### Singularities of General Systems of Differential Equations

#### **Werner M. Seiler** and Matthias Seiß (with Markus Lange-Hegermann and Daniel Robertz)

#### U N I K A S S E L V E R S I T 'A' T



# What is this all about?

#### Many forms of singular behaviour appear in differential equations:

- (derivatives of) solutions become singular ~
  "blow-up", "shock"
- stationary points or equilibria of vector fields
- bifurcations in parameter dependent systems
- **singular integrals** (additional solutions not contained in the "general integral")
- multi-valued solutions (like "breaking waves")

**here:** singularities as "special" points on a geometric model of (general systems of) differential equations

## What is this all about?

#### Our goals:

- use commutative and differential algebra to obtain effective differential topological framework for defining and detecting singularities of arbitrary systems of ordinary or partial differential equations
- analyse local solution behaviour, i. e. study singular initial value problems

Today: only definition and detection of singularities

Choose base field  $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$  and consider (local) smooth/analytic functions  $\mathbf{s} \colon \Omega \subseteq \mathbb{K}^n \to \mathbb{K}^m$ 

 $\ell$ -th order **jet bundle**  $\mathcal{J}_{\ell} \rightsquigarrow$  set of all equivalence classes  $[s]_{\bar{x}}^{(\ell)}$  containing all functions with the same Taylor polynomial of degree  $\ell$  at  $\bar{x} \in \mathbb{K}^n$  as function s

- manifold diffeomorphic to affine space  $\mathbb{K}^{d_{\ell}}$  with  $d_{\ell} = n + m \binom{n+\ell}{\ell}$
- local coordinates: independent variables x<sup>1</sup>,..., x<sup>n</sup>, dependent variables u<sup>1</sup>,..., u<sup>m</sup>, derivatives u<sup>α</sup><sub>μ</sub> with |μ| ≤ ℓ
- possesses **natural fibrations**  $\pi_k^{\ell} : \mathcal{J}_{\ell} \to \mathcal{J}_k$  for  $0 \le k < \ell$  and  $\pi^{\ell} : \mathcal{J}_{\ell} \to \mathbb{K}^n$

Different roles of different types of local coordinates encoded in **contact structure** of jet bundle  $\mathcal{J}_{\ell}$ 

distribution  $C_{\ell} \subset T \mathcal{J}_{\ell}$  generated by  $n \pi^{\ell}$ -transversal vector fields

$$C_{i}^{(\ell)} = \partial_{z^{i}} + \sum_{\alpha} \sum_{0 \le \ell \mid \mu \mid < \ell} u^{\alpha}_{\mu+1_{i}} \partial_{u^{\alpha}_{\mu}} \qquad 1 \le i \le n$$

and  $m\binom{n+\ell-1}{\ell} \pi^{\ell}$ -vertical vector fields

$$C^{\mu}_{lpha}=\partial_{u^{lpha}_{\mu}}$$
  $1\leqlpha\leq m,\ |\mu|=\ell$ 

The Classical Geometric Answer

#### Definition

**Differential equation** of order  $\ell \longrightarrow$  fibred submanifold  $\mathcal{R}_{\ell} \subseteq \mathcal{J}_{\ell}$  such that restricted projection  $\pi^{\ell} \colon \mathcal{R}_{\ell} \to \mathbb{K}^{n}$  surjective submersion

- No distinction between scalar equations and systems
- Only of limited use for effective computations
- Rather strict conditions, often not met in applications xu' = 1,  $(u')^2 + u^2 + x^2 = 1$ , ...

Proscribes all kinds of singularities discussed here!

A More Relaxed and Algebraic Answer

#### Definition

- Algebraic jet set (of order  $\ell$ )  $\rightsquigarrow$  locally Zariski closed subset  $\mathcal{R}_{\ell} \subseteq \mathcal{J}_{\ell}$  (i. e. difference of two varieties)
- Algebraic differential equation (of order *ℓ*) → algebraic jet set *R<sub>ℓ</sub>* such that Euclidean closure of *π<sup>ℓ</sup>(R<sub>ℓ</sub>)* is K<sup>n</sup>
- globally described by equations and inequations
- restricts to equations with polynomial nonlinearities
- admits equations like xu' = 1
- still excludes equations like x = 0

#### But We Want Systems! The Algebraic Case



Polynomial ring  $\mathbb{K}[x^1, \dots, x^n]$  with total ordering on variables

- leader  $\operatorname{Id} p \longrightarrow$  largest variable in polynomial p
- consider p as univariate polynomial in ld p
  - ▶ initial init p ~→ leading coefficient of p
  - **separant** sep  $p \rightarrow \partial p / \partial (\operatorname{Id} p)$

#### Definition

• Algebraic system ~~ polynomial equations and *in*equations

$$\mathcal{S} = \left\{ p_1 = 0, \dots, p_s = 0, \ q_1 \neq 0, \dots, q_t \neq 0 \right\}$$

• Solution set (locally closed wrt Zariski topology)

$$\mathsf{Sol}\,\mathcal{S} = \left\{ \mathbf{x} \in \mathbb{K}^n \mid p_i(\mathbf{x}) = \mathsf{O}, \, q_j(\mathbf{x}) \neq \mathsf{O} \right\}$$

#### But We Want Systems! The Algebraic Case

#### Definition

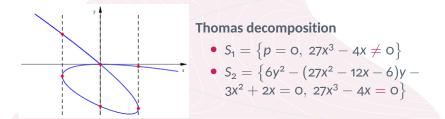
- S simple algebraic system ~~
  - triangular:  $|\{ \operatorname{Id} p_i, \operatorname{Id} q_j\} \setminus \{1\}| = s + t$
  - constant degree: no equation init p<sub>i</sub> = 0 or init q<sub>j</sub> = 0 possesses solution in Sol S
  - square-free: dito for separants
- Thomas decomposition of arbitrary algebraic system S →→ construction of finitely many simple systems S<sub>1</sub>,..., S<sub>k</sub> such that Sol S disjoint union of all Sol S<sub>i</sub>

Thomas decomposition always **exists** over *algebraically closed* field (Thomas 1937), can be determined **algorithmically** (very expensive) and is **implemented** in Maple (Bächler, Gerdt, Lange-Hegermann, Robertz 2012)

#### But We Want Systems! The Algebraic Case

5

consider  $S = \{ p = y^3 + (3x + 1)y^2 + (3x^2 + 2x)y + x^3 = 0 \}$ (non-simple algebraic "system")



(Caution: real picture, but decomposition over complex numbers!)

#### But We Want Systems! The Differential Case



#### **Ring of differential polynomials**

- $\mathbb{F} = \mathbb{K}(x^1, \dots, x^n)$  differential field of rational functions with derivations  $\delta_i = \partial/\partial x^i$
- finitely many differential unknowns:  $U = \{u^1, \dots, u^m\}$  $\rightsquigarrow$  jet variables  $u^{\alpha}_{\mu} = \delta^{\mu} u^{\alpha}$
- $\mathbb{F}{U} = \mathbb{F}\left[u_{\mu}^{\alpha} \mid 1 \leq \alpha \leq m, \mu \in \mathbb{N}_{0}^{n}\right]$  ( $\infty$  many variables!) derivations can be extended:  $\delta_{i}u_{\mu}^{\alpha} = u_{\mu+1_{i}}^{\alpha}$
- distinguish:
  - algebraic ideal:  $\langle p_1, \ldots, p_s \rangle$
  - differential ideal:  $\langle p_1, \ldots, p_s \rangle_{\Delta}$  (closed under derivations)
- set  $\mathcal{D} = \mathbb{K} [ \mathsf{x}^i, \mathsf{u}^{\alpha}_{\mu} ] \subset \mathbb{F} \{ \mathsf{U} \} \quad \leadsto \quad \mathcal{D}_{\ell} = \mathbb{K} [ \mathsf{x}^i, \mathsf{u}^{\alpha}_{\mu} \mid |\mu| \leq \ell ]$
- jet bundle  $\mathcal{J}_{\ell} \rightsquigarrow$  affine space  $\mathbb{K}^{d_{\ell}}$  with coordinate ring  $\mathcal{D}_{\ell}$

#### But We Want Systems! The Differential Case

# 6

#### **Ranking** on $\mathbb{F}{U}$

- total ordering ≺ of jet variables
- $u^{\alpha} \prec \delta_i u^{\alpha}$
- $\mathbf{u}^{\alpha}_{\mu} \prec \mathbf{u}^{\beta}_{\nu} \implies \delta_{i}\mathbf{u}^{\alpha}_{\mu} \prec \delta_{i}\mathbf{u}^{\beta}_{\nu}$

allows to extend concepts like leader, initial or separant

#### Definition

 Differential system ~> finite set of differential polynomial equations and *in*equations

$$\mathcal{S} = \left\{ p_1 = 0, \dots, p_s = 0, \ q_1 \neq 0, \dots, q_t \neq 0 \right\}$$

• Solution set → consider formal power series solutions (different function spaces possible)

#### But We Want Systems! The Differential Case

#### Definition

- S simple differential system ~~
  - S simple algebraic system in the finitely many effectively occuring jet variables
  - equations involutive for Janet division
  - no leader of inequation derivative of leader of equation
- Thomas decomposition of arbitrary differential system  $S \rightsquigarrow$  construction of finitely many simple systems  $S_1, \ldots, S_k$  such that Sol S disjoint union of all Sol  $S_i$

Thomas decomposition always **exists** over algebraically closed field (Thomas 1937), **algorithmically** computable via combination of algebraic Thomas decomposition and Janet-Riquier theory, **implemented** in Maple (Bächler, Gerdt, Lange-Hegermann, Robertz 2012)



Starting point in applications: differential system S

Naive construction of associated algebraic jet set in order  $\ell$ :

- **1.** Differential ideal  $\hat{\mathcal{I}}_{\mathrm{diff}}(S) = \langle p_1, \dots, p_s \rangle_\Delta \subseteq \mathcal{D}$
- **2.** Algebraic ideal  $\hat{\mathcal{I}}_{\ell}(S) = \hat{\mathcal{I}}_{diff}(S) \cap \mathcal{D}_{\ell}$
- **3.** Algebraic ideal  $\mathcal{K}_{\ell}(S) = \langle \prod_{\operatorname{ord}(q_j) \leq \ell} q_j \rangle_{\mathcal{D}_{\ell}}$
- **4.** Algebraic jet set  $\hat{\mathcal{R}}_{\ell}(S) = \operatorname{Sol}(\hat{\mathcal{I}}_{\ell}(S)) \setminus \operatorname{Sol}(\mathcal{K}_{\ell}(S))$



Starting point in applications: differential system S

Naive construction of associated algebraic jet set in order  $\ell$ :

- **1.** Differential ideal  $\hat{\mathcal{I}}_{diff}(S) = \langle p_1, \dots, p_s \rangle_\Delta \subseteq \mathcal{D}$
- **2.** Algebraic ideal  $\hat{\mathcal{I}}_{\ell}(S) = \hat{\mathcal{I}}_{diff}(S) \cap \mathcal{D}_{\ell}$
- **3.** Algebraic ideal  $\mathcal{K}_{\ell}(S) = \langle \prod_{\operatorname{ord}(q_j) \leq \ell} q_j \rangle_{\mathcal{D}_{\ell}}$
- **4.** Algebraic jet set  $\hat{\mathcal{R}}_{\ell}(S) = \operatorname{Sol}(\hat{\mathcal{I}}_{\ell}(S)) \setminus \operatorname{Sol}(\mathcal{K}_{\ell}(S))$

Construction leads to many problems:

- Ideals  $\hat{\mathcal{I}}_{\ell}(S)$  too small (not radical)
- Do not necessarily obtain algebraic differential equation
- Effective determination of  $\hat{\mathcal{I}}_{\ell}(S)$  difficult
- Jet set  $\hat{\mathcal{R}}_{\ell}(S)$  possibly too small (inequations too strong)



Better: assume S simple differential system

**1.** Differential ideal  $\mathcal{I}_{diff}(S) = \hat{\mathcal{I}}_{diff}(S) : \left(\prod_{j \in I} \operatorname{init}(p_j) \operatorname{sep}(p_j)\right)^{\infty}$ 

(Robertz 2014)

- 2. Algebraic ideal  $\mathcal{I}_{\ell}(S) = \mathcal{I}_{\text{diff}}(S) \cap \mathcal{D}_{\ell}$
- **3.** Algebraic ideal  $\mathcal{K}_{\ell}(S) = \langle \prod_{\operatorname{ord}(q_j) \leq \ell} q_j \rangle_{\mathcal{D}_{\ell}}$
- **4.** Algebraic jet set  $\mathcal{R}_{\ell}(S) = \operatorname{Sol}(\mathcal{I}_{\ell}(S)) \setminus \operatorname{Sol}(\mathcal{K}_{\ell}(S))$

#### Proposition

- $\mathcal{I}_{\mathrm{diff}}(\mathsf{S})$  (and thus  $\mathcal{I}_{\ell}(\mathsf{S})$ ) radical
- $\mathcal{I}_{\ell}(S)$  easily computable

• 
$$\forall \mathbf{k} > \mathbf{0} : \pi_{\ell}^{\ell+\mathbf{k}}(\mathcal{R}_{\ell+\mathbf{k}}(S)) = \mathcal{R}_{\ell}(S)$$

#### Bridging the Gap Locally Integrable Equations

#### Definition

Algebraic differential equation  $\mathcal{R}_{\ell}$  locally integrable  $\rightsquigarrow$  $\exists$  Zariski open and dense subset  $\mathcal{L}_{\ell} \subseteq \mathcal{R}_{\ell}$  such that at least one solution goes through each point  $\rho \in \mathcal{L}_{\ell}$ 

#### Proposition

 $\frac{S \text{ simple differential system }}{\overline{\mathcal{R}_{\ell}(S)}} = \operatorname{Sol}(\mathcal{I}_{\ell}(S)) \text{ locally integrable algebraic differential equation}$ 

(Essentially a consequence of Riquier's Theorem)

# What is a Singularity?

#### Definition

Given point  $\rho$  on algebraic jet set  $\mathcal{R}_{\ell} \subseteq \mathcal{J}_{\ell}$ 

- Vessiot cone  $\mathcal{V}_{\rho}[\mathcal{R}_{\ell}] = \mathsf{C}_{\rho}\mathcal{R}_{\ell} \cap \mathsf{C}_{\ell}|_{\rho}$
- Symbol cone  $\mathcal{N}_{\rho}[\mathcal{R}_{\ell}] = \mathcal{V}_{\rho}[\mathcal{R}_{\ell}] \cap V_{\rho}\pi_{\ell-1}^{\ell}$
- At smooth points ρ cones linear spaces → computable as solution spaces of linear systems of equations
- Vessiot cone at ρ contains all potential infinitesimal solutions (integral elements)
- Use tangent cone as it contains all limits of secants
- Dimensions and orientations of cones depend generally on ρ

#### What is a Singularity? Finally the Definitions...

#### Definition

- $\mathcal{R}_\ell \subseteq \mathcal{J}_\ell$  locally integrable algebraic differential equation
  - **1.**  $\rho \in \mathcal{R}_{\ell}$  algebraic singularity  $\rightsquigarrow \rho$  non-smooth point of  $\mathcal{R}_{\ell}$
  - **2.**  $\rho \in \mathcal{R}_{\ell}$  regular  $\rightsquigarrow \rho$  smooth and  $\exists$  Euclidean open neighbourhood  $\rho \in \mathcal{U} \subseteq \mathcal{R}_{\ell}$  such that  $\mathcal{V}[\mathcal{R}_{\ell}]|_{\mathcal{U}}$  regular and decomposable as  $\mathcal{V}[\mathcal{R}_{\ell}]|_{\mathcal{U}} = \mathcal{N}[\mathcal{R}_{\ell}]|_{\mathcal{U}} \oplus \mathcal{H}$  with *n*-dimensional, transversal, **involutive**, smooth distribution  $\mathcal{H} \subseteq T\mathcal{U}$
  - ρ ∈ R<sub>ℓ</sub> regular singular → ρ smooth and ∃ Euclidean open neighbourhood ρ ∈ U ⊆ R<sub>ℓ</sub> such that V[R<sub>ℓ</sub>]|<sub>U</sub> regular but dim V<sub>ρ</sub>[R<sub>ℓ</sub>] dim N<sub>ρ</sub>[R<sub>ℓ</sub>] < n</li>
  - **4.**  $\rho \in \mathcal{R}_{\ell}$  **irregular singular**  $\rightsquigarrow \rho$  smooth, but  $\not\exists$  Euclidean open neighbourhood  $\rho \in \mathcal{U} \subseteq \mathcal{R}_{\ell}$  such that  $\mathcal{V}[\mathcal{R}_{\ell}]|_{\mathcal{U}}$  regular

#### What is a Singularity? Finally the Definitions...



- Definition relative to R<sub>l</sub>
- Algebraic singularities detectable with **Jacobian criterion**  $\rightsquigarrow$  linear algebra
- Items 3 and 4  $\rightsquigarrow$  **geometric singularities** (critical points for restriction of canonical projection map  $\pi^{\ell} : \mathcal{R}_{\ell} \to \mathbb{K}^n$ )
- For equations of finite type, no neighbourhoods necessary pointwise criteria possible, as "right" dimensions a priori known (⇒ involutivity no issue!)
- Except for **involutivity condition**, distinction between items 2–4 corresponds to analysis of linear system of equations
- Involutivity condition difficult to analyse ~>> taxonomy possibly incomplete for partial differential equations

# What is a Singularity? ... and an Example

Consider equation  $\mathcal{R}_2$  for unknown function u = u(x, y) given by

$$(x^2u_{xx} + xu_x + (x - 1)^2u = 0, (1 - y^2)u_{yy} + 2yu_y + 2u = 0)$$

Seven distinct cases arise:

**1.**  $x \neq 0 \land y^2 - 1 \neq 0 \iff$  regular: dim  $\mathcal{V}_{\rho}[\mathcal{R}_2] = 3$ , dim  $\mathcal{H}_{\rho} = 2$ **2.**  $x = 0 \land y^2 - 1 \neq 0 \land (u_x \neq 0 \lor u_y \neq 0) \land \text{regular singular:}$  $\dim \mathcal{V}_{\rho}[\mathcal{R}_2] = 3$ ,  $\dim \mathcal{H}_{\rho} = 1$ 3.  $x \neq 0 \land y^2 - 1 = 0 \land (yu_x + u_{xy} \neq 0 \lor u \neq 0) \iff$  as 2. 4.  $x = 0 \land y^2 - 1 = 0 \land (yu_x + u_{xy} \neq 0 \lor u_x \neq 0) \land irregular$ singular: dim  $\mathcal{V}_{0}[\mathcal{R}_{2}] = 4$ , dim  $\mathcal{H}_{0} = 1$ 5.  $x = 0 \land y^2 - 1 \neq 0 \land u_x = 0 \land u_y = 0 \quad \rightsquigarrow \quad \text{(purely) irregular}$ singular: dim  $\mathcal{V}_{\rho}[\mathcal{R}_2] = 4$ , dim  $\mathcal{H}_{\rho} = 2$ 6.  $x \neq 0 \land y^2 - 1 = 0 \land u_x = 0 \land u_y = 0 \iff$  as 5. 7.  $x = 0 \land y^2 - 1 = 0 \land u_x = 0 \land u_y = 0 \iff$  as 5. but with  $\dim \mathcal{V}_{o}[\mathcal{R}_{2}] = 5$ 

Werner M. Seiler (Kassel) | Singularities of General Systems of Differential Equations



Some possible effects of singularities for **real** ordinary differential equations:

- Only **one-sided** solutions either starting or ending in singularity (generically the case at regular singularities)
- Multiple solutions (even infinitely many ones)
- Solutions of finite regularity

#### Example

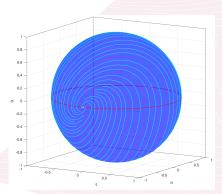
Consider xu'' =  $(u')^2 + x - k^2/4$  at  $\rho = (o, c, k/2)$  for k > o

- $k \in \mathbb{N} \quad \rightsquigarrow \quad \text{infinitely many solutions all in } \mathcal{C}^k \setminus \mathcal{C}^{k+1}$
- otherwise →→ one smooth solution and infinitely many solutions in C<sup>ℓ</sup> \ C<sup>ℓ+1</sup> with ℓ = [k]
- $ho = (0, c, -k/2) \quad \leadsto \quad ext{unique smooth solution}$

## **Some Colourful Pictures**

**Geometric Singularities** 

**Example:**  $(u')^2 + u^2 + x^2 = 1$ 



equator → regular singularities "east" and "west pole" → two irregular singularities two solutions either begin or end at each regular singularity; infinitely many approach irregular singularity

0.6

0.4

0.2

-0.2

-0.6

-0.8

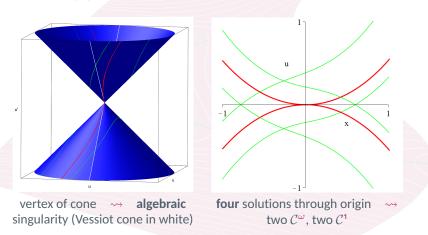
-0.6 -0.4

13

# **Some Colourful Pictures**

**Algebraic Singularity** 

**Example:**  $(u')^2 - u^2 - x^2 = 0$ 



# What makes a Point Regular?

The Quest for a Deeper Meaning

- $\mathcal{R}_{\ell}$  locally integrable equation of **finite type** (i. e.  $\mathcal{N}_{\rho}[\mathcal{R}_{\ell}] = o$ for all points  $\rho$  on Zariski dense subset)  $\rightarrow \rho \in \mathcal{R}_{\ell}$  regular, if and only if sufficiently small neighbourhood  $\rho \in U \subseteq \mathcal{R}_{\ell}$ **uniquely foliated** by prolonged solutions
- *R*<sub>ℓ</sub> locally integrable equation of infinite type → infinitely many foliations by prolonged solutions exist (each Vessiot connection induces one) → further types of singular behaviour possible???

#### Singularities are Singular! First Main Result

#### Theorem

S **simple** differential system with no (in)equation of order  $> \ell \implies$  regular points in  $\overline{\mathcal{R}_{\ell}(S)}$  contain Zariski open and dense subset

Proof: (easy for equations of finite type via Riquier's theorem)

- *S* Janet basis  $\implies \exists$  Zariski open and dense subset  $\mathcal{F}_{\ell} \subseteq \mathcal{R}_{\ell}(S)$  defining **formally integrable** differential equation
- S induces Janet basis of **symbol module**  $\mathcal{M}_{\rho}[\mathcal{R}_{\ell}(S)]$  for  $\rho \in \mathcal{F}_{\ell}$
- this implies  $\ell \geq \operatorname{reg} \mathcal{M}_{\rho}[\mathcal{R}_{\ell}(S)]$  (WMS 2002)
- this implies  $\mathcal{F}_{\ell}$  involutive differential equation (WMS 2002)
- Vessiot theory  $\implies$  existence of involutive complement  $\mathcal{H}$  (Fesser 2008)

#### You Prefer Regular? The Regularity Decomposition

#### Definition

Algebraic jet set  $\mathcal{R}_{\ell} \subseteq \mathcal{J}_{\ell}$  regular  $\rightsquigarrow$ 

- $\mathcal{R}_{\ell}$  smooth manifold
- Vessiot spaces define smooth **vector bundle** over  $\mathcal{R}_{\ell}$
- Symbol spaces define smooth vector bundle over  $\mathcal{R}_\ell$

#### You Prefer Regular? The Regularity Decomposition

#### Definition

Algebraic jet set  $\mathcal{R}_{\ell} \subseteq \mathcal{J}_{\ell}$  regular  $\rightsquigarrow$ 

- $\mathcal{R}_{\ell}$  smooth manifold
- Vessiot spaces define smooth vector bundle over  $\mathcal{R}_\ell$
- Symbol spaces define smooth vector bundle over  $\mathcal{R}_\ell$

*S* simple differential system,  $\overline{\mathcal{R}_{\ell}(S)}$  associated algebraic jet set for  $\ell$  sufficiently high with unique decomposition into irreducible components  $\overline{\mathcal{R}_{\ell}(S)} = \mathcal{R}_{\ell,1} \cup \cdots \cup \mathcal{R}_{\ell,t}$ 

#### Definition

**Regularity decomposition** of  $\mathcal{R}_{\ell,k} \rightsquigarrow$  representation as **disjoint** union of finitely many **regular** algebraic jet sets  $\mathcal{R}_{\ell,k}^{(i)}$  and of set  $ASing(\mathcal{R}_{\ell,k})$  of algebraic singularities

#### You Prefer Regular? The Second Main Result

#### Theorem

Regularity decompositions exist for **any** differential system for a sufficiently high order  $\ell$  and can be algorithmically computed.

Basic idea:

- **1.** Use **differential** Thomas decomposition to split into simple differential systems
- 2. Construct corresponding algebraic jet sets
- **3.** Apply on each jet set **algebraic** Thomas decomposition to linear systems describing tangent and Vessiot spaces
- 4. Analyse results

Notion of "regular differential equation" in geometric theory requires **prolongations**  $\rightarrow$  need to associate **differential system**  $S(\mathcal{R}_{\ell})$  with given algebraic jet set  $\mathcal{R}_{\ell} \subseteq \mathcal{J}_{\ell}$ 

#### Construction of $S(\mathcal{R}_{\ell})$

 $\mathcal{R}_{\ell}$  locally Zariski closed subset of  $\mathcal{J}_{\ell} \implies \mathcal{R}_{\ell}$  solution set of algebraic system  $S(\mathcal{R}_{\ell}) \subset \mathcal{D}_{\ell} \rightsquigarrow \text{ consider } S(\mathcal{R}_{\ell}) \subset \mathcal{D}$  as differential system!

**Caveat:**  $S(\mathcal{R}_{\ell})$  not necessarily **differentially consistent** and generally even  $\mathcal{R}_{\ell}(S(\mathcal{R}_{\ell})) \subsetneq \mathcal{R}_{\ell}$ 

# When is a Differential Equation Regular?

Attempt of a Rigorous Definition

#### Definition

Algebraic differential equation  $\mathcal{R}_{\ell} \subseteq \mathcal{J}_{\ell}$  regular  $\rightsquigarrow$  associated differential system  $S(\mathcal{R}_{\ell})$  satisfies

1.  $\mathcal{I}_{\mathrm{diff}}(S(\mathcal{R}_{\ell}))$  prime differential ideal

2. 
$$\mathcal{R}_{\ell}(S(\mathcal{R}_{\ell})) = \mathcal{R}_{\ell}$$

**3.**  $\forall k \ge 0$  :  $\mathcal{R}_{\ell+k}(S(\mathcal{R}_{\ell}))$  regular algebraic jet set

**Note:** item 3 comprises **infinitely many** conditions and thus unclear how to verify **effectively** whether or not given algebraic differential equation is regular

20

#### When is a Differential Equation Regular? The Third Main Result

#### Theorem

For each prime component  $\mathcal{I}_{\ell,k}(S)$  of **simple** differential system S, output of our algorithm contains unique simple algebraic system  $S_{\ell,k}^{\text{gen}}$  such that its solution space  $\operatorname{Sol}(S_{\ell,k}^{\text{gen}})$  is

- 1. regular differential equation
- **2.** Zariski dense in  $Sol(\mathcal{I}_{\ell,k}(S))$
- 3. entirely composed of regular points

## Where Do We Go From Here?

- 22
- Effective theory for real differential equations ~>> extend to semi-algebraic equations, replace Thomas decomposition by quantifier elimination, ...
- Complete taxonomy even for equations of infinite type?
- Local solution behaviour at singularities of ordinary differential equations as analysable via dynamical systems theory  $\rightsquigarrow$  extension of partial differential equations of finite type seems possible via theory of singular foliations  $\rightsquigarrow$  extension to partial differential equations of infinite type unclear

## All the Gory Details...



 M. Lange-Hegermann, D. Robertz, W.M. Seiler, M. Seiß. Singularities of Algebraic Differential Equations. Adv. Appl. Math. 131 (2021) 102266.

#### [2] W.M. Seiler, M. Seiß, T. Sturm.

A Logic Based Approach to Finding Real Singularities of Implicit Ordinary Differential Equations. Math. Comput. Sci. 15 (2021) 333–352

[3] W.M. Seiler, M. Seiß.

Singular Initial Value Problems for Scalar Quasi-Linear Ordinary Differential Equations.

J. Diff. Eqs. 281 (2021) 258-288