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What is this all about?

Many forms of singular behaviour appear in differential equations:
• (derivatives of) solutions become singular  
“blow-up”, “shock”
• stationary points or equilibria of vector fields
• bifurcations in parameter dependent systems
• singular integrals (additional solutions not contained in the
“general integral”)
• multi-valued solutions (like “breaking waves”)
• . . .

here: singularities as “special” points on a geometric model of
(general systems of) differential equations

Werner M. Seiler (Kassel) | Singularities of General Systems of Differential Equations



1
What is this all about?

Our goals:
• use commutative and differential algebra to obtain effective
differential topological framework for defining and detecting
singularities of arbitrary systems of ordinary or partial
differential equations
• analyse local solution behaviour, i. e. study singular initial value
problems

Today: only definition and detection of singularities
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What is a Differential Equation?
Setting the Arena

Choose base fieldK ∈ {R,C} and consider (local) smooth/analytic
functions s : Ω ⊆ Kn → Km

`-th order jet bundle J`  set of all equivalence classes [s](`)x̄
containing all functions with the same Taylor polynomial of degree `
at x̄ ∈ Kn as function s

• manifold diffeomorphic to affine spaceKd` with
d` = n + m

(n+`
`

)
• local coordinates: independent variables x1, . . . , xn, dependent
variables u1, . . . , um, derivatives uαµ with |µ| ≤ `
• possesses natural fibrations π`k : J` → Jk for 0 ≤ k < ` and
π` : J` → Kn

Werner M. Seiler (Kassel) | Singularities of General Systems of Differential Equations



2

What is a Differential Equation?
Setting the Arena

Different roles of different types of local coordinates encoded in
contact structure of jet bundle J`
distribution C` ⊂ TJ` generated by n π`-transversal vector fields

C(`)
i = ∂zi +

∑
α

∑
0≤`|µ|<`

uαµ+1i∂uαµ 1 ≤ i ≤ n

andm
(n+`−1

`

)
π`-vertical vector fields

Cµα = ∂uαµ 1 ≤ α ≤ m, |µ| = `
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What is a Differential Equation?
The Classical Geometric Answer

Definition
Differential equation of order `  fibred submanifoldR` ⊆ J`
such that restricted projection π` : R` → Kn surjective submersion

• No distinction between scalar equations and systems
• Only of limited use for effective computations
• Rather strict conditions, often not met in applications
xu′ = 1, (u′)2 + u2 + x2 = 1, . . .

Proscribes all kinds of singularities discussed here!
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What is a Differential Equation?
A More Relaxed and Algebraic Answer

Definition
• Algebraic jet set (of order `)  locally Zariski closed subset
R` ⊆ J` (i. e. difference of two varieties)

• Algebraic differential equation (of order `)  algebraic jet
setR` such that Euclidean closure of π`(R`) isKn

• globally described by equations and inequations
• restricts to equations with polynomial nonlinearities
• admits equations like xu′ = 1
• still excludes equations like x = 0
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But We Want Systems!
The Algebraic Case

Polynomial ringK[x1, . . . , xn] with total ordering on variables
• leader ld p  largest variable in polynomial p
• consider p as univariate polynomial in ld p
I initial init p  leading coefficient of p
I separant sep p  ∂p/∂(ld p)

Definition
• Algebraic system  polynomial equations and inequations

S =
{
p1 = 0, . . . , ps = 0, q1 6= 0, . . . , qt 6= 0

}
• Solution set (locally closed wrt Zariski topology)

SolS =
{
x ∈ Kn | pi(x) = 0, qj(x) 6= 0

}
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But We Want Systems!
The Algebraic Case

Definition
• S simple algebraic system  
I triangular:

∣∣{ld pi, ld qj} \ {1}
∣∣ = s + t

I constant degree: no equation init pi = 0 or init qj = 0
possesses solution in SolS

I square-free: dito for separants
• Thomas decomposition of arbitrary algebraic system S  
construction of finitely many simple systems S1, . . . ,Sk such
that SolS disjoint union of all SolSi

Thomas decomposition always exists over algebraically closed field
(Thomas 1937), can be determined algorithmically (very expensive)
and is implemented in Maple (Bächler, Gerdt, Lange–Hegermann,
Robertz 2012)
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But We Want Systems!
The Algebraic Case

consider S =
{
p = y3 + (3x + 1)y2 + (3x2 + 2x)y + x3 = 0

}
(non-simple algebraic “system”)

Thomas decomposition
• S1 =

{
p = 0, 27x3 − 4x 6= 0

}
• S2 =

{
6y2 − (27x2 − 12x− 6)y−

3x2 + 2x = 0, 27x3 − 4x = 0
}

(Caution: real picture, but decomposition over complex numbers!)
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But We Want Systems!
The Differential Case

Ring of differential polynomials
• F = K(x1, . . . , xn) differential field of rational functions with
derivations δi = ∂/∂xi

• finitely many differential unknowns: U = {u1, . . . , um}
 jet variables uαµ = δµuα

• F{U} = F
[
uαµ | 1 ≤ α ≤ m, µ ∈ Nn

0
]

(∞many variables!)
derivations can be extended: δiuαµ = uαµ+1i
• distinguish:
I algebraic ideal: 〈p1, . . . , ps〉
I differential ideal: 〈p1, . . . , ps〉∆ (closed under derivations)

• setD = K
[
xi, uαµ

]
⊂ F{U}  D` = K

[
xi, uαµ | |µ| ≤ `

]
• jet bundle J`  affine spaceKd` with coordinate ringD`
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But We Want Systems!
The Differential Case

Ranking onF{U}
• total ordering≺ of jet variables
• uα ≺ δiuα

• uαµ ≺ uβν =⇒ δiuαµ ≺ δiu
β
ν

allows to extend concepts like leader, initial or separant

Definition
• Differential system  finite set of differential polynomial
equations and inequations

S =
{
p1 = 0, . . . , ps = 0, q1 6= 0, . . . , qt 6= 0

}
• Solution set  consider formal power series solutions
(different function spaces possible)
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But We Want Systems!
The Differential Case

Definition
• S simple differential system  
I S simple algebraic system in the finitely many effectively

occuring jet variables
I equations involutive for Janet division
I no leader of inequation derivative of leader of equation

• Thomas decomposition of arbitrary differential system S  
construction of finitely many simple systems S1, . . . ,Sk such
that SolS disjoint union of all SolSi

Thomas decomposition always exists over algebraically closed field
(Thomas 1937), algorithmically computable via combination of
algebraic Thomas decomposition and Janet–Riquier theory,
implemented in Maple (Bächler, Gerdt, Lange–Hegermann, Robertz 2012)
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Bridging the Gap
Jet Sets from Differential Equations

Starting point in applications: differential system S

Naive construction of associated algebraic jet set in order `:
1. Differential ideal Îdiff(S) = 〈p1, . . . , ps〉∆ ⊆ D
2. Algebraic ideal Î`(S) = Îdiff(S) ∩ D`
3. Algebraic idealK`(S) = 〈

∏
ord(qj)≤` qj〉D`

4. Algebraic jet set R̂`(S) = Sol
(
Î`(S)

)
\ Sol

(
K`(S)

)
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Bridging the Gap
Jet Sets from Differential Equations

Starting point in applications: differential system S

Naive construction of associated algebraic jet set in order `:
1. Differential ideal Îdiff(S) = 〈p1, . . . , ps〉∆ ⊆ D
2. Algebraic ideal Î`(S) = Îdiff(S) ∩ D`
3. Algebraic idealK`(S) = 〈

∏
ord(qj)≤` qj〉D`

4. Algebraic jet set R̂`(S) = Sol
(
Î`(S)

)
\ Sol

(
K`(S)

)
Construction leads to many problems:
• Ideals Î`(S) too small (not radical)
• Do not necessarily obtain algebraic differential equation
• Effective determination of Î`(S) difficult
• Jet set R̂`(S) possibly too small (inequations too strong)
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Bridging the Gap
Jet Sets from Differential Equations

Better: assume S simple differential system

1. Differential ideal Idiff(S) = Îdiff(S) :
(∏

j init (pj) sep (pj)
)∞

2. Algebraic ideal I`(S) = Idiff(S) ∩ D`
3. Algebraic idealK`(S) = 〈

∏
ord(qj)≤` qj〉D`

4. Algebraic jet setR`(S) = Sol
(
I`(S)

)
\ Sol

(
K`(S)

)
Proposition
• Idiff(S) (and thus I`(S)) radical (Robertz 2014)
• I`(S) easily computable
• ∀ k > 0 : π`+k

`

(
R`+k(S)

)
= R`(S)
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Bridging the Gap
Locally Integrable Equations

Definition
Algebraic differential equationR` locally integrable  
∃ Zariski open and dense subset L` ⊆ R` such that at least one
solution goes through each point ρ ∈ L`

Proposition
S simple differential system =⇒ Zariski closure
R`(S) = Sol

(
I`(S)

)
locally integrable algebraic differential equation

(Essentially a consequence of Riquier’s Theorem)
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What is a Singularity?
Some Useful Structures

Definition
Given point ρ on algebraic jet setR` ⊆ J`
• Vessiot cone Vρ[R`] = CρR` ∩ C`|ρ
• Symbol coneNρ[R`] = Vρ[R`] ∩ Vρπ``−1

• At smooth points ρ cones linear spaces  computable as
solution spaces of linear systems of equations
• Vessiot cone at ρ contains all potential infinitesimal solutions
(integral elements)
• Use tangent cone as it contains all limits of secants
• Dimensions and orientations of cones depend generally on ρ
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What is a Singularity?
Finally the Definitions. . .

Definition
R` ⊆ J` locally integrable algebraic differential equation
1. ρ ∈ R` algebraic singularity  ρ non-smooth point ofR`
2. ρ ∈ R` regular  ρ smooth and ∃ Euclidean open

neighbourhood ρ ∈ U ⊆ R` such that V[R`]|U regular and
decomposable as V[R`]|U = N[R`]|U ⊕H with n-dimensional,
transversal, involutive, smooth distributionH ⊆ TU

3. ρ ∈ R` regular singular  ρ smooth and ∃ Euclidean open
neighbourhood ρ ∈ U ⊆ R` such that V[R`]|U regular but
dimVρ[R`]− dimNρ[R`] < n

4. ρ ∈ R` irregular singular  ρ smooth, but 6 ∃ Euclidean
open neighbourhood ρ ∈ U ⊆ R` such that V[R`]|U regular
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What is a Singularity?
Finally the Definitions. . .

• Definition relative toR`
• Algebraic singularities detectable with Jacobian criterion  
linear algebra
• Items 3 and 4  geometric singularities (critical points for
restriction of canonical projection map π` : R` → Kn)
• For equations of finite type, no neighbourhoods necessary  
pointwise criteria possible, as “right” dimensions a priori known
(=⇒ involutivity no issue!)
• Except for involutivity condition, distinction between items 2–4
corresponds to analysis of linear system of equations
• Involutivity condition difficult to analyse  taxonomy
possibly incomplete for partial differential equations
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What is a Singularity?
. . . and an Example

Consider equationR2 for unknown function u = u(x, y) given by

x2uxx + xux + (x− 1)2u = 0 , (1− y2)uyy + 2yuy + 2u = 0

Seven distinct cases arise:
1. x 6= 0 ∧ y2 − 1 6= 0  regular: dimVρ[R2] = 3, dimHρ = 2
2. x = 0 ∧ y2 − 1 6= 0 ∧ (ux 6= 0 ∨ uy 6= 0)  regular singular:

dimVρ[R2] = 3, dimHρ = 1
3. x 6= 0 ∧ y2 − 1 = 0 ∧ (yux + uxy 6= 0 ∨ u 6= 0)  as 2.
4. x = 0 ∧ y2 − 1 = 0 ∧ (yux + uxy 6= 0 ∨ ux 6= 0)  irregular

singular: dimVρ[R2] = 4, dimHρ = 1
5. x = 0 ∧ y2 − 1 6= 0 ∧ ux = 0 ∧ uy = 0  (purely) irregular

singular: dimVρ[R2] = 4, dimHρ = 2
6. x 6= 0 ∧ y2 − 1 = 0 ∧ ux = 0 ∧ uy = 0  as 5.
7. x = 0 ∧ y2 − 1 = 0 ∧ ux = 0 ∧ uy = 0  as 5. but with

dimVρ[R2] = 5
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What is a Singularity?
Singular! So what?

Some possible effects of singularities for real ordinary differential
equations:
• Only one-sided solutions either starting or ending in singularity
(generically the case at regular singularities)
• Multiple solutions (even infinitely many ones)
• Solutions of finite regularity

Example
Consider xu′′ = (u′)2 + x− k2/4 at ρ = (0, c, k/2) for k > 0
• k ∈ N  infinitely many solutions all in Ck \ Ck+1

• otherwise  one smooth solution and infinitely many
solutions in C` \ C`+1 with ` = dke

ρ = (0, c,−k/2)  unique smooth solution
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Some Colourful Pictures
Geometric Singularities

Example: (u′)2 + u2 + x2 = 1

equator  regular singularities
“east” and “west pole”  
two irregular singularities

two solutions either begin or end at
each regular singularity; infinitely
many approach irregular singularity
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Some Colourful Pictures
Algebraic Singularity

Example: (u′)2 − u2 − x2 = 0

vertex of cone  algebraic
singularity (Vessiot cone in white)

four solutions through origin  
two Cω , two C1
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What makes a Point Regular?
The Quest for a Deeper Meaning

• R` locally integrable equation of finite type (i. e.Nρ[R`] = 0
for all points ρ on Zariski dense subset)  ρ ∈ R` regular, if
and only if sufficiently small neighbourhood ρ ∈ U ⊆ R`
uniquely foliated by prolonged solutions
• R` locally integrable equation of infinite type  infinitely
many foliations by prolonged solutions exist (each Vessiot
connection induces one)  further types of singular
behaviour possible???
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Singularities are Singular!
First Main Result

Theorem
S simple differential system with no (in)equation of order > ` =⇒
regular points inR`(S) contain Zariski open and dense subset

Proof: (easy for equations of finite type via Riquier’s theorem)
• S Janet basis =⇒ ∃ Zariski open and dense subset
F` ⊆ R`(S) defining formally integrable differential equation

• S induces Janet basis of symbol moduleMρ[R`(S)] for ρ ∈ F`
• this implies ` ≥ regMρ[R`(S)] (WMS 2002)
• this implies F` involutive differential equation (WMS 2002)
• Vessiot theory =⇒ existence of involutive complementH

(Fesser 2008)
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You Prefer Regular?
The Regularity Decomposition

Definition
Algebraic jet setR` ⊆ J` regular  
• R` smoothmanifold
• Vessiot spaces define smooth vector bundle overR`
• Symbol spaces define smooth vector bundle overR`
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You Prefer Regular?
The Regularity Decomposition

Definition
Algebraic jet setR` ⊆ J` regular  
• R` smoothmanifold
• Vessiot spaces define smooth vector bundle overR`
• Symbol spaces define smooth vector bundle overR`

S simple differential system,R`(S) associated algebraic jet set for `
sufficiently high with unique decomposition into irreducible
componentsR`(S) = R`,1 ∪ · · · ∪ R`,t

Definition
Regularity decomposition ofR`,k  representation as disjoint
union of finitely many regular algebraic jet setsR(i)

`,k and of set
ASing(R`,k) of algebraic singularities
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You Prefer Regular?
The Second Main Result

Theorem
Regularity decompositions exist for any differential system for a
sufficiently high order ` and can be algorithmically computed.

Basic idea:
1. Use differential Thomas decomposition to split into simple

differential systems
2. Construct corresponding algebraic jet sets
3. Apply on each jet set algebraic Thomas decomposition to linear

systems describing tangent and Vessiot spaces
4. Analyse results
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When is a Differential Equation Regular?
Differential Systems from Jet Sets

Notion of “regular differential equation” in geometric theory requires
prolongations  need to associate differential system S(R`)
with given algebraic jet setR` ⊆ J`

Construction of S(R`)
R` locally Zariski closed subset of J` =⇒ R` solution set of
algebraic system S(R`) ⊂ D`  consider S(R`) ⊂ D as
differential system!

Caveat: S(R`) not necessarily differentially consistent and
generally evenR`

(
S(R`)

)
( R`
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When is a Differential Equation Regular?
Attempt of a Rigorous Definition

Definition
Algebraic differential equationR` ⊆ J` regular  
associated differential system S(R`) satisfies
1. Idiff

(
S(R`)

)
prime differential ideal

2. R`
(
S(R`)

)
= R`

3. ∀k ≥ 0 : R`+k
(
S(R`)

)
regular algebraic jet set

Note: item 3 comprises infinitely many conditions and thus unclear
how to verify effectively whether or not given algebraic differential
equation is regular
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When is a Differential Equation Regular?
The Third Main Result

Theorem
For each prime component I`,k(S) of simple differential system S,
output of our algorithm contains unique simple algebraic system Sgen

`,k
such that its solution space Sol(Sgen

`,k ) is
1. regular differential equation
2. Zariski dense in Sol

(
I`,k(S)

)
3. entirely composed of regular points
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Where Do We Go From Here?

• Effective theory for real differential equations  extend to
semi-algebraic equations, replace Thomas decomposition by
quantifier elimination, . . .
• Complete taxonomy even for equations of infinite type?
• What happens at algebraic singularities?  so far only
individual cases considered, no general results known
• Local solution behaviour at singularities of ordinary differential
equations as analysable via dynamical systems theory  
extension of partial differential equations of finite type seems
possible via theory of singular foliations  extension to
partial differential equations of infinite type unclear
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All the Gory Details...
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