		Main theorems	
00000	000	000	00000000000

Phase transition threshold and stability of magnetic skyrmions

S. IBRAHIM

Joint work with I. Shimizu (Osaka U.)

BIRS workshop on New trends in Mathematics of Dispersive, Integrable and Nonintegrable Models in Fluids, Waves and Quantum Physics October 14, 2022

	Main theorems	

Figure: Ikkei Shimizu

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Introduction		Main theorems	
• 0 000			
Magnetic s	skyrmion		

Schematic image of Skyrmions. (From: Melcher, Preceedings of the Royal Society (2014)) Nontrivial homotopy class as $\mathbb{R}^2 \to \mathbb{S}^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Magnetic skyrmion: vortex-like structure appearing in magnetic materials (~ 100nm)
- Stabilization due to non-trivial topology
- Application to future magnetic storage is expected.

Introduction	Known result	Main theorems	Proof
0000			

Toward understanding the mechanism

- Micromagnetism (Landau-Lifshitz 1935):
 - Consider the magnetic material as a collection of small magnets, and describe large scale magnetism via interaction of each magnets
- Equilibrium state: (local) minimizer of Landau-Lifshitz energy:

$$E[\mathbf{n}] := (D[\mathbf{n}] + E_{\text{other}}[\mathbf{n}]), \qquad \mathbf{n} : \mathbb{R}^2 \to \mathbb{S}^2.$$

- n: magnetization
- $D[\mathbf{n}] := \frac{1}{2} \int_{\mathbb{R}^2} |\nabla \mathbf{n}|^2 dx$; Exchange interaction energy
- $E_{other}[\mathbf{n}]$; Other effect (external fields, crystalline structure, etc...)

• Scale: Atomic level \ll Micromagnetics \ll Crystalline lattice $\ll 1 nm$ $\sim 100 nm$

Introduction		Main theorems	
00000	000	000	00000000000

Dzyaloshinskii-Moriya interaction

 Skyrmions are observed in the material with Dzyaloshinskii-Moriya interaction:

$$E[\mathbf{n}] := D[\mathbf{n}] + rH[\mathbf{n}] + V[\mathbf{n}], \qquad (r > 0)$$

Helicity functional (Dzyaloshinskii-Moriya interaction)

$$H[\mathbf{n}] := \int_{\mathbb{R}^2} (\mathbf{n} - \mathbf{e}_3) \cdot \nabla \times \mathbf{n} \, dx.$$

where

$$\tilde{H}[\mathbf{n}] := \int_{\mathbb{R}^2} \mathbf{n} \cdot \nabla \times \mathbf{n} dx, \qquad \nabla \times \mathbf{n} = \begin{pmatrix} \partial_2 n_3 \\ -\partial_1 n_3 \\ \partial_1 n_2 - \partial_2 n_1 \end{pmatrix}$$

• Potential energy:

$$V[\mathbf{n}] = \frac{1}{2} \int_{\mathbb{R}^2} (1 - n_3)^2 dx, \qquad \mathbf{e}_3 := {}^t (0, 0, 1).$$

Introduction
00000

Known resul

Main theorems 000 Proof 00000000000

The picture of observed magnetization (From: Yu et al., Proc. Natl Acad. Sci. USA 109 (2012))

By experiments, we can observe

- skyrmions when the external field is strong
- helix when the external field is weak (Occurrence of **phase transition**)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Problem

Can we explain the above phenomena via the Landau-Lifshitz energy?

Introduction		Main theorems	
00000	000	000	0000000000
Setting			

$$E[\mathbf{n}] := D[\mathbf{n}] + rH[\mathbf{n}] + V[\mathbf{n}], \qquad (2 \le p \le 4, \ r > 0)$$

- Strong potential energy \iff Small r.
- Function space:

$$\mathcal{M} := \{ \mathbf{n} : \mathbb{R}^2 \to \mathbb{R}^3 \mid |\mathbf{n}|^2 \equiv 1, \quad D[\mathbf{n}] + V[\mathbf{n}] < \infty \}.$$

 $(H[\mathbf{n}] \text{ is well-defined on } \mathcal{M}.)$

• Topological degree:

$$Q[\mathbf{n}] := \frac{1}{4\pi} \int_{\mathbb{R}^2} \mathbf{n} \cdot \partial_1 \mathbf{n} \times \partial_2 \mathbf{n} dx.$$

 $(\mathbf{n} \in \mathcal{M}_p \Longrightarrow Q[\mathbf{n}] \text{ is well-defined, } Q[\mathbf{n}] \in \mathbb{Z}.)$

• We restrict ourselves to Q = -1. (single skyrmion)

	Known result	Main theorems	
	000		
17			
Known res	ults		
	uits		

(Including related energy)

- Existence of minimizer [Melcher 2014], [Döring-Melcher 2017]
- Stability of critical point [Li-Melcher 2018]
- Quantitative analysis of minimizers [Gustafson-Wang 2021]
- Geometric analysis [Barton-Singer-Ross-Schroer 2020]
- Local well-posedness of related dynamical PDEs [Shimizu 2022]

Theorem([DM 2017], [BSRS 2020])

When r < 1, then

•
$$\min_{\substack{\mathbf{n}\in\mathcal{M}_4\\Q[\mathbf{n}]=-1}} E_4[\mathbf{n}] = 4\pi(1-2r^2)$$

• Minimizing set \supset $\{\mathbf{h}^{2r}(\cdot - a) \mid a \in \mathbb{R}^2\}$, where

$$\mathbf{h}(x) := \left(\frac{-2x_2}{1+|x|^2}, \frac{2x_1}{1+|x|^2}, -\frac{1-|x|^2}{1+|x|^2}\right), \quad \mathbf{h}^{2r}(x) := \mathbf{h}\left(\frac{x}{2r}\right).$$

	Known result	Main theorems	
00000	000	000	00000000000

Schematic graph of h. (From: Melcher, Preceedings of the Royal Society (2014))

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

• When r < 1 (strong potential case), the theorem succeeds in explaining the formation of one Skyrmion under the restriction $Q[\mathbf{n}] = -1$.

Known result	Main theorems	
000		

The Mechanism behind Theorem

• Key identity:

$$E[\mathbf{n}] = \frac{r^2}{2} \int_{\mathbb{R}^2} |\mathcal{D}_1^r \mathbf{n} + \mathbf{n} \times \mathcal{D}_2^r \mathbf{n}|^2 dx + (1 - r^2) D[\mathbf{n}] + 4\pi Q[\mathbf{n}].$$

where

$$\mathcal{D}_j^r \mathbf{n} := \partial_j \mathbf{n} - \frac{1}{r} \mathbf{e}_j imes \mathbf{n}.$$
 (helical derivative)

• When
$$r < 1$$
,

 $\mathbf{n}: \mathsf{minimizer}$

$$\begin{array}{ll} \Leftarrow & \mathcal{D}_1^r \mathbf{n} + \mathbf{n} \times \mathcal{D}_2^r \mathbf{n} = 0 \quad \text{and} \quad \min_{\substack{\mathbf{n} \in \mathcal{M}_4 \\ Q[\mathbf{n}] = -1}} \mathcal{D}[\mathbf{n}] \quad \text{attains} \\ \\ \Leftarrow & \{\mathbf{h}^{2r}(\cdot - a) \mid a \in \mathbb{R}\}. \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

		Main theorems	
00000	000	000	0000000000
Droblome			

Question.

What happens when r > 1?

• No result in this regime.

Premise Proposition

For all r > 0, \mathbf{h}^{2r} is a critical point of E_4 .

Question

Is \mathbf{h}^{2r} a local minimizer?

• When $r \leq 1$, then the answer is True by [DM 2017], [BSRS 2020] (global minimizer in fact.)

• When r > 1, the question has been open.

Introduction	Known result	Main theorems	Proof
		000	
N/ 1 1	/1.1	N	

Main theorem 1 (Linear instability)

Main theorem (Linear instability)

If r > 1, then \mathbf{h}^{2r} is linearly unstable; \forall neighborhood of \mathbf{h}^{2r} , $\exists \mathbf{n} \in \mathcal{M}$ s.t.

$$E[\mathbf{n}] - E[\mathbf{h}^{2r}] < 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- This mathematically explains phase transition; the stability of skyrmions breaks down when the external field is weak.
- The threshold is quantified at r = 1.

	Main theorems	
	000	

Main theorem 2 (Unboundedness)

We further showed

Main theorem 2 (Unboundedness) If r>1, then $\inf_{\mathbf{n}\in\mathcal{M}}E[\mathbf{n}]=-\infty.$

Q = -1

- The counterexample is constructed by 1-helix. (Consistent with experiment)
- The unboundedness of energy is due to the unboundedness of domain.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

		Main theorems	Proof
00000	000	000	••••••
	C		
Outline of	proot		

Outline of proof of Theorem 1.

- We follow the argument of [Li-Melcher 2018].
- It suffices to show that the Hessian \mathcal{H}_r is not non-negative definite if r > 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- (ρ, ψ) : polar coord. of $x \in \mathbb{R}^2$.
 - \rightarrow Apply Fourier expansion w.r.t. ψ
 - \rightarrow The Hessian is decomposed into \mathcal{H}_k^r (k: Fourier mode)
- We can show that \mathcal{H}_3^r is not non-negative definite. (We can also show that
 - \mathcal{H}_k^r $(k \ge 2)$ is non-negative definite for large r.
 - \mathcal{H}_0^r , \mathcal{H}_1^r is always non-negative definite.)

Introduction	Known result	Main theorems	Proof
00000	000		0●000000000
Hessian			

• For
$$\mathbf{n} \in \mathcal{M}_4$$
 with $Q[\mathbf{n}] = -1$, we write

$$\mathbf{n} = \mathbf{h}^{2r} + \phi.$$

• Then

$$E_4[\mathbf{n}] - E_4[\mathbf{h}^{2r}] = \frac{1}{2} \langle \mathcal{L}\phi, \phi \rangle_{L^2}$$

where

$$\mathcal{L}\phi := -\Delta\phi + 2r\nabla \times \phi + \phi_3 \mathbf{e}_3 - \Lambda(\mathbf{h}^{2r})\phi,$$
$$\Lambda(\mathbf{h}^{2r}) := |\nabla \mathbf{h}^{2r}|^2 + 2r\mathbf{h}^{2r} \cdot (\nabla \times \mathbf{h}^{2r}) - (1 - h_3^{2r})h_3^{2r} \in \mathbb{R}.$$

• By linearization, we may suppose $\phi(x) \in T_{\mathbf{h}^{2r}(x)} \mathbb{S}^2$ for every $x \in \mathbb{R}^2$.

(ロ)、(型)、(E)、(E)、 E) の(()

Introduction 00000	Known result 000	Main th 000		Proof 0000000000
Tł	e Hessian			
	$\langle \mathcal{L}\phi,\phi angle, \qquad \phi$	$: \mathbb{R}^2 \to \mathbb{R}^3 \qquad \phi(z)$	$(x) \perp \mathbf{h}^{2r}(x).$	
	• Several transforms • Rescaling: $\phi \rightarrow$ • Orthonormal frame {	$\{\mathbf{J}_1,\mathbf{J}_2\}\subset T_{\mathbf{h}^{2r}}\mathbb{S}^2$, a	and write	
	$\phi =$	$u_1\mathbf{J}_1+u_2\mathbf{J}_2, \qquad u_1$	$u_j: \mathbb{R}^2 \to \mathbb{R}$	
	• Let (ρ,ψ) : polar coo	rd. of \mathbb{R}^2 & Fourier	transform w.r.t. ψ :	

$$u_{j}(\rho,\psi) = \alpha_{j}^{(0)}(\rho) + \sum_{k=1}^{\infty} \left(\alpha_{j}^{(k)}(\rho) \cos(k\psi) + \beta_{j}^{(k)}(\rho) \sin(k\psi) \right).$$

$$\langle \mathcal{L}\phi,\phi\rangle_{L^2} = 2\pi \mathcal{H}_0^r(\alpha_1^{(0)},\alpha_2^{(0)}) + \pi \sum_{k=1}^{\infty} \left(\mathcal{H}_k^r(\alpha_1^{(k)},\beta_2^{(k)}) + \mathcal{H}_k^r(\beta_1^{(k)},-\alpha_2^{(k)}) \right).$$

	Main theorems	Proof
		000000000000000000000000000000000000000

$$\langle \mathcal{L}\phi, \phi \rangle_{L^2} = 2\pi \mathcal{H}_0^r(\alpha_1^{(0)}, \alpha_2^{(0)}) + \pi \sum_{k=1}^{\infty} \left(\mathcal{H}_k^r(\alpha_1^{(k)}, \beta_2^{(k)}) + \mathcal{H}_k^r(\beta_1^{(k)}, -\alpha_2^{(k)}) \right)$$

with

$$\begin{aligned} \mathcal{H}_{k}^{r}[\alpha,\beta] \\ &= \int_{0}^{\infty} \left[(\alpha')^{2} + (\beta')^{2} + \left(\frac{k^{2}}{\rho^{2}} - (\theta'(\rho))^{2} + \frac{\cos^{2}\theta(\rho)}{\rho^{2}} + \frac{4r^{2}\sin\theta(\rho)}{\rho}\right) (\alpha^{2} + \beta^{2}) \right. \\ &+ 4k \left(\frac{\cos\theta(\rho)}{\rho^{2}} - \frac{2r^{2}\sin\theta(\rho)}{\rho} \alpha\beta \right) \right] \rho d\rho. \end{aligned}$$

where

• $\theta=\theta(\rho):(0,\infty)\to\mathbb{R}$ is defined by

$$\sin \theta(\rho) = \frac{2\rho}{\rho^2 + 1}, \qquad \theta(0) = \pi, \qquad \theta(\infty) = 0.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

		Main theorems	Proof
			0000000000
	at the second		
Key Propo	SITION		

Key proposition (Instability at higher mode)

For $k \geq 2$, there exists $r_{k,c} \geq 1$ such that if $r > r_{k,c}$,

$$\exists \alpha, \beta \in C_0^{\infty}(0, \infty) \quad \text{s.t.} \quad \mathcal{H}_k^r[\alpha, \beta] < 0.$$

Moreover, if k = 3, then we can take $r_{3,c} = 1$.

- We can also show that $\mathcal{H}_0^r, \mathcal{H}_1^r \ge 0$ for $\forall \alpha, \beta \in C_0^\infty(0, \infty)$
- The same structure appears in Ginzburg-Landau energy. (cf. [Lamy-Zuniga 2022])

	Main theorems	Proof
		0000000000

Proof of Key proposition

• Consider scaling limit:

$$\mathcal{I}_k^r[\xi] := \lim_{\lambda \to 0+} \mathcal{H}_k^r\left[\frac{\sin\theta}{\rho}\xi_\lambda, \frac{\sin\theta}{\rho}\xi_\lambda\right], \qquad \xi_\lambda(\rho) = \frac{1}{\lambda^2}\xi(\lambda\rho).$$

Then

$$\mathcal{I}_{k}^{r}[\xi] = \int_{0}^{\infty} \left[\frac{8}{\rho^{3}} (\xi')^{2} - \frac{8(k-1)(8r^{2}-k-3)}{\rho^{5}} \xi^{2} \right] d\rho.$$

It is known that:

Fact. (Hardy-Littlewood-Polya 1941) $\inf_{\xi \in C_0^{\infty}(0,\infty) \setminus \{0\}} \frac{\int_0^{\infty} \frac{(\xi')^2}{\rho^3} d\rho}{\int_0^{\infty} \frac{\xi^2}{\rho^5} d\rho} = 4.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ⊙

		Main theorems	Proof
00000	000	000	0000000000

• For all $\varepsilon > 0$, there exists $\xi_{\varepsilon} \in C_0^{\infty}(0,\infty)$ s.t.

$$\int_0^\infty \frac{\xi_\varepsilon^2}{\rho^5} d\rho > \frac{1}{4+\varepsilon} \int_0^\infty \frac{(\xi_\varepsilon')^2}{\rho^3} d\rho.$$

Thus

$$\mathcal{I}_k^r[\xi_{\varepsilon}] < 8[4 + \varepsilon - (k-1)(8r^2 - k - 3)] \int_0^\infty \frac{\xi_{\varepsilon}^2}{\rho^5} d\rho.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• If $k \ge 2$, RHS < 0 for large r. • If k = 3, $8[4 + \varepsilon - (k - 1)(8r^2 - k - 3)] = 128\left(1 - r^2 + \frac{\varepsilon}{16}\right)$.

For r > 1, we have RHS < 0 if $\varepsilon \ll 1$.

		Main theorems	Proof
00000	000	000	000000000000
Proof of T	boorom 2		

If r>1, then

$$\inf_{\substack{\mathbf{n}\in\mathcal{M}\\Q=-1}} E[\mathbf{n}] = -\infty.$$

• Key ingredient: 1-helix

$$\mathbf{b}(x) := \mathbf{h}^{1/r}(x_1, 0) = {}^t \left(0, \frac{2rx_1}{r^2(x_1)^2 + 1}, \frac{r^2(x_1)^2 - 1}{r^2(x_1)^2 + 1} \right).$$

We have

Integrand of
$$\mathsf{E} = rac{2(1-r^2)}{(r^2 x_1^2 + 1)^2}.$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

In particular, $E[\mathbf{b}] = -\infty$ if r > 1.

• To construct counterexample in \mathcal{M} , we use $\mathbf{h}^{1/r}$, and stretch the x_1 -axis in x_2 -direction.

		Main theorems	Proof
00000	000	000	000000000000

Future study: Critical case: r = 1

When r = 1,

 \mathbf{n} : minimizer $\iff \mathcal{D}_1^r \mathbf{n} + \mathbf{n} \times \mathcal{D}_2^r \mathbf{n} = 0.$ (*)

Theorem. [Barton-Singer-Ross-Schroer 2020]

Let

$$v := \frac{1+n_3}{n_1+in_2}$$
 (Inverse of stereographic coord.)

Then,

(*) Formally
$$\partial_{\overline{z}}v = -\frac{i}{2}r \quad (z := x + iy)$$

 $\iff v = -\frac{i}{2}r\overline{z} + f(z) \quad (f : \text{holomorphic}).$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

		Main theorems	Proof
00000	000	000	000000000000

$$\{(*)\} = \{v = -\frac{i}{2}r\overline{z} + f(z)\}$$

Open. (Future work)

• Rigorous argument?

•
$$\mathcal{M}_4 \cap \{(*)\} = 2$$

		Main theorems	Proof
00000	000	000	0000000000

Thank you for listening

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ