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K number field, S finite set of places on K containing the set S∞ of

infinite places, OS ,O∗
S ring of S-integers, group of S-units

Many Diophantine problems =⇒

S-unit equations of the form

αx + βy = 1 in x , y ∈ O∗
S (1)

(or their equivalent homogeneous versions), where α, β ∈ K∗.

Extremely rich literature, a great number of applications, many survey

papers and books, including

- Evertse, Gy, Stewart and Tijdeman (1988), S-unit equations and

their applications, in: New Advances in Transcendence Theory (A.

Baker, ed.), pp. 110–174, CUP;

- Evertse and Gy (2015), Unit equations in Diophantine number

theory, CUP.



Ineffective finiteness results

- Siegel (1921): S = S∞, implicite;

- Mahler (1933): K = Q, S arbitrary;

- Lang (1960): over arbitrary finitely generated domains of

characteristic 0.
...

Upper bounds for the number of solutions

- Evertse (1984): at most 3 · 7d+2s solutions, d = [K : Q], s = |S |;

- Evertse, Gy, Stewart and Tijdeman (1988): apart from finitely many

so-called S-equivalence classes of equations (1) at most 2 solutions,

sharp.

...



The S-unit equations are very important in the solutions of many other

families of Diophantine equations. For their applications to obtaining the

complete solution of Diophantine equations, an upper bound on the

(height of) solutions of associated S-unit equations is required.

General explicit bounds for the solutions of equation (1)

Gy (1974,79): for S = S∞, and later for arbitrary S (and for slightly more

general solutions of the gomogeneous version of (1))

d , h,R degree, class number, regulator of K , s = |S |, P greatest

norm of prime ideals in S (P = 1 if S = S∞), H( ) absolute height,

h( ) = logH( ) absolute logarithmic height

H := max(h(α), h(β), 1)



In slightly different form

Theorem A (Gy, 1979)

For every solution x , y of (1), max(h(x), h(y)) does not exceed

(c1s)
c2sPd+1H, (2)

where c1 = c1(d , h,R), c2 = c2(d) explicitly given; sharp in terms of H.

Main tools: best available estimates at that time from Baker’s theory

of linear forms in logarithms (complex and p-adic versions) +

quantitative results on fundamental units

Many applications: discriminant and index equations, power integral

bases, decomposable form equations, irreducible polynomials,. . .



Later several authors, including Sprindžuk (1982), Evertse, Gy, Stewart

and Tijdeman (1988), Bombieri (1993), Bugeaud and Gy (1996),

Bugeaud (1988), Yu and Gy (2006), Evertse and Gy (2015), Le Fourn

(2020) and Gy (2020) improved upon or modified the previous bounds.

We now present in simplified form the bounds of Bugeaud and Gy, Yu

and Gy, Le Fourn, and Gy and compare them.

RS : S-regulator (RS = R for S = S∞)

log∗ a := max(log a, 1)

Theorem B (Bugeaud and Gy, 1996)

Improvement of bound (2) to

(c3s)
c4sPdRS(log

∗ RS)H. (3)

where c3 = c3(d), c4 > 0 absolute, explicit constants.

Considerable improvement: c1 → c3, c2 → c4,P
d+1 → PdRS(log

∗ RS)



Main tools in Bugeaud–Gy and later: estimates of Waldschmidt (1993),

Matveev (2000) (complex case) and Yu (1994,2007) (p-adic case)

from the theory of linear forms in logarithms + Lemmas 1–3 below

on S-regulators and S-units.

p1, . . . , pt prime ideals corresponding to the finite places in S

Lemma 1

If t > 0, then
R

t∏
i=1

logN(pi ) ≤ Rs ≤ hR
t∏

i=1

logN(pi ).

Improved version of some estimates of Hajdu (1993). O∗
S finitely

generated of rank s − 1; s = |S |

Lemma 2

There exists a fundamental system {ε1, . . . , εs−1} of S-units such that
s−1∏
i=1

h(εi ) ≤ c5Rs ,

where c5 = s2s .

In fact due to Hajdu (1993).



The following lemma has several more general variants, e.g. in Bugeaud

and Gy (1996) and Yu and Gy (2006).

OK ring of integers, O∗
K unit group of K , r rank of O∗

K and
R = max(h,R).

Lemma 3

For α ∈ OK \ {0} there exists ε ∈ O∗
K such that

h(εα) ≤ c6R logN(α)

where c6 = 80d r .

In Yu and Gy (2006) two different bounds:

Theorem C (Yu and Gy, 2006)

The bound in (3) can be replaced by

c7P(1 + log∗ RS/ log
∗ P)RSH, (4)

where c7 = (16ds)2(s+3).

considerable improvement of (3): Pd → P, log∗ RS → log∗ RS

log∗ P



Remark

Combining Theorem C with Mason’s result (1983) on unit equations

over function fields and using their effective specialization method,

Evertse and Gy (2013) obtained effective finiteness results for unit

equations over finitely generated domains. Some generalizations were

established by Bérczes, Evertse, Gy and Pontreau (2009) and Bérczes

(2015).



Theorem D (Yu and Gy, 2006)

The bound in (4) can be replaced by

c8Rt+5 P

log∗ P
RSH, (5)

where c8 = 165(r+t+1).

The first bound not containing factor ss or tt→important in some applications

Le Fourn (2020): the first replacement of P by a smaller factor

P ′ :=

the third largest norm of the prime ideals in S , if t ≥ 3,

1 if t ≤ 2.

Theorem E (Le Fourn, 2020)

The bound in (4) can be replaced by

2c7P
′(1 + log∗ RS/ log

∗ P ′)RSH (6)

with c7 occurring in (4) of Theorem C.

Particularly good bound if t ≤ 2 or P ′ small with respect to P. However, in (6)

still occurs ss (in c7).



Le Fourn combined the proof of Theorem C of Yu and Gy (2006) with

his variant of Runge’s method, namely with his Proposition 4 below.

For a place v on K , dv local degree of K at v and

hv (γ) := log∗(1/|γ|v ) for γ ∈ K∗.

For a solution x , y of (1), put

A := {αx , βy , 1

αx
}.

Let S ′ subset of S , deprived S of the two prime ideals with largest norm.

For t ≤ 2, let S ′ = S∞.

Proposition 4 (Le Fourn, 2020)

Let x , y be a solution of (1). Then for P ∈ A and some v ∈ S ′,

dv

d
hv (P) ≥

1

|S |
(max(h(x), h(y))− 3H).



In terms of S , the following theorem gives the currently best bound

for the solutions of equation (1).

Theorem 1 (Gy, 2020)

Let t > 0, and x , y a solution of (1). Then max(h(x), h(y)) is at most

c9Rt+4 P ′

log∗ P ′

(
1 +

log∗ logP

log∗ P ′

)
RSH, (7)

where c9 = (16ed)4(r+t+1).

Improvement of (5) and (6) in (7):

- P/ logP in (5) and P ′
(
1 + log∗ RS

log∗ P′

)
in (6)

−→ P ′

log∗ P ′ , resp

(
1 +

log∗ logP

log∗ P ′

)
,

particularly significant if P ′/P small

- in (6) s2s still occurs, in contrast with (7)

- but, because of R, in general (6) better than (7) in terms of K



Proof of Theorem 1 combines Lemmas 1 to 3 and Proposition 4 and

Proposition 5 below.

For a place v on K , put

N(v) =

2 if v infinite

N(p) if v finite and corresponds to the prime ideal p

Proposition 5 (Evertse and Gy, 2015)

Let Γ be a finitely generated multiplicative subgroup of K∗ of positive rank

with system of generators {ξ1, . . . , ξm} for Γ/Γtors , θ = h(ξ1) · · · h(ξm), δ ∈ K∗,

and ∆ = max(h(δ), 1). Then for every place v on K and any ξ ∈ Γ with

δξ ̸= 1, we have

log |1− δξ|v > −c10
N(v)

logN(v)
θ∆ log∗

(
N(v)h(ξ)

∆

)
where c10 = (16ed)4(m+1).

Proof: combination of estimates of Matveev (2000) and Yu (2007)

concerning logarithmic forms with some new results, due to Evertse and

Gy (2015), from the geometry of numbers.



Proof of (7) from Theorem 1 of Gy (2020); utilizes also some ideas from

the proofs of Theorem A of Gy (1979) and Theorem D of Yu and Gy

(2006).

Basic idea, outline of the main steps: x , y solution of (1),

H := max(h(x), h(y)). For t ≥ 3,S ′ ⊆ S depriving S of its two prime

ideals with largest norm, for t ≤ 2, S ′ = S∞. Prop. 4⇒for

P ∈ A = {αx , βy , 1
αx } and some v ∈ S ′

dv
d
hv (P) ≥

1

|S |
(H− 3H). (8)

Assuming H > 3H ⇒ hv (P) > 0.

First consider P = αx . One can prove

hv (P) ≤ − log |1− (βy)h|v + h log 4. (9)

Here an upper bound is needed for the right hand side.

y ∈ O∗
S ⇒ (y) = pu1 · · · put ; by Lemma 3 there are

πi ∈ OK with bounded height s.t (πi ) = ph for i = 1, . . . , t.



Lemma 2⇒there is a fundamental system {ε1, . . . , εr} of units s.t.

h(ε1) · · · h(εr ) bounded. Now

yh = ζεa11 · · · εarr π
u1
1 · · ·πut

t ,

ζ root of unity, a1, . . . , ar integers.

Let Γ multiplicative subgroup of K∗ generated by

ε1, . . . , εr , π1, . . . , πt and the roots of unity. Proposition 5⇒upper bound

for

− log |1− (βy)h|v . (10)

Distinguish two cases according as v finite or infinite. Using (8), (9)

and (10), after a relatively long and careful computation one deduces in

both cases an upper bound for H

For P = βy or 1
αx one can proceed similarly to get (7).



Theorems A to E and Theorem 1 have many various applications.

Two recent applications of our Theorem 1

I. A classical application: Thue equations

Keeping the above notation

F (x , y) = δ in x , y ∈ OS , (11)

where δ ∈ OS \ {0}, F (X ,Y ) ∈ OS [X ,Y ] binary form of degree

n ≥ 3.

Thue (1909): K = Q, OS = Z, F irred ⇒ finitely many solutions, many

generalizations, quantitative version, applications

Baker (1968): −||− ⇒ explicit bound for the solutions,

many improvements, generalizations, applications



Suppose in (11) F has splitting field K and ≥ 3 distinct linear factors,

H :=upper bound for the heights of the coefficients of F , and

Q = N(p1, . . . , pt) if t > 0.

Theorem D of Yu amd Gy (2006) on S-unit equations ⇒

Theorem F (Yu and Gy, 2006)

Let t > 0. For all solutions x , y of equation (11), max(h(x), h(y)) is

bounded above by

cs10
P

log∗ P
RS(log

∗ RS)(logQ), (12)

c10 > 0 effective, depending on n, h(δ),H and the above parameters of K.

Improved upon several earlier bounds.



As a consequence of Theorem 1 above of Gy (2020)⇒

Theorem 2 (Gy, 2020)

Under the above conditions, the bound (12) can be replaced by

cs11
P ′

log∗ P ′ (log
∗ logP)RS(logQ), (13)

c11 > 0 effective, depending on the same parameters as c10.

Improvement
P

log∗ P
log∗ RS −→ P ′

log∗ P ′ log
∗ logP.

In terms of S , (13) best known bound to date for the solutions of Thue

equation (11).

Remark. In Gy (2020), using our Theorem 1 above a more general result

is deduced for a large class of decomposable form equations in an

arbitrary number of unknowns.



Application towards Masser’s ABC conjecture over number fields

For a place v on K , choose the absolute value | |v normalized in the

usual way. The height of (a, b, c) ∈ (K∗)3 is defined as

HK (a, b, c) =
∏
v

max(|a|v , |b|v , |c |v ) (14)

and the radical as

NK (a, b, c) =
∏
v

N(p)ordpp, (15)

where p prime ideal corresponding to v if v is finite, p rational prime

pZ = p ∩ Z, and the product in (15) is taken over all finite v s.t.

|a|v , |b|v , |c |c are not all equal.



Number field versions of the ABC conjecture of Oesterlé and Masser:

Vojta (1987), Elkies (1991), Broberg (2000), Granville and Stark (2000),

Browkin (2000) and Masser (2002).

Masser’s ABC conjecture in number fields: K number field of degree

d, ∆K the absolute value of its discriminant. Then for every ε > 0 there

exists C (ε) s.t.

HK (a, b, c) < C (ε)d(∆KNK (a, b, c))
1+ε (16)

for all a, b, c ∈ K∗ with a+ b + c = 0.

- (16) best possible in terms of ε,

- uniform, it has good behaviour under field extensions,

- for K = Q, classical ABC conjecture

Of particular importance: effective version of Masser’s conjecture, when

C (ε) effectively computable.



Applications of S-unit equations towards Masser’s conjecture

Let

a+ b + c = 0 with a, b, c ∈ K∗, (17)

S : smallest subset of places v on K containing S∞ s.t. v ∈ S for every

finite v for which |a|v , |b|v , |c |v not all equal. Then

x = −a/c , y = −b/c

solution of the S-unit equation

x + y = 1 in x , y ∈ O∗
S .

From a slightly improved version of Theorem D above we deduced



Theorem G, (Gy, 2008)

If (17) holds, then for any ε > 0

logHK (a, b, c) < c12(NK (a, b, c))
1+ε

where c12 = c12(d ,∆K , ε) > 0 explicitly given. Further, if

N > max(exp exp(max(∆K , e)),∆
2/ε
K ),

then

logHK (a, b, c) < c13(∆KNK (a, b, c))
1+ε,

where c13 = c13(d , ε) > 0 explicitly given.

Considerable improvement of Surroca (2007), who deduced her result

from Theorem B above of Bugeaud and Gy.



Further improvement: N = NK (a, b, c),P
′ the third largest norm of

prime ideals in S ⇒ P ′ ≤ N1/3.

Our Theorem 1 above ⇒

Theorem 3 (Gy, 2022)

Under the above assumptions

logHK (a, b, c) < c14P
′Nc15 log3 N

∗/ log2 N
∗

(18)

and

logHK (a, b, c) < c16N
1/3

+c17 log3 N
∗/ log2 N

∗

, (19)

where N∗ = max(N, 16), c14 to c16 effectively computable, depending

only on d and ∆K .

(19) exponential, and if P ′ small enough with respect to N, (18)

subexponential effective bounds towards Masser’s conjecture. They are

the best known results to date in this direction over number fields.



Remark 1. Independently, using a different approach, Scoones (202?)

derived the same bounds in a slightly weaker form, over the Hilbert class

field of K and not over K .

Remark 2. In the classical case K = Q when a+ b = c with coprime

positive integers a, b, c , our bound (19) is slightly weaker than that of

Stewart and Yu (2001). Further, subexponential bounds similar to (18)

(for P ′ small ) are given in Stewart and Yu (2001) and Pasten (202?).

Pasten proved also a result towards Vojta’s (1998) generalization of the

ABC conjecture with truncated counting functions in varieties of

arbitrary dimension.



Thank you for your attention!


