Phase transition threshold and stability of magnetic skyrmions

S. IBRAHIM

Joint work with I. Shimizu (Osaka U.)

BIRS workshop on New trends in Mathematics of Dispersive, Integrable and Nonintegrable Models in Fluids, Waves and Quantum

Physics
October 14, 2022

Figure: Ikkei Shimizu

Magnetic skyrmion

Schematic image of Skyrmions. (From: Melcher, Preceedings of the Royal Society (2014))

Nontrivial homotopy class as $\mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$.

- Magnetic skyrmion: vortex-like structure appearing in magnetic materials ($\sim 100 \mathrm{~nm}$)
- Stabilization due to non-trivial topology
- Application to future magnetic storage is expected.

Toward understanding the mechanism

- Micromagnetism (Landau-Lifshitz 1935):

Consider the magnetic material as a collection of small magnets, and describe large scale magnetism via interaction of each magnets

- Equilibrium state: (local) minimizer of Landau-Lifshitz energy:

$$
E[\mathbf{n}]:=\left(D[\mathbf{n}]+E_{\text {other }}[\mathbf{n}]\right), \quad \mathbf{n}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}
$$

- n: magnetization
- $D[\mathbf{n}]:=\frac{1}{2} \int_{\mathbb{R}^{2}}|\nabla \mathbf{n}|^{2} d x$; Exchange interaction energy
- $E_{\text {other }}[\mathbf{n}]$; Other effect (external fields, crystalline structure, etc...)
- Scale: Atomic level \ll Micromagnetics \ll Crystalline lattice
$\ll 1 \mathrm{~nm}$
$\sim 100 \mathrm{~nm}$

Dzyaloshinskii-Moriya interaction

- Skyrmions are observed in the material with Dzyaloshinskii-Moriya interaction:

$$
E[\mathbf{n}]:=D[\mathbf{n}]+r H[\mathbf{n}]+V[\mathbf{n}], \quad(r>0)
$$

- Helicity functional (Dzyaloshinskii-Moriya interaction)

$$
H[\mathbf{n}]:=\int_{\mathbb{R}^{2}}\left(\mathbf{n}-\mathbf{e}_{3}\right) \cdot \nabla \times \mathbf{n} d x .
$$

where

$$
\tilde{H}[\mathbf{n}]:=\int_{\mathbb{R}^{2}} \mathbf{n} \cdot \nabla \times \mathbf{n} d x, \quad \nabla \times \mathbf{n}=\left(\begin{array}{c}
\partial_{2} n_{3} \\
-\partial_{1} n_{3} \\
\partial_{1} n_{2}-\partial_{2} n_{1}
\end{array}\right)
$$

- Potential energy:

$$
V[\mathbf{n}]=\frac{1}{2} \int_{\mathbb{R}^{2}}\left(1-n_{3}\right)^{2} d x, \quad \mathbf{e}_{3}:={ }^{t}(0,0,1)
$$

The picture of observed magnetization (From: Yu et al., Proc. Natl Acad. Sci. USA 109 (2012))

By experiments, we can observe

- skyrmions when the external field is strong
- helix when the external field is weak (Occurrence of phase transition)

Problem

Can we explain the above phenomena via the Landau-Lifshitz energy?

Setting

$$
E[\mathbf{n}]:=D[\mathbf{n}]+r H[\mathbf{n}]+V[\mathbf{n}], \quad(2 \leq p \leq 4, r>0)
$$

- Strong potential energy \Longleftrightarrow Small r.
- Function space:

$$
\mathcal{M}:=\left\{\mathbf{n}:\left.\mathbb{R}^{2} \rightarrow \mathbb{R}^{3}| | \mathbf{n}\right|^{2} \equiv 1, \quad D[\mathbf{n}]+V[\mathbf{n}]<\infty\right\} .
$$

($H[\mathbf{n}]$ is well-defined on \mathcal{M}.)

- Topological degree:

$$
Q[\mathbf{n}]:=\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} \mathbf{n} \cdot \partial_{1} \mathbf{n} \times \partial_{2} \mathbf{n} d x
$$

$\left(\mathbf{n} \in \mathcal{M}_{p} \Longrightarrow Q[\mathbf{n}]\right.$ is well-defined, $Q[\mathbf{n}] \in \mathbb{Z}$.)

- We restrict ourselves to $Q=-1$. (single skyrmion)

Known results

(Including related energy)

- Existence of minimizer [Melcher 2014], [Döring-Melcher 2017]
- Stability of critical point [Li-Melcher 2018]
- Quantitative analysis of minimizers [Gustafson-Wang 2021]
- Geometric analysis [Barton-Singer-Ross-Schroer 2020]
- Local well-posedness of related dynamical PDEs [Shimizu 2022]

Theorem([DM 2017], [BSRS 2020])

When $r<1$, then

- $\min _{\substack{\mathbf{n} \in \mathcal{M}_{4} \\ Q[\mathbf{n}]=-1}} E_{4}[\mathbf{n}]=4 \pi\left(1-2 r^{2}\right)$
- Minimizing set $\supset\left\{\mathbf{h}^{2 r}(\cdot-a) \mid a \in \mathbb{R}^{2}\right\}$, where

$$
\mathbf{h}(x):=\left(\frac{-2 x_{2}}{1+|x|^{2}}, \frac{2 x_{1}}{1+|x|^{2}},-\frac{1-|x|^{2}}{1+|x|^{2}}\right), \quad \mathbf{h}^{2 r}(x):=\mathbf{h}\left(\frac{x}{2 r}\right) .
$$

Schematic graph of h. (From: Melcher, Preceedings of the Royal Society (2014))

- When $r<1$ (strong potential case), the theorem succeeds in explaining the formation of one Skyrmion under the restriction $Q[\mathbf{n}]=-1$.

The Mechanism behind Theorem

- Key identity:

$$
E[\mathbf{n}]=\frac{r^{2}}{2} \int_{\mathbb{R}^{2}}\left|\mathcal{D}_{1}^{r} \mathbf{n}+\mathbf{n} \times \mathcal{D}_{2}^{r} \mathbf{n}\right|^{2} d x+\left(1-r^{2}\right) D[\mathbf{n}]+4 \pi Q[\mathbf{n}] .
$$

where

$$
\mathcal{D}_{j}^{r} \mathbf{n}:=\partial_{j} \mathbf{n}-\frac{1}{r} \mathbf{e}_{j} \times \mathbf{n} . \quad \text { (helical derivative) }
$$

- When $r<1$,
n :minimizer

$$
\begin{aligned}
& \Longleftarrow \mathcal{D}_{1}^{r} \mathbf{n}+\mathbf{n} \times \mathcal{D}_{2}^{r} \mathbf{n}=0 \quad \text { and } \min _{\substack{\mathbf{n} \in \mathcal{M}_{4} \\
Q[\mathbf{n}]=-1}} D[\mathbf{n}] \quad \text { attains } \\
& \Longleftarrow\left\{\mathbf{h}^{2 r}(\cdot-a) \mid a \in \mathbb{R}\right\} .
\end{aligned}
$$

Problems

Question.

What happens when $r>1$?

- No result in this regime.

Premise Proposition

For all $r>0, \mathbf{h}^{2 r}$ is a critical point of E_{4}.

Question

Is $\mathbf{h}^{2 r}$ a local minimizer?

- When $r \leq 1$, then the answer is True by [DM 2017], [BSRS 2020] (global minimizer in fact.)
- When $r>1$, the question has been open.

Main theorem 1 (Linear instability)

Main theorem (Linear instability)

If $r>1$, then $\mathbf{h}^{2 r}$ is linearly unstable; \forall neighborhood of $\mathbf{h}^{2 r}, \exists \mathbf{n} \in \mathcal{M}$ s.t.

$$
E[\mathbf{n}]-E\left[\mathbf{h}^{2 r}\right]<0 .
$$

- This mathematically explains phase transition; the stability of skyrmions breaks down when the external field is weak.
- The threshold is quantified at $r=1$.

Main theorem 2 (Unboundedness)

We further showed

Main theorem 2 (Unboundedness)

If $r>1$, then

$$
\inf _{\substack{\mathbf{n} \in \mathcal{M} \\ Q=-1}} E[\mathbf{n}]=-\infty .
$$

- The counterexample is constructed by 1-helix. (Consistent with experiment)
- The unboundedness of energy is due to the unboundedness of domain.

Outline of proof

Outline of proof of Theorem 1.

- We follow the argument of [Li-Melcher 2018].
- It suffices to show that the Hessian \mathcal{H}_{r} is not non-negative definite if $r>1$.
- (ρ, ψ) : polar coord. of $x \in \mathbb{R}^{2}$.
\rightarrow Apply Fourier expansion w.r.t. ψ
\rightarrow The Hessian is decomposed into \mathcal{H}_{k}^{r} (k : Fourier mode)
- We can show that \mathcal{H}_{3}^{r} is not non-negative definite.
(We can also show that
- $\mathcal{H}_{k}^{r}(k \geq 2)$ is non-negative definite for large r.
- $\mathcal{H}_{0}^{r}, \mathcal{H}_{1}^{r}$ is always non-negative definite.)

Hessian

- For $\mathbf{n} \in \mathcal{M}_{4}$ with $Q[\mathbf{n}]=-1$, we write

$$
\mathbf{n}=\mathbf{h}^{2 r}+\phi .
$$

- Then

$$
E_{4}[\mathbf{n}]-E_{4}\left[\mathbf{h}^{2 r}\right]=\frac{1}{2}\langle\mathcal{L} \phi, \phi\rangle_{L^{2}}
$$

where

$$
\begin{gathered}
\mathcal{L} \phi:=-\Delta \phi+2 r \nabla \times \phi+\phi_{3} \mathbf{e}_{3}-\Lambda\left(\mathbf{h}^{2 r}\right) \phi, \\
\Lambda\left(\mathbf{h}^{2 r}\right):=\left|\nabla \mathbf{h}^{2 r}\right|^{2}+2 r \mathbf{h}^{2 r} \cdot\left(\nabla \times \mathbf{h}^{2 r}\right)-\left(1-h_{3}^{2 r}\right) h_{3}^{2 r} \in \mathbb{R} .
\end{gathered}
$$

- By linearization, we may suppose $\phi(x) \in T_{\mathbf{h}^{2 r}(x)} \mathbb{S}^{2}$ for every $x \in \mathbb{R}^{2}$.

The Hessian

$$
\langle\mathcal{L} \phi, \phi\rangle, \quad \phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \quad \phi(x) \perp \mathbf{h}^{2 r}(x)
$$

- Several transforms
- Rescaling: $\phi \rightarrow$
- Orthonormal frame $\left\{\mathbf{J}_{1}, \mathbf{J}_{2}\right\} \subset T_{\mathbf{h}^{2 r}} \mathbb{S}^{2}$, and write

$$
\phi=u_{1} \mathbf{J}_{1}+u_{2} \mathbf{J}_{2}, \quad u_{j}: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

- Let (ρ, ψ) : polar coord. of \mathbb{R}^{2} \& Fourier transform w.r.t. ψ :

$$
u_{j}(\rho, \psi)=\alpha_{j}^{(0)}(\rho)+\sum_{k=1}^{\infty}\left(\alpha_{j}^{(k)}(\rho) \cos (k \psi)+\beta_{j}^{(k)}(\rho) \sin (k \psi)\right)
$$

$$
\langle\mathcal{L} \phi, \phi\rangle_{L^{2}}=2 \pi \mathcal{H}_{0}^{r}\left(\alpha_{1}^{(0)}, \alpha_{2}^{(0)}\right)+\pi \sum_{k=1}^{\infty}\left(\mathcal{H}_{k}^{r}\left(\alpha_{1}^{(k)}, \beta_{2}^{(k)}\right)+\mathcal{H}_{k}^{r}\left(\beta_{1}^{(k)},-\alpha_{2}^{(k)}\right)\right)
$$

$\langle\mathcal{L} \phi, \phi\rangle_{L^{2}}=2 \pi \mathcal{H}_{0}^{r}\left(\alpha_{1}^{(0)}, \alpha_{2}^{(0)}\right)+\pi \sum_{k=1}^{\infty}\left(\mathcal{H}_{k}^{r}\left(\alpha_{1}^{(k)}, \beta_{2}^{(k)}\right)+\mathcal{H}_{k}^{r}\left(\beta_{1}^{(k)},-\alpha_{2}^{(k)}\right)\right)$.
with

$$
\begin{aligned}
& \mathcal{H}_{k}^{r}[\alpha, \beta] \\
& \begin{aligned}
=\int_{0}^{\infty}\left[\left(\alpha^{\prime}\right)^{2}+\right. & \left(\beta^{\prime}\right)^{2}+\left(\frac{k^{2}}{\rho^{2}}-\left(\theta^{\prime}(\rho)\right)^{2}+\frac{\cos ^{2} \theta(\rho)}{\rho^{2}}+\frac{4 r^{2} \sin \theta(\rho)}{\rho}\right)\left(\alpha^{2}+\beta^{2}\right) \\
& \left.+4 k\left(\frac{\cos \theta(\rho)}{\rho^{2}}-\frac{2 r^{2} \sin \theta(\rho)}{\rho} \alpha \beta\right)\right] \rho d \rho
\end{aligned}
\end{aligned}
$$

where

- $\theta=\theta(\rho):(0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
\sin \theta(\rho)=\frac{2 \rho}{\rho^{2}+1}, \quad \theta(0)=\pi, \quad \theta(\infty)=0
$$

Key Proposition

Key proposition (Instability at higher mode)

For $k \geq 2$, there exists $r_{k, c} \geq 1$ such that if $r>r_{k, c}$,

$$
\exists \alpha, \beta \in C_{0}^{\infty}(0, \infty) \quad \text { s.t. } \quad \mathcal{H}_{k}^{r}[\alpha, \beta]<0 .
$$

Moreover, if $k=3$, then we can take $r_{3, c}=1$.

- We can also show that $\mathcal{H}_{0}^{r}, \mathcal{H}_{1}^{r} \geq 0$ for $\forall \alpha, \beta \in C_{0}^{\infty}(0, \infty)$
- The same structure appears in Ginzburg-Landau energy. (cf. [Lamy-Zuniga 2022])

Proof of Key proposition

- Consider scaling limit:

$$
\mathcal{I}_{k}^{r}[\xi]:=\lim _{\lambda \rightarrow 0+} \mathcal{H}_{k}^{r}\left[\frac{\sin \theta}{\rho} \xi_{\lambda}, \frac{\sin \theta}{\rho} \xi_{\lambda}\right], \quad \xi_{\lambda}(\rho)=\frac{1}{\lambda^{2}} \xi(\lambda \rho) .
$$

Then

$$
\mathcal{I}_{k}^{r}[\xi]=\int_{0}^{\infty}\left[\frac{8}{\rho^{3}}\left(\xi^{\prime}\right)^{2}-\frac{8(k-1)\left(8 r^{2}-k-3\right)}{\rho^{5}} \xi^{2}\right] d \rho
$$

- It is known that:

Fact. (Hardy-Littlewood-Polya 1941)

$$
\inf _{\xi \in C_{0}^{\infty}(0, \infty) \backslash\{0\}} \frac{\int_{0}^{\infty} \frac{\left(\xi^{\prime}\right)^{2}}{\rho^{3}} d \rho}{\int_{0}^{\infty} \frac{\xi^{2}}{\rho^{5}} d \rho}=4 .
$$

- For all $\varepsilon>0$, there exists $\xi_{\varepsilon} \in C_{0}^{\infty}(0, \infty)$ s.t.

$$
\int_{0}^{\infty} \frac{\xi_{\varepsilon}^{2}}{\rho^{5}} d \rho>\frac{1}{4+\varepsilon} \int_{0}^{\infty} \frac{\left(\xi_{\varepsilon}^{\prime}\right)^{2}}{\rho^{3}} d \rho
$$

Thus

$$
\mathcal{I}_{k}^{r}\left[\xi_{\varepsilon}\right]<8\left[4+\varepsilon-(k-1)\left(8 r^{2}-k-3\right)\right] \int_{0}^{\infty} \frac{\xi_{\varepsilon}^{2}}{\rho^{5}} d \rho .
$$

- If $k \geq 2, \mathrm{RHS}<0$ for large r.
- If $k=3$,

$$
8\left[4+\varepsilon-(k-1)\left(8 r^{2}-k-3\right)\right]=128\left(1-r^{2}+\frac{\varepsilon}{16}\right) .
$$

For $r>1$, we have RHS <0 if $\varepsilon \ll 1$.

Proof of Theorem 2

If $r>1$, then

$$
\inf _{\substack{\mathbf{n} \in \mathcal{M} \\ Q=-1}} E[\mathbf{n}]=-\infty
$$

- Key ingredient: 1-helix

$$
\mathbf{b}(x):=\mathbf{h}^{1 / r}\left(x_{1}, 0\right)=^{t}\left(0, \frac{2 r x_{1}}{r^{2}\left(x_{1}\right)^{2}+1}, \frac{r^{2}\left(x_{1}\right)^{2}-1}{r^{2}\left(x_{1}\right)^{2}+1}\right)
$$

- We have

$$
\text { Integrand of } \mathrm{E}=\frac{2\left(1-r^{2}\right)}{\left(r^{2} x_{1}^{2}+1\right)^{2}}
$$

In particular, $E[\mathbf{b}]=-\infty$ if $r>1$.

- To construct counterexample in \mathcal{M}, we use $\mathbf{h}^{1 / r}$, and stretch the x_{1}-axis in x_{2}-direction.

Future study: Critical case: $r=1$

When $r=1$,
$\mathbf{n}:$ minimizer $\Longleftrightarrow \mathcal{D}_{1}^{r} \mathbf{n}+\mathbf{n} \times \mathcal{D}_{2}^{r} \mathbf{n}=0$.

Theorem. [Barton-Singer-Ross-Schroer 2020]

Let

$$
v:=\frac{1+n_{3}}{n_{1}+i n_{2}} \quad \text { (Inverse of stereographic coord.). }
$$

Then,

$$
\begin{aligned}
\left(^{*}\right) & \stackrel{\text { Formally }}{\Longleftrightarrow} \quad \partial_{\bar{z}} v=-\frac{i}{2} r \quad(z:=x+i y) \\
& \Longleftrightarrow \quad v=-\frac{i}{2} r \bar{z}+f(z) \quad(f: \text { holomorphic }) .
\end{aligned}
$$

$$
\left\{\left(^{*}\right)\right\}=\left\{v=-\frac{i}{2} r \bar{z}+f(z)\right\}
$$

Open. (Future work)

- Rigorous argument?
- $\mathcal{M}_{4} \cap\left\{\left({ }^{*}\right)\right\}=$?

Thank you for listening

