Global well-posedness for the derivative nonlinear Schrödinger equation on the line

Maria Ntekoume

Department of Mathematics Rice University

joint work with B. Harrop-Griffiths, R. Killip and M. Visan

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The derivative nonlinear Schrödinger equation

$$\begin{aligned} & iq_t + q'' + i\left(|q|^2 q\right)' = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{R} \\ & q(0, x) = q_0(x) \in H^s(\mathbb{R}) \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

It arises as a model for the propagation of large-wavelength Alfvén waves in plasma.

Well-posedness

- -Existence of solution
- -Uniqueness of solution
- -Continuous dependence on initial data

Getting started

(DNLS) enjoys the scaling symmetry

$$q(t,x)\mapsto q_\lambda(t,x)=\sqrt{\lambda}\,q(\lambda^2 t,\lambda x).$$

The L^2 norm is preserved under the scaling. L^2 -critical

Getting started

(DNLS) enjoys the scaling symmetry

$$q(t,x)\mapsto q_{\lambda}(t,x)=\sqrt{\lambda} q(\lambda^2 t,\lambda x).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The L^2 norm is preserved under the scaling. L^2 -critical The L^2 norm is also preserved under the flow.

Getting started

(DNLS) enjoys the scaling symmetry

$$q(t,x)\mapsto q_{\lambda}(t,x)=\sqrt{\lambda}\,q(\lambda^2 t,\lambda x).$$

The L^2 norm is preserved under the scaling. L^2 -critical

The L² norm is also preserved under the flow. In fact, (DNLS) has an infinite family of conserved quantities:

$$M(q) = \int |q|^2 dx$$

$$H(q) = -\frac{1}{2} \int i(q\bar{q}' - \bar{q}q') + |q|^4 dx$$

$$H_2(q) = \int |q'|^2 + \frac{3}{4}i|q|^2(q\bar{q}' - \bar{q}q') + \frac{1}{2}|q|^6 dx$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

It is completely integrable.

Previous results

- ► Local well-posedness: in H^s, s ≥ ¹/₂ (Tsutsumi–Fukuda '81, Takaoka '99)
- Ill-posedness: uniformly continuous dependence on initial data breaks down below s = ¹/₂ (Biagioni–Linares '01)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Previous results

- ► Local well-posedness: in H^s, s ≥ ¹/₂ (Tsutsumi–Fukuda '81, Takaoka '99)
- ▶ Ill-posedness: uniformly continuous dependence on initial data breaks down below $s = \frac{1}{2}$ (Biagioni–Linares '01)

From Local to Global

The time of existence given by the local well-posedness results above depends on $\|q_0\|_{L^{\frac{1}{2}}}$.

One would hope that the conservation laws of (DNLS) could be exploited to obtain global well-posedness.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Problem: lack of coercivity!

 Under the assumption that ||q₀||²_{L²} < 2π In H¹: Hayashi–Ozawa '92 In H^s, s > ¹/₂: Colliander–Keel–Staffilani–Takaoka–Tao '02 In H^{¹/₂}: Miao–Wu–Xu '11

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Under the assumption that ||q₀||²_{L²} < 2π In H¹: Hayashi-Ozawa '92 In H^s, s > ¹/₂: Colliander-Keel-Staffilani-Takaoka-Tao '02 In H^{¹/₂}: Miao-Wu-Xu '11
 Under the assumption that ||q₀||²_{L²} < 4π

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In H^{1} : Wu '13, '15 In $H^{\frac{1}{2}}$: Guo–Wu '17

• Under the assumption that $||q_0||_{L^2}^2 < 2\pi$ In H^1 : Hayashi–Ozawa '92 In H^s , $s > \frac{1}{2}$: Colliander–Keel–Staffilani–Takaoka–Tao '02 In $H^{\frac{1}{2}}$: Miao–Wu–Xu '11

• Under the assumption that $||q_0||_{L^2}^2 < 4\pi$ In H^1 : Wu '13, '15 In $H^{\frac{1}{2}}$: Guo–Wu '17

 $4\pi = M(q_a)$ for the algebraic soliton, $q_a(t, x) = e^{it/4}q_0(x-t)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Under the assumption that ||q₀||²_{L²} < 2π In H¹: Hayashi–Ozawa '92 In H^s, s > ¹/₂: Colliander–Keel–Staffilani–Takaoka–Tao '02 In H^{¹/₂}: Miao–Wu–Xu '11

• Under the assumption that $||q_0||_{L^2}^2 < 4\pi$ In H^1 : Wu '13, '15 In $H^{\frac{1}{2}}$: Guo–Wu '17

 $4\pi = M(q_a)$ for the algebraic soliton, $q_a(t,x) = e^{it/4}q_0(x-t)$. It is the threshold where the conservation laws lose their efficacy. Rescaling the algebraic soliton, we get a family of solutions

$$q_{a,\lambda}(t,x) = \sqrt{\lambda} q_a(\lambda^2 t, \lambda x), \quad \lambda > 0$$

that have the same values for all the conserved quantities, but is unbounded in H^s for all s > 0!

 Under the assumption that ||q₀||²_{L²} < 2π In H¹: Hayashi–Ozawa '92 In H^s, s > ¹/₂: Colliander–Keel–Staffilani–Takaoka–Tao '02 In H^{¹/₂}: Miao–Wu–Xu '11

Under the assumption that $||q_0||^2_{L^2} < 4\pi$ In H^1 : Wu '13, '15 In $H^{\frac{1}{2}}$: Guo–Wu '17

```
    Under no L<sup>2</sup> norm assumptions
    In H<sup>2,2</sup> = {f ∈ H<sup>2</sup> : x<sup>2</sup>f ∈ L<sup>2</sup>}: Jenkins-Liu-Perry-Sulem '20
    In H<sup>1,1</sup> ∩ H<sup>2</sup>: Pelinovsky-Saalmann-Shimabukuro '17
```

(日)((1))

 Under the assumption that ||q₀||²_{L²} < 2π In H¹: Hayashi–Ozawa '92 In H^s, s > ¹/₂: Colliander–Keel–Staffilani–Takaoka–Tao '02 In H^{¹/₂}: Miao–Wu–Xu '11

Under the assumption that $||q_0||^2_{L^2} < 4\pi$ In H^1 : Wu '13, '15 In $H^{\frac{1}{2}}$: Guo–Wu '17

Under no L² norm assumptions
 In H^{2,2} = {f ∈ H² : x²f ∈ L²}: Jenkins-Liu-Perry-Sulem '20
 In H^{1,1} ∩ H²: Pelinovsky-Saalmann-Shimabukuro '17

Under no L² norm assumptions
 In H^{1/2}: Bahouri–Perelman '22

Our main results

The enemy is concentration of the L^2 norm in one or more locations in space.

The key is an equicontinuity result. $Q \subset L^2$ is *equicontinuous* if

q(x+h)
ightarrow q(x) in L^2 as h
ightarrow 0, uniformly for $q \in Q$.

Theorem (Killip–N.–Visan) Let $Q \subseteq L^2$ be an equicontinuous set satisfying

$$\sup\{\|q_0\|_{L^2}^2: q_0 \in Q\} < 4\pi.$$

Then the totality of states reached by (DNLS) orbits originating from Q

$$Q_* = \{e^{tJ
abla H} q_0 : q_0 \in Q \text{ and } t \in \mathbb{R}\}$$

is also L²-equicontinuous.

Our main results

Theorem (Killip–N.–Visan) Fix $0 < s < \frac{1}{2}$ and let Q be a bounded subset of H^s satisfying $\sup\{\|q_0\|_{L^2}^2 : q_0 \in Q\} < 4\pi.$

Then

$$\sup_{q \in Q_*} \|q\|_{H^s} \lesssim C \Big(\sup_{q_0 \in Q} \|q_0\|_{L^2}^2, \sup_{q_0 \in Q} \|q_0\|_{H^s}^2 \Big)$$

Moreover, if Q is H^s -equicontinuous, then so is Q_* .

Theorem (Killip–N.–Visan) Fix $\frac{1}{6} \le s < \frac{1}{2}$. The (DNLS) evolution is globally well-posed for all $q_0 \in H^s$ with $||q_0||_{L^2}^2 < 4\pi$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Harrop-Griffiths–Killip–Visan) Let $Q \subseteq L^2$. If Q is equicontinuous, then Q_* is also equicontinuous.

Corollary

Fix $\frac{1}{6} \leq s < \frac{1}{2}$. The (DNLS) evolution is globally well-posed in H^s .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Harrop-Griffiths–Killip–Visan) Let $Q \subseteq L^2$. If Q is equicontinuous, then Q_* is also equicontinuous. Corollary Fix $\frac{1}{6} \leq s < \frac{1}{2}$. The (DNLS) evolution is globally well-posed in H^s .

Theorem (Harrop-Griffiths–Killip–N.–Visan) The (DNLS) evolution is globally well-posed in L².

Complete Integrability

Infinitely many conservation laws:

$$M(q) = \int |q|^2 dx$$

$$H(q) = -\frac{1}{2} \int i(q\bar{q}' - \bar{q}q') + |q|^4 dx$$

:

$$L(q(t)), P(q(t))$$

 $\frac{\partial}{\partial t}L(t) = [P(t), L(t)] \iff q(t)$ solution

*"The spectral properties of L are preserved under the flow."*Inverse Scattering Transform

Lax operator and perturbation determinant

$$egin{aligned} \mathcal{L}(\kappa) &= egin{bmatrix} \kappa & -\partial & \sqrt{\kappa}q \ -i\sqrt{\kappa}ar{q} & -(\kappa+\partial) \end{bmatrix}, & \kappa \geq 1 \ \mathcal{L}_0(\kappa) &= egin{bmatrix} \kappa & -\partial & 0 \ 0 & -(\kappa+\partial) \end{bmatrix} & (ext{for } q \equiv 0). \end{aligned}$$

Perturbation determinant:

$$\det \left[L_0^{-1}(\kappa) L(\kappa) \right] \rightsquigarrow \cdots \rightsquigarrow \det \left[1 - i\kappa \Lambda \Gamma \right] := a(\kappa; q),$$
$$\Lambda(\kappa; q) := (\kappa - \partial)^{-\frac{1}{2}} q(\kappa + \partial)^{-\frac{1}{2}}, \ \Gamma(\kappa; q) := (\kappa + \partial)^{-\frac{1}{2}} \bar{q}(\kappa - \partial)^{-\frac{1}{2}}.$$

We also consider

$$\alpha(\kappa; q) := -\log \det(1 - i\kappa\Lambda\Gamma) = \sum_{\ell \ge 1} \frac{1}{\ell} \mathrm{tr} \left\{ (i\kappa\Lambda\Gamma)^\ell \right\}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Lax operator and perturbation determinant

$$egin{aligned} \mathcal{L}(\kappa) &= egin{bmatrix} \kappa & -\partial & \sqrt{\kappa}q \ -i\sqrt{\kappa}ar{q} & -(\kappa+\partial) \end{bmatrix}, & \kappa \geq 1 \ \mathcal{L}_0(\kappa) &= egin{bmatrix} \kappa & -\partial & 0 \ 0 & -(\kappa+\partial) \end{bmatrix} & (ext{for } q \equiv 0). \end{aligned}$$

Perturbation determinant:

$$\det \left[L_0^{-1}(\kappa) L(\kappa) \right] \rightsquigarrow \cdots \rightsquigarrow \det \left[1 - i\kappa \Lambda \Gamma \right] := a(\kappa; q),$$
$$\Lambda(\kappa; q) := (\kappa - \partial)^{-\frac{1}{2}} q(\kappa + \partial)^{-\frac{1}{2}}, \ \Gamma(\kappa; q) := (\kappa + \partial)^{-\frac{1}{2}} \bar{q}(\kappa - \partial)^{-\frac{1}{2}}.$$

We also consider

$$\alpha(\kappa; \boldsymbol{q}) := -\log \det(1 - i\kappa\Lambda\Gamma) = \sum_{\ell \ge 1} \frac{1}{\ell} \mathrm{tr} \left\{ (i\kappa\Lambda\Gamma)^\ell \right\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Preserved under (DNLS) (Klaus-Schippa)

Q is equicontinuous in L^2 if

$$q(x+h) o q(x)$$
 in L^2 as $h o 0$, uniformly for $q \in Q$
 $\iff \int_{|\xi|>N} |\hat{q}(\xi)|^2 d\xi \to 0$ as $N \to \infty$, uniformly for $q \in Q$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Q is equicontinuous in L^2 if

$$q(x+h) o q(x)$$
 in L^2 as $h o 0$, uniformly for $q \in Q$
 $\iff \int_{|\xi|>N} |\hat{q}(\xi)|^2 d\xi \to 0$ as $N \to \infty$, uniformly for $q \in Q$

- $\alpha(\kappa; q) = \sum_{\ell \ge 1} \frac{1}{\ell} \operatorname{tr} \left\{ \left(i \kappa \Lambda \Gamma \right)^{\ell} \right\}$
 - α(κ; q) is conserved under (DNLS)
 For ℓ = 1: Im tr(iκΛΓ) = ∫_ℝ ^{2κ²}/_{4κ²+ξ²} | ĝ(ξ)|²dξ

Q is equicontinuous in L^2 if

$$q(x+h) \rightarrow q(x)$$
 in L^2 as $h \rightarrow 0$, uniformly for $q \in Q$
 $\iff \int_{|\xi|>N} |\hat{q}(\xi)|^2 d\xi \rightarrow 0$ as $N \rightarrow \infty$, uniformly for $q \in Q$

$$\alpha(\kappa; q) = \sum_{\ell \ge 1} \frac{1}{\ell} \operatorname{tr} \left\{ (i \kappa \Lambda \Gamma)^{\ell} \right\}$$

•
$$\alpha(\kappa; q)$$
 is conserved under (DNLS)
• For $\ell = 1$: Im tr $(i\kappa\Lambda\Gamma) = \int_{\mathbb{R}} \frac{2\kappa^2}{4\kappa^2 + \xi^2} |\hat{q}(\xi)|^2 d\xi$

 $\beta(\kappa; \boldsymbol{q}) = \|\boldsymbol{q}\|_{L^2}^2 - 2\mathrm{Im}\alpha(\kappa; \boldsymbol{q})$

- $\beta(\kappa; q)$ is conserved under (DNLS)
- The quadratic term of $\beta(\kappa)$ is $\beta^{[2]}(\kappa; q) = \int_{\mathbb{R}} \frac{\xi^2}{4\kappa^2 + \xi^2} |\hat{q}(\xi)|^2 d\xi$.

Q is equicontinuous in L^2 if

$$q(x+h) o q(x)$$
 in L^2 as $h o 0$, uniformly for $q \in Q$
 $\iff \int_{|\xi|>N} |\hat{q}(\xi)|^2 d\xi \to 0$ as $N \to \infty$, uniformly for $q \in Q$

$$\alpha(\kappa; q) = \sum_{\ell \ge 1} \frac{1}{\ell} \operatorname{tr} \left\{ (i \kappa \Lambda \Gamma)^{\ell} \right\}$$

•
$$\alpha(\kappa; q)$$
 is conserved under (DNLS)
• For $\ell = 1$: Im tr $(i\kappa\Lambda\Gamma) = \int_{\mathbb{R}} \frac{2\kappa^2}{4\kappa^2 + \xi^2} |\hat{q}(\xi)|^2 d\xi$

 $\beta(\kappa; q) = \|q\|_{L^2}^2 - 2\mathrm{Im}\alpha(\kappa; q)$

• $\beta(\kappa; q)$ is conserved under (DNLS)

The quadratic term of $\beta(\kappa)$ is $\beta^{[2]}(\kappa; q) = \int_{\mathbb{R}} \frac{\xi^2}{4\kappa^2 + \xi^2} |\hat{q}(\xi)|^2 d\xi.$ *Q* is equicontinuous in L^2 $\iff \beta^{[2]}(\kappa; q) \to 0$ as $\kappa \to \infty$ uniformly in *Q*

Commuting flows

 $\alpha(\kappa; q)$ admits the asymptotic expansion

$$\alpha(\kappa; q) = \frac{i}{2}M(q) + \frac{1}{4\kappa}H(q) + O(\kappa^{-2})$$

This leads to

$$H_{\kappa}(q) := 4\kappa \operatorname{Re}\alpha(\kappa; q) = H(q) + O(\kappa^{-1}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Commuting flows

 $lpha(\kappa; \mathbf{q})$ admits the asymptotic expansion

$$\alpha(\kappa; q) = \frac{i}{2}M(q) + \frac{1}{4\kappa}H(q) + O(\kappa^{-2})$$

This leads to

$$H_{\kappa}(q) := 4\kappa \operatorname{Re}\alpha(\kappa; q) = H(q) + O(\kappa^{-1}).$$

- *H* and H_{κ} define commuting flows.
- The equicontinuity and the H^s bounds results discussed above also hold for the H_κ flows.
- ▶ It is fairly easy to prove that they are well-posed in H^s , $s \ge 0$.
- The hard part is showing that the H_κ flows converge to (DNLS) in H^s as κ → ∞. This is where the assumption s ≥ ¹/₆ becomes necessary!

Towards critical well-posedness

We saw that the H_{κ} flows are globally well-posed in L^2 . All we need to adapt our commuting flows argument in the L^2 setting is the convergence of the H_{κ} flows in L^2 .

Problem

This would require additional regularity on q...

Towards critical well-posedness

We saw that the H_{κ} flows are globally well-posed in L^2 . All we need to adapt our commuting flows argument in the L^2 setting is the convergence of the H_{κ} flows in L^2 .

Problem

This would require additional regularity on q...

Solution

Local smoothing!

"Locally in space, on average in time, we can gain half a derivative."

- ロ ト - 4 回 ト - 4 □

Local smoothing

Theorem (Local smoothing for (DNLS)) Let $Q \subset L^2(\mathbb{R})$ be bounded and equicontinuous and $\psi \in S(\mathbb{R})$. Then for each T > 0 solutions to (DNLS) with initial data $q(0) \in Q$ satisfy

$$\int_{-\tau}^{T} \|\psi q(t)\|_{H^{\frac{1}{2}}(\mathbb{R})}^{2} dt \lesssim_{Q,\tau} \|q(0)\|_{L^{2}}^{2}$$

Theorem (Local smoothing for the difference flow) Let $Q \subset L^2(\mathbb{R})$ be bounded and equicontinuous and $\psi \in S(\mathbb{R})$. Then for each T > 0 solutions to the flow induced by $H - H_{\kappa}$ with initial data $q(0) \in Q$ satisfy

$$\int_{-\tau}^{\tau} \|\psi q(t)\|_{H^{\frac{1}{2}}(\mathbb{R})}^{2} dt \lesssim_{Q,\tau} \|q(0)\|_{L^{2}}^{2}.$$

Equicontinuity is important!

Rescaling a stationary soliton $q_s(t,x) = e^{it}q_0(x)$, we get a family of solutions $q_{s,\lambda}(t,x)$ with the same L^2 norm, but

$$\int_{-1}^1 \|\psi(x)q_{s,\lambda}(t,x)\|^2_{H^{rac{1}{2}}_x(\mathbb{R})} dt pprox \lambda.$$

 L^2 boundedness alone is not enough to control the local smoothing norm.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Local smoothing

Idea

To prove local smoothing, we rely once again on the conservation of $\alpha(\varkappa; q)$.

We can write $\alpha(\varkappa; q) = \int \rho(\varkappa; q, x) dx$ and we have the microscopic conservation laws

$$\partial_t \rho(\varkappa) + \partial_{\varkappa} j_{DNLS}(\varkappa) = 0$$
 for DNLS,
 $\partial_t \rho(\varkappa) + \partial_{\varkappa} j_{H-H_{\kappa}}(\varkappa) = 0$ for the difference flow.

Then

$$\int_{-\tau}^{\tau} \int j(\varkappa; q(t), x) \psi(x) \, dx \, dt = \int \rho(\varkappa; q(t), x) \tilde{\psi}(x) \, dx \Big|_{-\tau}^{\tau}.$$

Although the general idea is the same for both flows, proving local smoothing for the difference flow is much harder.

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●