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Scalar perturbations

I Scalar fields: Investigate the evolution of solutions to the wave equation

2gψ = 0

on Reissner–Nordström or Kerr backgrounds.
 event
horizon

null infinity

I Motivation: In harmonic gauge 2gx
µ = 0 the vacuum equations take the

form
2ggµν = Nµν(g, ∂g).

I Observational signatures at null infinity
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Scalar perturbations

I Asymptotics: Schematically, we are looking for estimates of the form:

ψ(τ, r, θ, φ) = Q(r, θ, φ) · 1

τp
+O

(
1

τp+ε

)
Similar estimates for the projections ψ` of the angular decomposition

ψ =
∑
`≥0

ψ`.

I Goal: To show the relevance of conservation laws

I Applications:
I Upper bounds for stability considerations (black hole exterior)
I Lower bounds for strong cosmic censorship (black hole interior)

I Results and methods in physical space.

Schwarzschild → sub-extremal Reissner–Nordström (RN) → extremal RN
→ sub-extremal Kerr → extremal Kerr
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Learning from Minkowski
The wave equation on Minkowski gives

∂u
[
r−2`∂v

(
(r2∂v)`(rψ`)

)]
= 0

and hence
∂v
(

(r2∂v)`(rψ`)
)

is conserved in the u direction. So Q = 0 (SHP).
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What about black holes?

Positivity of ADM mass makes a big difference.

Additional issues include the redshift effect at the horizon

A

B
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What about black holes?

and the trapping effect at the photon sphere.
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What about black holes?

I Contributors: Dafermos, Rodnianski, Andersson, Tataru, Moschidis, Blue,
Holzegel, Shlapentokh-Rothman, Sbierski, Fournodavlos, Dyatlov, Häfner,
Bony, Smulevici, Klainerman, Ionescu, Tohaneanu, Sterbenz, Soffer, Schlue,
Luk, Oh, Finster, Kamran, Smoller, Yau, Donninger, Schlag, Vasy, Hintz,
Metcalfe, Wald, Franzen, Teixeira da Costa, ...

I Decay for all |a| < M (Dafermos–Rodnianski–Shlapentokh-Rothman)
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Late-time asymptotics

Theorem (Angelopoulos, A., Gajic)

If ψ is a solution to the wave equation on a Schwarzschild space-time with
smooth compactly supported initial data then

Asymptotics in the exterior region

ψ|H ψ|r=R rψ|I

−8I
(1)
0 [ψ] · τ−3 −8I

(1)
0 [ψ] · τ−3 −2I

(1)
0 [ψ] · τ−2 + 8MI

(1)
0 [ψ] log τ · τ−3

Comments:

I Generically I
(1)
0 [ψ] 6= 0

I Correlated asymptotics along H+ (ψ ∼ 8I(1)[ψ] · τ−3) and I+
(rψ ∼ −2I(1)[ψ] · τ−2).

I Asymptotics recover semi-analytical work of Leaver.

I Independently obtained by Hintz.
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I
(1)
0 [ψ] in terms of the initial data on t = 0

For initial data on the hypersurface t = 0, with non-trivial support on the bifur-
cation sphere, we have

I
(1)
0 [ψ] =

M

4π

∫
{t=0}∩SBF

ψ dΩ +
M

4π

∫
{t=0}

1

1− 2M
r

∂tψ r
2drdΩ.
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I
(1)
0 [ψ] in terms of the radiation field on I+

I
(1)
0 =

M

4π

∫
I+∩{τ≥0}

rψ dΩdτ

I The late time tails are dictated by the weak-field dynamics, namely by
dynamics at very large r.
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I
(1)
0 [ψ] in terms of conservation laws

It turns out that the function

I0[ψ](u) = lim
r→∞

v2∂v(rψ0)

is constant, that is independent of u. This yields a conservation law along I+.
The associated constant

I0[ψ] := I0[ψ](u) (1)

is called the Newman–Penrose constant of ψ.

Now,

I
(1)
0 [ψ] = I0[T−1ψ]
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Price’s law

Theorem (Angelopoulos, A., Gajic)

If ψ is a solution to the wave equation on a Schwarzschild space-time with
smooth compactly supported initial data then

Asymptotics in the exterior region

ψ`|H ψ`|r=R rψ`|I

A`(2M)`I
(1)
` [ψ] · τ−(2`+3) A`R

`I
(1)
` [ψ] · τ−(2`+3) B`I

(1)
` [ψ] · τ−(`+2)

I I`[ψ](θ, φ) = limr→∞ r
2∂v(q`∂v(q`−1∂v(...(q1∂v(rψ`)...)))) with q` ∼ r2.

I Almost sharp decay rates by Donninger, Schlag and Soffer.

I Sharp decay rates by Hintz.
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Schwarzschild asymptotics

Theorem
If ψ is a solution to the wave equation on a Schwarzschild space-time with
smooth compactly supported initial data then

Asymptotics in the exterior region

ψ|H ψ|r=R rψ|I

−8I
(1)
0 [ψ] · τ−3 −8I

(1)
0 [ψ] · τ−3 −2I

(1)
0 [ψ] · τ−2 + 8MI

(1)
0 [ψ] log τ · τ−3
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R-N asymptotics

Theorem
If ψ is a solution to the wave equation on a sub-extremal R-N space-time with
smooth compactly supported initial data then

Asymptotics in the exterior region

ψ|H ψ|r=R rψ|I

−8I
(1)
0 [ψ] · τ−3 −8I

(1)
0 [ψ] · τ−3 −2I

(1)
0 [ψ] · τ−2 + 8MI

(1)
0 [ψ] log τ · τ−3

I The charge does not seem to affect the asymptotics. Then what about the
extremal case?
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Extremal R-N asymptotics

Theorem (Angelopoulos, A., Gajic)

If ψ is a solution to the wave equation on a extremal R-N space-time with
smooth compactly supported initial data then

Asymptotics in the exterior region

ψ|H ψ|r=R rψ|I

2M−1H[ψ] · τ−1 4M
R−MH[ψ] · τ−2

(
4MH[ψ]− 2I

(1)
0 [ψ]

)
· τ−2

I Horizon asymptotics significantly slower.

I What about the constant H[ψ]?
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Degeneracy of the redshift effect at extremal horizons

A

B

...due to the vanishing of the surface gravity.
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Proposition (A.)

If ψ satisfies the wave equation on extremal Reissner–Nordström then the integral

H[ψ] = −
∫
Sτ

(
Y ψ +

1

2M
ψ
)

dvol

is independent of τ . Here Y is transversal to the horizon.
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“Outgoing radiation”

Solutions ψ with H[ψ] 6= 0 and compactly supported initial data
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Horizon instability of ERN

I Outgoing perturbations and perturbations with an initially static moment
(H[ψ] 6= 0) satisfy along the event horizon:

1) Non-decay: Y ψ → − 1
M
H[ψ]

2) Blow-up: Y Y ψ → 1
M3H[ψ] · τ

I H[ψ]: “horizon” “hair” since

1) Energy density measured by incoming observers: T rr[ψ] ∼ H[ψ] where
T is the E-M tensor,
2) Y kψ,T rr[ψ]→ 0 away from the horizon.

I Later extensions/applications by: Reall, Murata, Casals, Zimmerman, Gralla, Tana-
hashi, Bizon, Lucietti, Angelopoulos, Gajic, Ori, Sela, Tsukamoto, Kimura, Harada,
Hadar, Dain, Dotti, Godazgar, Burko, Khanna, Bhattacharjee, Cvetic, Pope,
Chow, Berti et al, Cardoso et al,...
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Measuring the horizon hair H from afar

I Can we observe/measure the horizon instability from afar?

Yes.
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A signature of extremality at null infinity
Let ψ be a scalar perturbation of Reissner–Nordström (RN) (with mass M ,
charge e) supported initially near the event horizon.
Let’s define:

s[ψ] :=
1

4M
lim
τ→∞

τ2 · (rψ)|I+ +
1

8π

∫
I+∩{u≥0}

rψ|I+

For all scalar perturbations on sub-extremal RN we have

If |e| < M then s[ψ] = 0

Moreover,

If s[ψ] 6= 0 then |e| = M (ERN) and s[ψ] = H[ψ]

I Extremal black holes admit classical externally measurable hair.

I The horizon hair H[ψ] could potentially serve as an observational sig-
nature.

I For extremal black holes information “leaks” from the event horizon to
null infinity.
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Transient signature

The behavior of nearly extreme black hole hair and its measurement at future
null infinity as a transient phenomenon by Burko, Khanna and Sabharwal.
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Schwarzschild asymptotics

Theorem (Angelopoulos, A., Gajic)

If ψ is a solution to the wave equation on a Schwarzschild space-time with
smooth compactly supported initial data then

Asymptotics in the exterior region

ψ|H ψ|r=R rψ|I

−8I
(1)
0 [ψ] · τ−3 −8I

(1)
0 [ψ] · τ−3 −2I

(1)
0 [ψ] · τ−2

I What about Kerr asympototics?
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Kerr asymptotics

Theorem (Angelopoulos, A., Gajic)

If ψ is a solution to the wave equation on a sub-extremal Kerr space-time with
smooth compactly supported initial data then

Asymptotics in the exterior region

ψ|H ψ|r=R rψ|I

−8I
(1)
0 [ψ] · τ−3 −8I

(1)
0 [ψ] · τ−3 −2I

(1)
0 [ψ] · τ−2

I Spherical mean wrt BL spheres.

I NP constants, T−invertibility need some care.

I Explicit expressions of all constants.

I Asympotics derived by Hintz using a different approach.
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Kerr asymptotics for modes ` = 1, 2
Decompose

ψ =
∑
`≥0

ψ`

using the Boyer-Lindquist spheres in Kerr.

Theorem (Angelopoulos, A., Gajic)

If ψ is a solution to the wave equation on a sub-extremal Kerr space-time with
smooth compactly supported initial data then

Asymptotics in the exterior region

mode ψ|r=R rψ|I

` = 1 − 32R
3
I
(1)
1 (θ, ϕ∗) · τ−5 − 4

3
I
(1)
1 (θ, ϕ∗) · τ−3

` = 2 − 16
3

√
π
5
a2I

(1)
0 · Y20(θ) · τ−5 [− 1

10
I
(1)
2 (θ, ϕ∗) + 8

3

√
π
5
a2I

(1)
0 · Y20(θ)] · τ−4

I Horizon oscillations for ` = 1 (Barack–Ori)

ψ1 ∼τ→∞ −32r+
3
·

1∑
m=−1

I
(1)
1m · Y1m(θ, ϕH+) · e

imω+τ

τ5

I Slower decay compared to Schwarzschild (mode coupling). 25 / 28



Extremal Kerr

Decompose in azimuthal frequency ψ =
∑
m≥0 ψm.

I ψ0: Similar behavior as in ERN. Numerical confirmation by Khanna et al

I ψm: Amplified instability at the horizon: τ−
1
2 decay for ψ, τ

1
2 growth for

Y ψ (Gralla, Zimmerman, Casals).

I
∑
m≥m0

ψm: open

I Non-linear perturbations: formation of naked singularities from smooth
data?
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Addendum: Characteristic gluing constructions

Conservation laws are obstructions to characteristic gluings.

I Linear wave equation: Necessary and sufficient conditions (A.)

I Einstein equations: Small data (A., Czimek, Rodnianski). Charges related
to mass, linear and angular momentum, center of mass.
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Thank you!
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