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E[m] the m-torsion subgroup of &, for every positive integer m.
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INTRODUCTION

DEFINITION

The m-division field K(E[m]) of £ over K is the field generated over K by
the coordinates of the m-torsion points of £. We will also denote it by
Km.

It is well-known that £[m] = (Z/mZ)?. Let P1 = (x1,y1), P2 = (x2,y2)
be two of the m-torsion points of £, forming a basis of £[m]. Then

Km = K(Xl,XQ,yl,yQ).
By the Weil Pairing we have

K(¢m) € Knm.
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Questions:
1. In which cases K((m) = K(E[m])?

2. What about number fields K(£[m]), when K({m) € K(E[m])?
Other generating systems? Degrees? Galois groups Gal(K(E[m])/K)?
Discriminant? Etc.
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ELLIPTIC CURVES WITH Q(Cm) = Q(E[m])

THEOREM (MEREL, STEIN, 2001 + REBOLLEDO 2013)

Let p be a prime number.
IfQ(E[p]) = Q((p) then p € {2,3,5}.

The fundamental fact in Merel’s proof is showing the existence of
modular curves with a rational point of prime order p € {2,3,5}. But no
numerical example were given.



ELLIPTIC CURVES WITH Q(Cm) = Q(E[m])

THEOREM (P.,2010)
We have Q(E[3]) = Q((3) if and only if £ belongs to the family

Fan: ¥ =x3+Agnx+ Bgp, B,hcQ\ {0},
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THEOREM (GONZALES-JIME‘NEZ, LozANO-ROBLEDO, 2016)
If Q(E[m]) = Q(¢m) then m € {2,3,4,5}.

THEOREM (GONZALES-JIMENEZ, LozANO-ROBLEDO, 2016)
If Q(E[m])/Q is abelian, then m = 2,3,4,5,6, or 8.
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THEOREM (Rev~orps, 2011)

Let m be divisible by an integer d > 3. Then

o= K (o (22) o (27).

where y (% P,-) denotes the ordinate of the point 7 P;, fori =1,2.
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FENERATORS FOR K(&E[m])

Since K,/ K is a Galois extension, then by the Primitive Element
Theorem we have that it is monogenous. Anyway, it is not easy to find
explicitly a € Kp, such that K, = K(a). Then we searched for minimal
generating sets inside {x1, X2, (m, Y1, ¥2}-

THEOREM (Banpini, P., 2016)

Let £, Py and P, as above. For every odd integer m > 5 we have

Km = K(Xl, Cm,yg).

If m is an even number, then either K, = K(x1,(m, y2) or
Km = K(x1, Cm, ¥1, y2) and Gal(Knm/K(x1,Cm, y2)) is generated by the
element mapping P> to 3 Py + Ps.
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Let p be an odd prime number and consider the following statement.

LEMMA (Banpmi, P., 2016)

For any prime p > 5 one has

[Kp : K(x1,¢p)] < 2p.
Moreover the Galois group Gal(K,/K(x1,(p)) is cyclic, generated by a

power of
(-1 1
"=lo -1)
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By the previous lemma, we have

[Kp: K1 < 251 (p—1) - 2p = (p? — p)(p* — 1) = |GL2(Z/pZ).

If K is a number field and £ has no complex multiplication, then, by the
famous Serre’s theorem, the Galois representation

pep: Gal(K/K) — GLo(Z/pZ)
is surjective for all p > p(&), where p(€) is a prime depending on £.

Since Gal(K/K) ~ Gal(K,/K), then for all but finitely many p the set
{x1,y2,(p} is a minimal set of generators for K,/K (among those

contained in {X1,X2,Y1,y2an})-



(G ALOIS REPRESENTATIONS

DEFINITION

For an elliptic curve £/K and a prime p we say that p is exceptional for £
if pe p is not surjective, i.e., if [K, : K] < |GL2(Z/pZ)).



(G ALOIS REPRESENTATIONS

DEFINITION

For an elliptic curve £/K and a prime p we say that p is exceptional for £
if pe p is not surjective, i.e., if [K, : K] < |GL2(Z/pZ)).

For exceptional primes the Galois group Gal(K,/K) is a proper subgroup
of GL2(Z/pZ). Hence it falls in one of the following cases.
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LEMMA (SErrE, 1972)

Let G < GLy(Z/pZ). Then one of the following holds:
1. G is contained in a Borel subgroup;
2. G is a Cartan subgroup;

3. G is contained in the normalizer of a Cartan subgroup, but it is not a
Cartan subgroup;

4. the image of G under 7 : GLo(Z/pZ) — PGL2(Z/pZ) is contained
in a subgroup which is isomorphic to Ay or As or S4.

LEMMA (LARSON, VAINTROB, 2014)

If p > 53 is unramified in K/Q and exceptional for £, then Gal(K,/K)
does not verify 4.



(G ALOIS REPRESENTATIONS

THEOREM (Banpmv, P., 2016)

Assume that p > 5 is exceptional.
If Gal(K,/K) is contained in a Borel subgroup or in the normalizer of a
split Cartan subgroup, then

® ifp#1 (mod 3), then K, = K(Cp, y2) ;

® ifp=1 (mod 3), then [K, : K((p,)2)] is 1 or 3.
If Gal(K,/K) is contained in the normalizer of a non-split Cartan
subgroup, then

® ifp=1 (mod 3), then K, = K((p, y2);

e ifp#1 (mod 3), then [K, : K((p,¥2)] is 1 or 3.



GENERATORS FOR K(&[p"])

When m = p", with n > 2, the generating set {x1, (pn, y2} of Kin/K is
not minimal and can be improved as follows.

THEOREM (Dvornicich, P., 2022)

Let m = p", where p is a prime and n is a positive integer. Then

KP" = K(Xla Cp7y2)‘
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THEOREM (Dvornicich, P., 2022)

Let F := K(x1,y1). Forall p>3 and r > 1, we have
K(E[P)/F = F(Cpr, ™/a),

with a € F((pr) and Gal(K(E[p"])/F) = Cm,.Cm,, where my, my are
positive integers such that my|p" and my|p"(p — 1).



GENERATORS FOR K(&[p"])

THEOREM (Dvornicich, P., 2022)

Let F := K(x1,y1). Forall p>3 and r > 1, we have
K(E[P)/F = F(Cpr, ™/a),

with a € F((pr) and Gal(K(E[p"])/F) = Cm,.Cm,, where my, my are
positive integers such that my|p" and my|p"(p — 1).

In the representation of Gal(K(E[p"])/F) in GL2(Z/p"Z), the group
Cm, Is generated by a power of

- (31)



A bound for the discriminant of K(&E[m])



A BOUND FOR THE DISCRIMINANT OF K,

THEOREM (Dvornicich, P., 2022)

Let Dy, /k denote the discriminant of the extension Ky, /K and let
h(D,, k) be its logarithmic height. For every m >3, we have

3(m? — 1)*(m? — 3)(log m + h(A) + h(B)), if m is odd;
h(Dk,, k) <
3(m? — 4)*(m? — 6)(log m + h(A) + h(B)), if m is even.
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any conjugacy class C in Gal(L/K), there exists a prime v of K which is
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AN EFFECTIVE VERSION

THEOREM (LAGARIAS, MONTGOMERY, ODLYZKO, 1979)

For any number field K, any finite Galois extension L/K, with L # Q and
any conjugacy class C in Gal(L/K), there exists a prime v of K which is

unramified in L, for which the Artin symbol <L|VK> is equal to C and

Nkjo(v) < [Drjgl.

To have an explicit effective version one has to know explicitly C; and the
discriminant D; /g or an upper bound for it.



AN EFFECTIVE VERSION

THEOREM (Ann, Kwon, 2019)

For any number field K, any finite Galois extension L/K, with L # Q and

any conjugacy class C in Gal(L/K), there exists a prime v of K which is
unramified in L, for which the Artin symbol <L|VK> is equal to C and

Nijg(v) < |Dy o™,



An effective version of the hypotheses
of the local-global divisibility
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Let P € E(K). Assume that for all but finitely many places v € K, there
exists D, € E(K,) such that P = mD,,, where K, is the completion of K
at the place v. Is it possible to conclude that there exists D € E(K) such
that P=mD?

It suffices to solve the problem for m = p" to get an anwer for a general
m.
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AN EFFECTIVE VERSION

Tate 1962; (reproved by Dvornicich, Zannier in 2001 and by Wong in
2001): , for all p, when n=1,

Dvornicich, Zannier, 2007: , for all p > 163, n > 1, when
k=Q;

P., Ranieri, Viada, 2012: , for all p > (3["1(@1/2 +1)%, n>1;

P., Ranieri, Viada, 2014: ,forall p>3,n>1, when k =Q;

Creutz, 2016: NO , for p=2,3 and n > 2.
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In particular

(K, E[p"]) = 0.

As a consequence of a result of Creutz of 2013, we have that the triviality
of III(K, E[p"]), for every r, implies an affirmative answer to the
following question posed by Cassels in 1962.

CASSELS’ QUESTION

Are the elements of II(K, £) infinitely divisible by a prime p when
considered as elements of the Weil-Chatelet group H*(K, &) of all classes
of principal homogeneous spaces for £ defined over K7

Creutz 2013 + P., Ranieri, Viada, 2012-2014 = , for all p > 3,
when K = Q and for all p > (3@/2 1 1)2, when K # Q.
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AN EFFECTIVE VERSION

In the proofs we need that v varies among all places unramified in K,n to
have that the Galois group G, := Gal((Kpn)w/Ky), where w|v, varies
over all cyclic subgroups of G.

By the Chebotarev Density Theorem the local Galois group G, varies over
all cyclic subgroups of G as v varies in a set of primes with Dirichlet
density 1.



AN EFFECTIVE VERSION

Indeed G, varies over all cyclic subgroups of G as v varies in a set of
primes v such that h(Nk g(v)) < 12577 - B(p", A, B), where B(p", A, B)
is the upper bound showed above for h(Dgg[p)/0)-

COROLLARY (DVORNICICH, P., 2022)
Let p>5andn>1. Let P € £(Q) and let

S = {v € Mx|h(Nk g(v)) < 12577 - B(p", A, B)},

Assume that for all v € S, there exists D, € £(Q,) such that P = p"D,.
Then there exists D € £(Q) such that P = p"D.



Thank you for your attention!



