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Proof of the Main theorem

With a

non-

local dispersion:

∂tu + ∂x
(
∆u + u3

)
= 0, u : It × Rx → R. (mKdV)

Scaling, leaving the set of solutions invariant:

u 7→ uλ, uλ(t, x) = λ
α

2(1+α) u
(
λt, λ

1
1+α x

)
.

L2-subcritical. Conserved quantities:

M(u) =

∫
u2(t)

2
, E (u) =

∫
1

2

(
|D|

α
2 u
)2
− 1

4
u4

Well-posedness: local in H
α
2 [Guo 2012]; global in the same space.

For (fKdV), α ∈ [−1, 1] [Molinet-Pilod-Vento, 2018; Riaño, 2020]
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Solitary waves of velocity c > 0 and shift y ∈ R the form
(t, x) 7→ Qc(x − ct − y)
In the previous form, Qc obeys the following equation:

−|D|αQc − cQc + Q3
c = 0.

existence of solutions [Weinstein, 1985; Albert, Bona, Saut 1997]

uniqueness of the ground state [Frank, Lenzmann 2013]; we
denote it by Qc

Periodic case of (fmKdV) [Natali, Le, Pelinovski, 2022]

They are even, radially decreasing and positive + algebraic decay.

With Q := Q1, by the scaling operation:

Qc(x) = (Q)c(x) (higher=faster)

Stability [Angulo Pava 2018]: The solitary waves associated with the
ground-states Qc are orbitally stable in H

α
2 .
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Definition

A multi-solitary wave u is a solution of (fKdV) which in large time is
close to a sum of K decoupled solitons. More precisely, there exists
0 < c1 < · · · < cK , T0 > 0, C > 0, and K functions
ρ1, · · · , ρK ∈ C1([T0,+∞),R) such that ∀t ≥ T0,∥∥∥∥∥u(t)−

K∑
k=1

Qck (· − ρk(t))

∥∥∥∥∥
H

α
2

≤ C

t
α
2

,

∀k, |ρk(t)− ckt| ≤ t1−
α
2 .

Theorem (Eychenne, 2021)

Let us fix K ∈ N distinct velocities 0 < c1 < · · · < cK . There exists a
multi-solitary wave u of (fKdV) associated to those previous velocities.
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For subcritical (gKdV) (it includes (mKdV)! )

∂tu + ∂x
(
∂2xu + |u|p−1u

)
= 0, p ∈ (2, 5),

[Nguyen 17] : strong interaction between the solitons; there exists a
solution u satisfying:∥∥∥∥∥u(t, ·)−

2∑
i=1

(−1)iQ
(
· − t + (−1)ic0 ln(c1t)

)∥∥∥∥∥
H1

→ 0,

as t → +∞.
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Theorem (Eychenne, V., preprint 2022)

There exists T0 > 0, a solution u of (fmKdV) on [T0,+∞) which
behaves in large time as a sum of two strongly interacting solitary
waves:

lim
t→+∞

∥∥∥∥∥u(t)−
2∑

k=1

(−1)kQ (· − ρk(t))

∥∥∥∥∥
H

α
2

= 0,

with, for a certain constant c0 > 0:

lim
t→+∞

∣∣∣ρk(t)− t + (−1)kc0t
2

α+3

∣∣∣ = 0.
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Construction backward in time [Merle 1990; Martel 2005]

Decomposition of the solution

R1(t, x) = Q1+µ1(t)(x − z1(t)), R2(t, x) = Q1+µ2(t)(x − z2(t))

Accurate profiles V = −R1 + R2 + ε :

EV = ∂tV + ∂x
(
−|D|αV − V + V 3

)

' µ̇1ΛR1 − (ż1

− µ1

)∂xR1

+ ∂x
(
−|D|αε− ε+ 3R2

1 ε+ 3R2
1R2

)
+ ...

Need the asymptotic expansion Q(x) ∼+∞ cx−α−1 − ... . To
inverse, need of orthogonality conditions. Thus the need to define:

W (t, x) '
∫ +∞

x
(|D|α + 1)−1 (ΛR1(t, y)− ΛR2) dy .

Accurate profiles : V = −R1 + R2 + b(z)W + P1 + P2
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Proposition (Eychenne, V., preprint, 2022)

Asymptotic of the ground-state at +∞, with a0 > 0:

Q(x) =
a0

xα+1
+

a1
x2α+1

+ O+∞

(
1

xα+3

)
,

Q ′(x) = −(α + 1)
a0

xα+2
− (2α + 1)

a1
x2α+2

+ O+∞

(
1

xα+4

)
.

Ideas of the proof: [Bona, Li 1996]

Q = k ? Q3, with k(x) = F−1
(

1

1 + |ξ|α

)
Asymptotic expansion of:

k(x) =
1

π

∫ ∞
0

e−s

s
1
α

h

(
x

s
1
α

)
ds, h(y) =

∫ ∞
0

cos (yη) e−η
α
dη.

Proof uses [Pólya, 1923]
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Come back on the previous proof:

bootstrap with an adequate functional on u = V + ε, with
adequate weights:

F(t) '
∫ (

1

2
|D|αεε+

ε2

2
− 3

2
V 2ε2

)
φ1(t, x) + ...

with

φ1(t, x) :=
1− φ(x)

(1 + µ1(t))2
+

φ(x)

(1 + µ2(t))2
, φ(x) '

∫ +∞

x

1

sα+1
ds.

Pseudo-differential operators. For instance : α ∈ (1, 2):∥∥∥[|D|α,√|φ′|] u∥∥∥2
2
≤ C

∫ (
u2 +

(
|D|

α
2 u
)2) ∣∣φ′∣∣ .

Bootstrap argument on µ1, µ2, ε; topological argument for ż1, ż2.
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Collision of two solitons : is it elastic?
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Thank you!
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