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Program Termination

Question: so what is the simplest class of programs for which
deciding termination/halting is not “obvious”?

Answer: simple linear loops!

x := 1;
y := 0;
z := 0;
while x 6= 0 do

x := 2x + y ;
y := y + 3− z ;
z := −4z + 6;

Skolem Problem:

x := a;
while x1 6= 0 do

x := Mx;

Positivity Problem:

x := a;
while x1 ≥ 0 do

x := Mx;
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What Exactly Are the Skolem and Positivity Problems?

Problem SKOLEM

Instance: A square k × k integer matrix M
Question: Is there a positive integer n such
that the top-right entry of Mn is zero?

Problem POSITIVITY

Instance: A square k × k integer matrix M
Question: Is it the case that, for all positive
integers n, the top-right entry of Mn is ≥ 0?
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Skolem and Positivity Problems: Classical Formulation

A linear recurrence sequence (LRS) is a sequence in Z (or Q)
〈u0, u1, u2, . . .〉 such that there are constants a1, . . . , ak and,
∀n ≥ 0 : un+k = a1un+k−1 + a2un+k−2 + . . .+ akun.

e.g. the Fibonacci numbers 〈0, 1, 1, 2, 3, 5, 8, . . .〉
k is the order of the sequence

Fibonacci has order 2 (un+2 = un+1 + un)

Problem SKOLEM

Instance: A linear recurrence sequence 〈u0, u1, u2, . . .〉
Question: Does ∃n ≥ 0 such that un = 0?

Problem POSITIVITY

Instance: A linear recurrence sequence 〈u0, u1, u2, . . .〉
Question: Is it the case that, ∀n ≥ 0, un ≥ 0?
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The Skolem Problem: Open for About 90 Years!

“It is faintly outrageous that this
problem is still open; it is saying that we
do not know how to decide the Halting

Problem even for ‘linear’ automata!”

Terence Tao

“A mathematical embarrassment . . . ”

“Arguably, by some distance, the most
prominent problem whose decidability
status is currently unknown.”

Richard Lipton
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The Skolem-Mahler-Lech Theorem

Fact: any LRS can be effectively decomposed into finitely many
non-degenerate LRS.

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros {n ∈ N : un = 0} of a non-degenerate LRS
〈u0, u1, u2, . . .〉 is finite.

Decidability of the Skolem Problem is equivalent to being able
to compute the finite set of zeros of any given non-degenerate
LRS

Unfortunately, all known proofs of the Skolem-Mahler-Lech
Theorem make use of non-constructive p-adic techniques
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Some Other Application Areas

SKOLEM and POSITIVITY arise in many other areas
(often in hardness results), e.g.:

Theoretical biology
analysis of L-systems
population dynamics

Software verification / program analysis

Dynamical systems

Differential privacy

(Weighted) automata and games

Analysis of stochastic systems

Control theory

Quantum computing

Statistical physics

Formal power series

Combinatorics

. . .
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Example: Does This Program Halt?

x := 1;
y := 0;
z := 0;
while x 6= 0 do

x := 2x + y ;
y := y + 3− z ;
z := −4z + 6;

No! Look at it modulo 3

x ≡ 〈1, 2, 1, 2, 1, 2, . . .〉 (mod 3)
y ≡ 〈0, 0, 0, 0, 0, 0, . . .〉 (mod 3)
z ≡ 〈0, 0, 0, 0, 0, 0, . . .〉 (mod 3)
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The Fibonacci Recurrence: un+2 = un+1 + un

Consider this Fibonacci variant, starting with 〈2, 1〉:
〈2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, . . .〉

〈2, 1, 3, 4, 2, 1, 3, 4, 2, 1, 3, 4, . . .〉 (mod 5)

⇒ Never zero!
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The Fibonacci Recurrence: un+2 = un+1 + un

How about the “shifted” Fibonacci sequence, starting with 〈1, 1〉:
〈1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .〉

〈1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, . . .〉 (mod 2)

〈1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, . . .〉 (mod 3)

〈1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, . . .〉 (mod 4)

〈1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, . . .〉 (mod 5)
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The Fibonacci Recurrence: un+2 = un+1 + un

How about the “shifted” Fibonacci sequence, starting with 〈1, 1〉:
〈1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .〉

A modular argument can never work here!

Because modulo m, the sequence is always periodic. But the
same pattern (just shifted by 1) would also appear in the true
Fibonacci sequence, starting 〈0, 1〉, and therefore will have to
contain infinitely many occurrences of 0!

The shifted Fibonacci sequence doesn’t contain a zero, but is
haunted by the ghost of a zero in its past!
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Reversing Linear Recurence Sequences

Classical Fibonacci, un+2 = un+1 + un:

〈. . . , 13,−8, 5,−3, 2,−1, 1,

0, 1, 1, 2, 3, 5, 8, 13, . . .

〉

un+2 = 2un+1 − un:

〈. . . ,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, . . .〉

un+1 = 2un:

〈. . . , 1

32
,

1

16
,

1

8
,

1

4
,

1

2
, 1, 2, 4, 8, 16, 32, . . .〉

Z-reversible

Z-reversible

not
Z-reversible
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The Bi-Skolem Problem

Problem BI-SKOLEM

Instance: A bi-LRS 〈. . . , u−2, u−1, u0, u1, u2, . . .〉 over Q
Question: Does ∃n ∈ Z such that un = 0?



Simple Linear Recurrence Sequences

An LRS is simple if its characteristic roots are simple (non-repeated)

e.g., the Fibonacci sequence:

un =
1√
5
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1 +
√

5

2

)n

− 1√
5

(
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√
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2

)n

The “vast majority” of LRS are simple. . .

Simple LRS correspond precisely to diagonalisable matrices
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SKOLEM and POSITIVITY: State of the Art in One Slide

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

For LRS of order ≤ 4, SKOLEM is decidable.

Critical ingredient is Baker’s theorem on
linear forms in logarithms, which earned
Baker the Fields Medal in 1970.

Corollary

For bi-LRS of order ≤ 4, BI-SKOLEM is decidable.

Theorem (Lipton, L., Nieuwveld, Ouaknine, Purser, Worrell 2022)

For Z-reversible LRS of order ≤ 7, SKOLEM is decidable.

Theorem (Ouaknine & Worrell 2014)

• For LRS of order ≤ 5, POSITIVITY is decidable.
• For simple LRS of order ≤ 9, POSITIVITY is decidable.
• For LRS of order ≥ 6, POSITIVITY is hard with respect to
longstanding Diophantine-approximation problems.
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Enter the Classical Conjectures!

Many problems in mathematics and computer science are solvable
subject to various standard conjectures, e.g.:

Miller’s polynomial-time test for primality testing, whose
correctness relies on the Riemann Hypothesis (Miller 1976)

Security of RSA (and pretty much all of modern electronic
commerce!), based on the conjecture that factoring is not
polynomial time (Rivest, Shamir, Adleman 1977)

Decidability of the first-order theory of real arithmetic with
exponentiation, subject to Schanuel’s Conjecture (Macintyre
& Wilkie 1996)

Many, many results subject to P 6=NP, etc...
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Schanuel’s Conjecture

Schanuel’s Conjecture (early 1960s)

Let α1, . . . , αn be n complex numbers linearly
independent over Q. Then the extension field
Q(α1, . . . , αn, e

α1 , . . . , eαn) has transcendence
degree at least n over Q.

Equivalently:

Let α1, . . . , αn be n complex numbers linearly independent over Q.
Then within the set {α1, . . . , αn, e

α1 , . . . , eαn}, one can find
(at least) n numbers β1, . . . , βn that are algebraically independent
over Q.

In other words: for any polynomial P(x1, . . . , xn) with rational
(or algebraic) coefficients, if P(β1, . . . , βn) = 0, then P must be
the zero polynomial.
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Schanuel’s Conjecture — Example

e is transcendental (Charles Hermite, 1873)

π is transcendental (Ferdinand von Lindemann, 1882)

What about e + π and eπ?

Consider

p(x) = (x − e)(x − π)

= x2 − (e + π)x + eπ

If both e + π and eπ were rational, then e and π would be
algebraic, contradiction.
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Schanuel’s Conjecture — Example

So what about e + π and eπ or (say) e5π3 − e2π7 + e?

Apply Schanuel’s Conjecture with α1 = 1 and α2 = iπ:

{1, iπ, e1, e iπ} = {1, iπ, e,−1}

So (assuming Schanuel’s Conjecture), β1 = iπ and β2 = e must be
algebraically independent, and therefore π and e must be
algebraically independent.

Thus for any non-zero polynomial P(x , y) with rational (or
algebraic) coefficients, we have that P(e, π) cannot be zero.

Therefore e + π, eπ, and e5π3 − e2π7 + e must all be irrational (in
fact, transcendental).

Schanuel’s Conjecture implies that the only algebraic relationships
that can hold between e and π are the trivial ones
(like (e + π)2 = e2 + 2eπ + π2).
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Reversing Linear Recurence Sequences (mod m)

Let
un+k = a1un+k−1 + . . .+ akun

Then

un =
−1

ak
(ak−1un+1 + ak−2un+2 + . . .+ a1un+k−1 − un+k)

So if ak is invertible (mod m), the entire bi-infinite sequence is
well-defined in Z/mZ. Therefore we require that gcd(m, ak) = 1.

Example: un+1 = 2un:

〈. . . , 1

32
,

1

16
,

1

8
,

1

4
,

1

2
, 1, 2, 4, 8, 16, 32, . . .〉

〈. . . , 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, . . .〉 (mod 3)

〈. . . , 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, . . .〉 (mod 5)
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The Skolem Conjecture

A fairly wide-ranging conjecture, formulated in 1937, also
known as the Exponential Local-Global Principle

Like Schanuel’s Conjecture, widely believed by number
theorists, but only proven in special cases



The Skolem Conjecture

The Skolem Conjecture for simple bi-LRS (1937)

Consider the recurrence equation un+k = a1un+k−1 + . . .+ akun,
with u0, . . . , uk−1, a1, . . . , ak ∈ Z. Suppose the bi-LRS 〈un〉∞n=−∞
is simple. Then 〈un〉∞n=−∞ has no zeros iff, for some integer m ≥ 2
with gcd(m, ak) = 1, we have that for all n ∈ Z, un 6≡ 0 (mod m).

Equivalently:

If a simple bi-infinite LRS over the rationals has no zeros, then this
will necessarily be witnessed modulo some integer m.

Theorem (Lipton, L., Nieuwveld, Ouaknine, Purser, Worrell 2022)

The Skolem Problem for LRS of order 5 is decidable, assuming the
Skolem Conjecture.

Note the above applies to all order-5 LRS (simple/non-simple)
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The Skolem Problem for Simple LRS

Theorem (Bilu, L., Nieuwveld, Ouaknine, Purser, Worrell 2022)

There is an algorithm which takes as input a simple,
non-degenerate LRS and produces its (finite) set of zeros.
Termination is guaranteed assuming the Skolem Conjecture
and the p-adic Schanuel Conjecture.

The two conjectures are only needed to prove termination,
not correctness

In other words, the algorithm also produces an independent
(conjecture-free) correctness certificate

Implemented in our online tool skolem !
https://skolem.mpi-sws.org/
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Computing the Zero Set of Simple, Non-Degenerate LRS

Key technical tool: “p-adic leapfrogging”

Lemma (Bilu, L., Nieuwveld, Ouaknine, Purser, Worrell 2022)

Let 〈u0, u1, u2, . . .〉 be a non-degenerate LRS with u0 = 0.
Assuming the p-adic Schanuel Conjecture, one can compute an
integer M ≥ 1 such that, for all n ≥ 1, unM 6= 0.
In other words, the subsequence 〈uM , u2M , u3M , . . .〉 has no zeros.

The resulting subsequence is guaranteed not to contain any
zeros, and an independent correctness certificate can be
produced; the p-adic Schanuel Conjecture is needed only to
ensure termination (of the calculation of M)
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Universal Skolem sets

We initiated an alternative approach to the decidability of Skolem’s
Problem. Rather than place restrictions on sequences (e.g., on the
order of the recurrence or dominance pattern of the characteristic
roots), the idea is to restrict the domain in which to search for
zeros.

Definition

We say that S ⊆ N is a Universal Skolem Set if there is an effective
procedure that, given an integer linear recurrence sequence u,
outputs whether or not there exists n ∈ S with u(n) = 0.



Universal Hilbert sets

• Definition 9 is inspired by the notion of a Universal Hilbert set.

• Let P(X ,Y ) ∈ Q[X ,Y ] be an irreducible polynomial in two
variables in which X has degree at least two.

• Hilbert’s Irreducibility Theorem asserts that the set

SP = {n ∈ Z : P(X , n) is reducible in Q[X ]}

has density zero, i.e.,

lim
T→∞

1

T
#(SP ∩ [−T ,T ]) = 0 .

• S. D. Cohen (1981) proved that

#(SP ∩ [−T ,T ]) = O(T 1/2 logT )

On the other hand, there are polynomials P for which

#(SP ∩ [−T ,T ]) � (T 1/2) for example (X ,Y ) = X 2 − Y

for which
SP = {m2 : m ∈ Z}.



• Motivated by such a result, a Universal Hilbert set is an infinite
set S of integers such that S ∩ SP is finite for all irreducible
polynomials P(X ,Y ) ∈ Q[X ,Y ].

• Bilu (1996) proved that

{m3 + blog log |m|c : m ∈ Z, |m| ≥ 3}

is a Universal Hilbert set.

• Filaseta and Wilcox (2019) constructed a dense Universal
Hilbert set.



The first Universal Skolem set known to mankind

Theorem

(L., Ouaknine, Worrell, 2021). Define f : N \ {0} → N by

f (n) := b
√

log nc,

and define the sequence (sn)n≥0, inductively by

s0 = 1 and sn = n! + sf (n) for n > 0.

Then S := {sn : n ∈ N} is a Universal Skolem Set.

The first few elements of S are

{1, 1! + 1, 2! + 1, 3! + 1, 4! + 1, 5! + 1, 6! + 1, 7! + 1, 8! + 2! + 1, . . .}

or
{1, 2, 37, 25, 121, 721, 5041, 40323, . . .}.



Assume (u(n))n≥0 is given by the minimal recurrence

u(n + k) = a1u(n + k − 1) + · · ·+ aku(n) n ≥ 0.

Let ∆ be the discriminant of the characteristic polynomial

f (X ) = X k − a1X
k−1 − · · · − ak

and d be the degree of its splitting field over Q. The proof is
based on the following result.

Proposition

For all m, n, p ∈ N such that p is a prime that does not divide ak∆
and pd ≤ m, we have

u(n + m!) ≡ u(n) mod p .



In particular, if u(sn) = 0, then

u(n! + sf (n)) = 0.

Thus,

u(sf (n)) ≡ 0 (mod P) where P =
∏

p≤n1/d

p-∆ak

p.

Since P > exp(Kf (n)!) > |u(sf (n))| for n > nu, we get that

u(sf (n)) = 0.

Thus, if n is large and u(sn) = 0, then

u(sf (n)) = u(sf 2(n)) = · · · = u(sf k (n)) = 0

for n > Nk . Since k is explicitely bounded by results of
Schlickewei, Schmidt, we get that n is explicitly bounded.



How thick is our set?

Our set is not too thick. In fact if sn ≤ x , then n! ≤ x , so that

#(S ∩ [1, x ]) = (1 + o(1))
log x

log log x
as x →∞.



Can we do better?



An Universal Skolem Set of positive lower density

• For a k ≥ 1 and real x ≥ 3, we define inductively logk x as

log1 x = log x , logk x = max{1, logk−1 log x} for k ≥ 2.

• For X ≥ 10, we let

A(X ) := [(log2 X )10,
√

logX ], B(X ) :=

[
logX√
log3 X

,
2 logX√

log3 X

]
.

• For n ∈ [X , 2X ], we write r(n) for the number

#{(q,P, a) : n = qP + a, q ∈ A(X ), P primes, a ∈ B(X )}.

We let

N(X ) := {n ∈ [X , 2X ] : r(n) > log4 X and all representations

n = qP + a have distinct q, a, a± q}.

Then our set is
S :=

⋃
k≥10

N(2k).



The set S is a Universal Skolem set

Using a result of H.-P. Schlikewei, W. Schmidt (2000) on the
number of solutions of multivariate exponential polynomial
equations, we proved:

Theorem

Let u be a non-degenerate linearly recurrent sequence of order
k ≥ 2 of integers given by

un+k = a1un+k−1 + · · ·+ akun

for n ≥ 1, with given initial terms u1, . . . , uk not all zero. Let

A = max{10, |ui |, |ai | : 1 ≤ i ≤ k}.

If un = 0 and n ∈ S, then

n < max{exp3(A2), exp5(1010k6)}.

The fact that S is of positive lower density follows from a
Cauchy-Schwartz argument.



The Skolem Landscape
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