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The derivative nonlinear Schrödinger equation

iqt + q′′ + i
(
|q|2q

)′
= 0, t ∈ R, x ∈ R (DNLS)

q(0, x) = q0(x) ∈ Hs(R)

It arises as a model for the propagation of large-wavelength Alfvén
waves in plasma.

Well-posedness

-Existence of solution
-Uniqueness of solution
-Continuous dependence on initial data



Getting started

▶ (DNLS) enjoys the scaling symmetry

q(t, x) 7→ qλ(t, x) =
√
λ q(λ2t, λx).

The L2 norm is preserved under the scaling. L2-critical

▶ The L2 norm is also preserved under the flow.
In fact, (DNLS) has an infinite family of conserved quantities:

M(q) =

∫
|q|2 dx

H(q) = −1
2

∫
i(qq̄′ − q̄q′) + |q|4 dx

H2(q) =

∫
|q′|2 + 3

4 i |q|
2(qq̄′ − q̄q′) + 1

2 |q|
6 dx

...

It is completely integrable.
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Previous results

▶ Local well-posedness: in Hs , s ≥ 1
2 (Tsutsumi–Fukuda ’81,

Takaoka ’99)

▶ Ill-posedness: uniformly continuous dependence on initial data
breaks down below s = 1

2 (Biagioni–Linares ’01)

From Local to Global
The time of existence given by the local well-posedness results
above depends on ∥q0∥

H
1
2
.

One would hope that the conservation laws of (DNLS) could be
exploited to obtain global well-posedness.

Problem: lack of coercivity!
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Previous results: Global well-posedness

▶ Under the assumption that ∥q0∥2L2 < 2π
In H1: Hayashi–Ozawa ’92
In Hs , s > 1

2 : Colliander–Keel–Staffilani–Takaoka–Tao ’02

In H
1
2 : Miao–Wu–Xu ’11

▶ Under the assumption that ∥q0∥2L2 < 4π
In H1: Wu ’13, ’15
In H

1
2 : Guo–Wu ’17

4π = M(qa) for the algebraic soliton, qa(t, x) = e it/4q0(x − t).
It is the threshold where the conservation laws lose their efficacy.
Rescaling the algebraic soliton, we get a family of solutions

qa,λ(t, x) =
√
λ qa(λ

2t, λx), λ > 0

that have the same values for all the conserved quantities, but is
unbounded in Hs for all s > 0!
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▶ Under no L2 norm assumptions
In H2,2 = {f ∈ H2 : x2f ∈ L2}: Jenkins–Liu–Perry–Sulem ’20
In H1,1 ∩ H2: Pelinovsky–Saalmann–Shimabukuro ’17

▶ Under no L2 norm assumptions
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1
2 : Bahouri–Perelman ’22
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Our main results

The enemy is concentration of the L2 norm in one or more
locations in space.
The key is an equicontinuity result.
Q ⊂ L2 is equicontinuous if

q(x + h) → q(x) in L2 as h → 0, uniformly for q ∈ Q.

Theorem (Killip–N.–Visan)

Let Q ⊆ L2 be an equicontinuous set satisfying

sup
{
∥q0∥2L2 : q0 ∈ Q

}
< 4π.

Then the totality of states reached by (DNLS) orbits originating
from Q

Q∗ = {etJ∇Hq0 : q0 ∈ Q and t ∈ R}

is also L2-equicontinuous.



Our main results

Theorem (Killip–N.–Visan)

Fix 0 < s < 1
2 and let Q be a bounded subset of Hs satisfying

sup
{
∥q0∥2L2 : q0 ∈ Q

}
< 4π.

Then

sup
q∈Q∗

∥q∥Hs ≲ C
(
sup
q0∈Q

∥q0∥2L2 , sup
q0∈Q

∥q0∥2Hs

)
Moreover, if Q is Hs -equicontinuous, then so is Q∗.

Theorem (Killip–N.–Visan)

Fix 1
6 ≤ s < 1

2 . The (DNLS) evolution is globally well-posed for all

q0 ∈ Hs with ∥q0∥2L2 < 4π.
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6 ≤ s < 1

2 . The (DNLS) evolution is globally well-posed in Hs .
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Complete Integrability

▶ Infinitely many conservation laws:

M(q) =

∫
|q|2 dx

H(q) = −1
2

∫
i(qq̄′ − q̄q′) + |q|4 dx

...

▶ Lax pair

L(q(t)),P(q(t))

∂

∂t
L(t) = [P(t), L(t)] ⇐⇒ q(t) solution

“The spectral properties of L are preserved under the flow.”

▶ Inverse Scattering Transform



Lax operator and perturbation determinant

L(κ) =

[
κ− ∂

√
κq

−i
√
κq̄ −(κ+ ∂)

]
, κ ≥ 1

L0(κ) =

[
κ− ∂ 0
0 −(κ+ ∂)

]
(for q ≡ 0).

Perturbation determinant:

det
[
L−1
0 (κ)L(κ)

]
⇝ · · ·⇝ det [1− iκΛΓ] := a(κ; q),

Λ(κ; q) := (κ−∂)−
1
2 q(κ+∂)−

1
2 , Γ(κ; q) := (κ+∂)−

1
2 q̄(κ−∂)−

1
2 .

We also consider

α(κ; q) := − log det(1− iκΛΓ) =
∑
ℓ≥1

1
ℓ tr

{
(iκΛΓ)ℓ

}

Preserved under (DNLS) (Klaus–Schippa)
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Equicontinuity and α
Q is equicontinuous in L2 if

q(x + h) → q(x) in L2 as h → 0, uniformly for q ∈ Q

⇐⇒
∫
|ξ|>N

|q̂(ξ)|2dξ → 0 as N → ∞, uniformly for q ∈ Q

α(κ; q) =
∑

ℓ≥1
1
ℓ
tr
{
(iκΛΓ)ℓ

}
▶ α(κ; q) is conserved under (DNLS)

▶ For ℓ = 1: Im tr(iκΛΓ) =
∫
R

2κ2

4κ2+ξ2
|q̂(ξ)|2dξ

β(κ; q) = ∥q∥2L2 − 2Imα(κ; q)

▶ β(κ; q) is conserved under (DNLS)

▶ The quadratic term of β(κ) is β[2](κ; q) =
∫
R

ξ2

4κ2+ξ2
|q̂(ξ)|2dξ.

Q is equicontinuous in L2

⇐⇒ β[2](κ; q) → 0 as κ→ ∞ uniformly in Q
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Commuting flows

α(κ; q) admits the asymptotic expansion

α(κ; q) = i
2M(q) + 1

4κH(q) + O(κ−2)

This leads to

Hκ(q) := 4κReα(κ; q) = H(q) + O(κ−1).

▶ H and Hκ define commuting flows.

▶ The equicontinuity and the Hs bounds results discussed above
also hold for the Hκ flows.

▶ It is fairly easy to prove that they are well-posed in Hs , s ≥ 0.

▶ The hard part is showing that the Hκ flows converge to
(DNLS) in Hs as κ→ ∞. This is where the assumption
s ≥ 1

6 becomes necessary!
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Towards critical well-posedness

We saw that the Hκ flows are globally well-posed in L2.
All we need to adapt our commuting flows argument in the L2

setting is the convergence of the Hκ flows in L2.

Problem
This would require additional regularity on q...

Solution
Local smoothing!

“Locally in space, on average in time, we can gain half a
derivative.”
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Local smoothing

Theorem (Local smoothing for (DNLS))

Let Q ⊂ L2(R) be bounded and equicontinuous and ψ ∈ S(R).
Then for each T > 0 solutions to (DNLS) with initial data
q(0) ∈ Q satisfy∫ T

−T
∥ψq(t)∥2

H
1
2 (R)

dt ≲Q,T ∥q(0)∥2L2 .

Theorem (Local smoothing for the difference flow)

Let Q ⊂ L2(R) be bounded and equicontinuous and ψ ∈ S(R).
Then for each T > 0 solutions to the flow induced by H −Hκ with
initial data q(0) ∈ Q satisfy∫ T

−T
∥ψq(t)∥2

H
1
2 (R)

dt ≲Q,T ∥q(0)∥2L2 .



Local smoothing

Equicontinuity is important!

Rescaling a stationary soliton qs(t, x) = e itq0(x), we get a family
of solutions qs,λ(t, x) with the same L2 norm, but∫ 1

−1
∥ψ(x)qs,λ(t, x)∥2

H
1
2
x (R)

dt ≈ λ.

L2 boundedness alone is not enough to control the local smoothing
norm.



Local smoothing

Idea
To prove local smoothing, we rely once again on the conservation
of α(κ; q).
We can write α(κ; q) =

∫
ρ(κ; q, x) dx and we have the

microscopic conservation laws

∂tρ(κ) + ∂x jDNLS(κ) = 0 for DNLS,

∂tρ(κ) + ∂x jH−Hκ(κ) = 0 for the difference flow.

Then∫ T

−T

∫
j(κ; q(t), x)ψ(x) dx dt =

∫
ρ(κ; q(t), x)ψ̃(x) dx

∣∣∣T
−T
.

Although the general idea is the same for both flows, proving local
smoothing for the difference flow is much harder.



Thank you!


