Strong interaction of solitary waves for the fmKdV equation

Frédéric Valet, joint works with Arnaud Eychenne

New trends in Mathematics of Dispersive, Integrable and Nonintegrable Models in Fluids, Waves and Quantum Physics Banff, 10th October 2022

UNIVERSITY OF BERGEN

1 Introduction to the fmKdV equation

2 Solitary waves

- Ground state
- Multi-solitary waves
- Previous results
- Main theorem
- Proof of the Main theorem
 - Asymptotic expansion
 - Open questions

With a local dispersion:

$$\partial_t u + \partial_x \left(\Delta u + u^3 \right) = 0, \quad u : I_t \times \mathbb{R}_x \to \mathbb{R}.$$
 (mKdV)

With a non- local dispersion:

$$\partial_t u + \partial_x \left(- |\mathcal{D}|^{\alpha} u + u^3 \right) = 0, \quad u : I_t \times \mathbb{R}_x \to \mathbb{R},$$
 (fmKdV)

with $\mathcal{F}(-|D|^{\alpha}f)(\xi) := -|\xi|^{\alpha}\mathcal{F}(u)$, and $1 < \alpha < 2$.

With a non- local dispersion:

$$\partial_t u + \partial_x \left(-|D|^{\alpha} u + u^3 \right) = 0, \quad u : I_t \times \mathbb{R}_x \to \mathbb{R},$$
 (fmKdV)

with $\mathcal{F}(-|D|^{\alpha}f)(\xi) := -|\xi|^{\alpha}\mathcal{F}(u)$, and $1 < \alpha < 2$.

Scaling, leaving the set of solutions invariant:

$$u\mapsto u_{\lambda}, \quad u_{\lambda}(t,x)=\lambda^{\frac{\alpha}{2(1+\alpha)}}u\left(\lambda t,\lambda^{\frac{1}{1+\alpha}}x\right).$$

L²-subcritical. Conserved quantities:

$$M(u) = \int \frac{u^2(t)}{2}, \quad E(u) = \int \frac{1}{2} \left(|D|^{\frac{\alpha}{2}} u \right)^2 - \frac{1}{4} u^4$$

Well-posedness: local in $H^{\frac{\alpha}{2}}$ [Guo 2012]; global in the same space.

With a non- local dispersion:

$$\partial_t u + \partial_x \left(-|D|^{\alpha} u + u^3 \right) = 0, \quad u : I_t \times \mathbb{R}_x \to \mathbb{R},$$
 (fmKdV)

with $\mathcal{F}(-|D|^{\alpha}f)(\xi) := -|\xi|^{\alpha}\mathcal{F}(u)$, and $1 < \alpha < 2$.

Scaling, leaving the set of solutions invariant:

$$u\mapsto u_{\lambda}, \quad u_{\lambda}(t,x)=\lambda^{\frac{\alpha}{2(1+\alpha)}}u\left(\lambda t,\lambda^{\frac{1}{1+\alpha}}x\right).$$

L²-subcritical. Conserved quantities:

$$M(u) = \int \frac{u^2(t)}{2}, \quad E(u) = \int \frac{1}{2} \left(|D|^{\frac{\alpha}{2}} u \right)^2 - \frac{1}{4} u^4$$

Well-posedness: local in $H^{\frac{\alpha}{2}}$ [Guo 2012]; global in the same space. For (fKdV), $\alpha \in [-1, 1]$ [Molinet-Pilod-Vento, 2018; Riaño, 2020]

Solitary waves of velocity c > 0 and shift $y \in \mathbb{R}$ the form $(t, x) \mapsto Q_c(x - ct - y)$

In the previous form, Q_c obeys the following equation:

$$-|D|^{\alpha}Q_c-cQ_c+Q_c^3=0.$$

existence of solutions [Weinstein, 1985; Albert, Bona, Saut 1997]
uniqueness of the ground state [Frank, Lenzmann 2013]; we denote it by Q_c

Periodic case of (fmKdV) [Natali, Le, Pelinovski, 2022]

Solitary waves of velocity c > 0 and shift $y \in \mathbb{R}$ the form $(t, x) \mapsto Q_c(x - ct - y)$

In the previous form, Q_c obeys the following equation:

$$-|D|^{\alpha}Q_c-cQ_c+Q_c^3=0.$$

existence of solutions [Weinstein, 1985; Albert, Bona, Saut 1997]
uniqueness of the ground state [Frank, Lenzmann 2013]; we denote it by Q_c

Periodic case of (fmKdV) [Natali, Le, Pelinovski, 2022]

They are even, radially decreasing and positive + algebraic decay.

With $Q := Q_1$, by the scaling operation:

$$Q_c(x) = (Q)_c(x)$$
 (higher=faster)

Solitary waves of velocity c > 0 and shift $y \in \mathbb{R}$ the form $(t, x) \mapsto Q_c(x - ct - y)$

In the previous form, Q_c obeys the following equation:

$$-|D|^{\alpha}Q_c-cQ_c+Q_c^3=0.$$

existence of solutions [Weinstein, 1985; Albert, Bona, Saut 1997]
uniqueness of the ground state [Frank, Lenzmann 2013]; we denote it by Q_c

Periodic case of (fmKdV) [Natali, Le, Pelinovski, 2022]

They are even, radially decreasing and positive + algebraic decay.

With $Q := Q_1$, by the scaling operation:

$$Q_c(x) = (Q)_c(x)$$
 (higher=faster)

Stability [Angulo Pava 2018]: The solitary waves associated with the ground-states Q_c are orbitally stable in $H^{\frac{\alpha}{2}}$.

Ground state Multi-solitary waves Previous results Main theorem

Definition

A multi-solitary wave u is a solution of (fKdV) which in large time is close to a sum of K decoupled solitons. More precisely, there exists $0 < c_1 < \cdots < c_K$, $T_0 > 0$, C > 0, and K functions $\rho_1, \cdots, \rho_K \in C^1([T_0, +\infty), \mathbb{R})$ such that $\forall t \geq T_0$,

$$egin{aligned} & \left\| u(t) - \sum_{k=1}^{\mathcal{K}} Q_{c_k}(\cdot -
ho_k(t))
ight\|_{H^{rac{lpha}{2}}} &\leq rac{\mathcal{C}}{t^{rac{lpha}{2}}}, \ & orall k, \quad |
ho_k(t) - c_k t| \leq t^{1 - rac{lpha}{2}} \end{aligned}$$

Ground state Multi-solitary waves Previous results Main theorem

Definition

A multi-solitary wave u is a solution of (fKdV) which in large time is close to a sum of K decoupled solitons. More precisely, there exists $0 < c_1 < \cdots < c_K$, $T_0 > 0$, C > 0, and K functions $\rho_1, \cdots, \rho_K \in C^1([T_0, +\infty), \mathbb{R})$ such that $\forall t \geq T_0$,

$$egin{aligned} & \left\|u(t)-\sum_{k=1}^{K}\mathcal{Q}_{c_k}(\cdot-
ho_k(t))
ight\|_{H^{rac{lpha}{2}}} &\leq rac{\mathcal{C}}{t^{rac{lpha}{2}}}, \ & orall k, \quad |
ho_k(t)-c_kt| \leq t^{1-rac{lpha}{2}} \end{aligned}$$

Theorem (Eychenne, 2021)

Let us fix $K \in \mathbb{N}$ distinct velocities $0 < c_1 < \cdots < c_K$. There exists a multi-solitary wave u of (fKdV) associated to those previous velocities.

Ground state Multi-solitary waves **Previous results** Main theorem

Ground state Multi-solitary waves Previous results Main theorem

For subcritical (gKdV) (it includes (mKdV)!)

$$\partial_t u + \partial_x \left(\partial_x^2 u + |u|^{p-1} u \right) = 0, \quad p \in (2,5),$$

[Nguyen 17] : strong interaction between the solitons; there exists a solution u satisfying:

$$\left\| u(t,\cdot) - \sum_{i=1}^{2} (-1)^{i} Q\left(\cdot - t + (-1)^{i} c_{0} \ln(c_{1}t) \right) \right\|_{H^{1}} \to 0,$$

as $t \to +\infty$.

Ground state Multi-solitary waves Previous results Main theorem

Theorem (Eychenne, V., preprint 2022)

There exists $T_0 > 0$, a solution u of (fmKdV) on $[T_0, +\infty)$ which behaves in large time as a sum of two strongly interacting solitary waves:

$$\lim_{t\to+\infty}\left\|u(t)-\sum_{k=1}^2(-1)^kQ\left(\cdot-\rho_k(t)\right)\right\|_{H^{\frac{\alpha}{2}}}=0,$$

with, for a certain constant $c_0 > 0$:

$$\lim_{t \to +\infty} \left| \rho_k(t) - t + (-1)^k c_0 t^{\frac{2}{\alpha+3}} \right| = 0.$$

Asymptotic expansio Open questions

• Construction backward in time [Merle 1990; Martel 2005]

- Construction backward in time [Merle 1990; Martel 2005]
- Decomposition of the solution

$$R_1(t,x) = Q_{1+\mu_1(t)}(x-z_1(t)), R_2(t,x) = Q_{1+\mu_2(t)}(x-z_2(t))$$

- Construction backward in time [Merle 1990; Martel 2005]
- Decomposition of the solution

 $R_1(t,x) = Q_{1+\mu_1(t)}(x-z_1(t)), R_2(t,x) = Q_{1+\mu_2(t)}(x-z_2(t))$

• Accurate profiles $V = -R_1 + R_2 + \epsilon$:

$$\mathcal{E}_{V} = \partial_{t}V + \partial_{x}\left(-|D|^{\alpha}V - V + V^{3}\right)$$

- Construction backward in time [Merle 1990; Martel 2005]
- Decomposition of the solution

 $R_1(t,x) = Q_{1+\mu_1(t)}(x-z_1(t)), R_2(t,x) = Q_{1+\mu_2(t)}(x-z_2(t))$

• Accurate profiles $V = -R_1 + R_2 + \epsilon$:

$$\begin{aligned} \mathcal{E}_{V} &= \partial_{t} V + \partial_{x} \left(-|D|^{\alpha} V - V + V^{3} \right) \\ &\simeq \dot{\mu}_{1} \Lambda R_{1} - (\dot{z}_{1}) \partial_{x} R_{1} \end{aligned}$$

- Construction backward in time [Merle 1990; Martel 2005]
- Decomposition of the solution

 $R_1(t,x) = Q_{1+\mu_1(t)}(x-z_1(t)), R_2(t,x) = Q_{1+\mu_2(t)}(x-z_2(t))$

• Accurate profiles $V = -R_1 + R_2 + \epsilon$:

$$\begin{split} \mathcal{E}_{V} &= \partial_{t} V + \partial_{x} \left(-|D|^{\alpha} V - V + V^{3} \right) \\ &\simeq \dot{\mu}_{1} \Lambda R_{1} - (\dot{z}_{1} - \mu_{1}) \partial_{x} R_{1} \\ &+ \partial_{x} \left(-|D|^{\alpha} \epsilon - \epsilon + 3R_{1}^{2} \epsilon + 3R_{1}^{2} R_{2} \right) + \dots \end{split}$$

- Construction backward in time [Merle 1990; Martel 2005]
- Decomposition of the solution

 $R_1(t,x) = Q_{1+\mu_1(t)}(x-z_1(t)), R_2(t,x) = Q_{1+\mu_2(t)}(x-z_2(t))$

• Accurate profiles $V = -R_1 + R_2 + \epsilon$:

$$\begin{aligned} \mathcal{E}_{V} &= \partial_{t}V + \partial_{x}\left(-|D|^{\alpha}V - V + V^{3}\right) \\ &\simeq \dot{\mu}_{1}\Lambda R_{1} - (\dot{z}_{1} - \mu_{1})\partial_{x}R_{1} \\ &+ \partial_{x}\left(-|D|^{\alpha}\epsilon - \epsilon + 3R_{1}^{2}\epsilon + 3R_{1}^{2}R_{2}\right) + \dots \end{aligned}$$

 Need the asymptotic expansion Q(x) ∼_{+∞} cx^{-α−1} − To inverse, need of orthogonality conditions. Thus the need to define:

$$W(t,x)\simeq \int_x^{+\infty}(|D|^lpha+1)^{-1}\left(\Lambda R_1(t,y)-\Lambda R_2
ight)dy.$$

- Construction backward in time [Merle 1990; Martel 2005]
- Decomposition of the solution

 $R_1(t,x) = Q_{1+\mu_1(t)}(x-z_1(t)), R_2(t,x) = Q_{1+\mu_2(t)}(x-z_2(t))$

• Accurate profiles $V = -R_1 + R_2 + \epsilon$:

$$\begin{split} \mathcal{E}_{V} &= \partial_{t}V + \partial_{x}\left(-|D|^{\alpha}V - V + V^{3}\right) \\ &\simeq \dot{\mu}_{1}\Lambda R_{1} - (\dot{z}_{1} - \mu_{1})\partial_{x}R_{1} \\ &+ \partial_{x}\left(-|D|^{\alpha}\epsilon - \epsilon + 3R_{1}^{2}\epsilon + 3R_{1}^{2}R_{2}\right) + \dots \end{split}$$

 Need the asymptotic expansion Q(x) ∼_{+∞} cx^{-α−1} − To inverse, need of orthogonality conditions. Thus the need to define:

$$W(t,x)\simeq \int_x^{+\infty}(|D|^lpha+1)^{-1}\left(\Lambda R_1(t,y)-\Lambda R_2
ight)dy.$$

• Accurate profiles : $V = -R_1 + R_2 + b(z)W + P_1 + P_2$

- Construction backward in time [Merle 1990; Martel 2005]
- Decomposition of the solution

 $R_1(t,x) = Q_{1+\mu_1(t)}(x-z_1(t)), R_2(t,x) = Q_{1+\mu_2(t)}(x-z_2(t))$

• Accurate profiles $V = -R_1 + R_2 + \epsilon$:

$$\begin{aligned} \mathcal{E}_{V} &= \partial_{t}V + \partial_{x}\left(-|D|^{\alpha}V - V + V^{3}\right) \\ &\simeq \dot{\mu}_{1}\Lambda R_{1} - (\dot{z}_{1} - \mu_{1})\partial_{x}R_{1} \\ &+ \partial_{x}\left(-|D|^{\alpha}\epsilon - \epsilon + 3R_{1}^{2}\epsilon + 3R_{1}^{2}R_{2}\right) + \dots \end{aligned}$$

 Need the asymptotic expansion Q(x) ~_{+∞} cx^{-α-1} − To inverse, need of orthogonality conditions. Thus the need to define:

$$W(t,x)\simeq \int_x^{+\infty} (|D|^{lpha}+1)^{-1}\left(\Lambda R_1(t,y)-\Lambda R_2\right)dy.$$

• Accurate profiles : $V = -R_1 + R_2 + b(z)W + P_1 + P_2$

Asymptotic expansion Open questions

Proposition (Eychenne, V., preprint, 2022)

Asymptotic of the ground-state at $+\infty$, with $a_0 > 0$:

$$Q(x) = \frac{a_0}{x^{\alpha+1}} + \frac{a_1}{x^{2\alpha+1}} + O_{+\infty}\left(\frac{1}{x^{\alpha+3}}\right),$$
$$Q'(x) = -(\alpha+1)\frac{a_0}{x^{\alpha+2}} - (2\alpha+1)\frac{a_1}{x^{2\alpha+2}} + O_{+\infty}\left(\frac{1}{x^{\alpha+4}}\right).$$

Ideas of the proof: [Bona, Li 1996]

$$Q=k\star Q^3, \quad ext{with} \quad k(x)=\mathcal{F}^{-1}\left(rac{1}{1+|\xi|^lpha}
ight)$$

Asymptotic expansion of:

$$k(x) = \frac{1}{\pi} \int_0^\infty \frac{e^{-s}}{s^{\frac{1}{\alpha}}} h\left(\frac{x}{s^{\frac{1}{\alpha}}}\right) ds, \quad h(y) = \int_0^\infty \cos\left(y\eta\right) e^{-\eta^{\alpha}} d\eta.$$

Asymptotic expansion Open questions

Proposition (Eychenne, V., preprint, 2022)

Asymptotic of the ground-state at $+\infty$, with $a_0 > 0$:

$$Q(x) = \frac{a_0}{x^{\alpha+1}} + \frac{a_1}{x^{2\alpha+1}} + O_{+\infty}\left(\frac{1}{x^{\alpha+3}}\right),$$
$$Q'(x) = -(\alpha+1)\frac{a_0}{x^{\alpha+2}} - (2\alpha+1)\frac{a_1}{x^{2\alpha+2}} + O_{+\infty}\left(\frac{1}{x^{\alpha+4}}\right).$$

Ideas of the proof: [Bona, Li 1996]

$$Q=k\star Q^3, \quad ext{with} \quad k(x)=\mathcal{F}^{-1}\left(rac{1}{1+|\xi|^lpha}
ight)$$

Asymptotic expansion of:

$$k(x) = \frac{1}{\pi} \int_0^\infty \frac{e^{-s}}{s^{\frac{1}{\alpha}}} h\left(\frac{x}{s^{\frac{1}{\alpha}}}\right) ds, \quad h(y) = \int_0^\infty \cos\left(y\eta\right) e^{-\eta^{\alpha}} d\eta.$$

Proof uses [Pólya, 1923]

Come back on the previous proof:

• bootstrap with an adequate functional on $u = V + \epsilon$, with adequate weights:

$$\mathcal{F}(t)\simeq \int \left(rac{1}{2}|D|^lpha\epsilon\epsilon+rac{\epsilon^2}{2}-rac{3}{2}V^2\epsilon^2
ight)\phi_1(t,x)+...$$

with

$$\phi_1(t,x):=rac{1-\phi(x)}{(1+\mu_1(t))^2}+rac{\phi(x)}{(1+\mu_2(t))^2}, \quad \phi(x)\simeq \int_x^{+\infty}rac{1}{s^{lpha+1}}ds.$$

Come back on the previous proof:

• bootstrap with an adequate functional on $u = V + \epsilon$, with adequate weights:

$$\mathcal{F}(t) \simeq \int \left(\frac{1}{2}|D|^{lpha}\epsilon\epsilon + \frac{\epsilon^2}{2} - \frac{3}{2}V^2\epsilon^2\right)\phi_1(t,x) + ...$$

with

$$\phi_1(t,x):=rac{1-\phi(x)}{(1+\mu_1(t))^2}+rac{\phi(x)}{(1+\mu_2(t))^2}, \quad \phi(x)\simeq \int_x^{+\infty}rac{1}{s^{lpha+1}}ds.$$

• Pseudo-differential operators. For instance : $\alpha \in (1,2)$:

$$\left\|\left[|D|^{\alpha}, \sqrt{|\phi'|}\right] u\right\|_{2}^{2} \leq C \int \left(u^{2} + \left(|D|^{\frac{\alpha}{2}}u\right)^{2}\right) \left|\phi'\right|.$$

• Bootstrap argument on μ_1 , μ_2 , ϵ ; topological argument for $\dot{z}_{1,\frac{\dot{z}_2}{11/14}}$

• Collision of two solitons : is it elastic?

Asymptotic expansion Open questions

Asymptotic expansion Open questions

Thank you!

