM ] 773 | =8IV ] -3 | =21V [ - 72 + 8MISV Y] log T T3

» The charge does not seem to affect the asymptotics. Then what about the

extremal case?
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Extremal R-N asymptotics

Theorem (Angelopoulos, A., Gajic)

If v is a solution to the wave equation on a extremal R-N space-time with
smooth compactly supported initial data then

Asymptotics in the exterior region

e Vlr=r ks
2MH[] - | 2] 2 | (M) - 200 [))

R—M

» Horizon asymptotics significantly slower.
» What about the constant H[y]?
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Degeneracy of the redshift effect at extremal horizons

...due to the vanishing of the surface gravity.
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Proposition (A.)
Ify) satisfies the wave equation on extremal Reissner—Nordstrém then the integral

H[¢]:—/S (Y¢+2M )dvol

is independent of 7. Here Y is transversal to the horizon.
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“Outgoing radiation”

Solutions 1 with H[¢)] # 0 and compactly supported initial data
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Horizon instability of ERN
» Qutgoing perturbations and perturbations with an initially static moment
(H[y] # 0) satisfy along the event horizon:
1) Non-decay: Yo — — -+ H[)]
2) Blow-up: YY) — sz H[y] - 7
> H[y]: “horizon” "hair" since
1) Energy density measured by incoming observers: T'-[¢)] ~ H[i)] where

T is the E-M tensor,
2) Yk, T, [th] — 0 away from the horizon.

> Later extensions/applications by: Reall, Murata, Casals, Zimmerman, Gralla, Tana-
hashi, Bizon, Lucietti, Angelopoulos, Gajic, Ori, Sela, Tsukamoto, Kimura, Harada,
Hadar, Dain, Dotti, Godazgar, Burko, Khanna, Bhattacharjee, Cvetic, Pope
Chow, Berti et al, Cardoso et al,...
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Measuring the horizon hair H from afar

» Can we observe/measure the horizon instability from afar?

Yes.
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A signature of extremality at null infinity
Let ¢ be a scalar perturbation of Reissner—Nordstrdm (RN) (with mass M,
charge e) supported initially near the event horizon.
Let's define:

1 1
s\Y] == —— hm . (r + — T
¥ = a7 7 00l g [l

For all scalar perturbations on sub-extremal RN we have

| If |e| < M then s[y] = 0]

Moreover,

\ If s[1)] # O then |e| = M (ERN) and s[¢] = H[¢] \

» Extremal black holes admit classical externally measurable hair.

» The horizon hair H[t)] could potentially serve as an observational sig-
nature.

» For extremal black holes information “leaks” from the event horizon to
null infinity.
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Transient signature

The behavior of nearly extreme black hole hair and its measurement at future
null infinity as a transient phenomenon by Burko, Khanna and Sabharwal.
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Schwarzschild asymptotics

Theorem (Angelopoulos, A., Gajic)

If 1 is a solution to the wave equation on a Schwarzschild space-time with
smooth compactly supported initial data then

Asymptotics in the exterior region

Ulu Ylr=r Y|z
—8IV[y] 70 | 8IV[] 0 | 2LV

» What about Kerr asympototics?
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Kerr asymptotics

Theorem (Angelopoulos, A., Gajic)

If 1 is a solution to the wave equation on a sub-extremal Kerr space-time with
smooth compactly supported initial data then

Asymptotics in the exterior region

Yln Ylr=r Y|z
81 W) 7 | 8IV[w] -t | —2n )

» Spherical mean wrt BL spheres.
» NP constants, T'—invertibility need some care.
» Explicit expressions of all constants.

» Asympotics derived by Hintz using a different approach.
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Kerr asymptotics for modes ¢ = 1,2

Decompose
v=2 v

£>0
using the Boyer-Lindquist spheres in Kerr.
Theorem (Angelopoulos, A., Gajic)

If v is a solution to the wave equation on a sub-extremal Kerr space-time with
smooth compactly supported initial data then

Asymptotics in the exterior region

mode Ylr=r rlz

(=1] -BR@ e 7° —410(0,0:) - 7°

(=2 | —8 /T2  Yao(0) 770 | [~ 5 IV (0, 00) + § /T2 IS Yao (6

» Horizon oscillations for £ = 1 (Barack—Ori)

327’+ 1 eimw+7
?/11 ~T—o0 Z If,z Ylm 0 QOH+) 75

m=—1

» Slower decay compared to Schwarzschild (mode coupling). 25/28



Extremal Kerr

Decompose in azimuthal frequency ¢ = > . ¥m.

» )y: Similar behavior as in ERN. Numerical confirmation by Khanna et al

> .: Amplified instability at the horizon: 7~ 2 decay for v, 72 growth for
Y (Gralla, Zimmerman, Casals).

> Zmzmo Um: open

» Non-linear perturbations: formation of naked singularities from smooth
data?
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Addendum: Characteristic gluing constructions

Conservation laws are obstructions to characteristic gluings.

> Linear wave equation: Necessary and sufficient conditions (A.)

> Einstein equations: Small data (A., Czimek, Rodnianski). Charges related
to mass, linear and angular momentum, center of mass.
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Thank you!
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