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Spherical Harmonics

1 Spherical harmonics of degree k are smooth solutions of the Euler

xux + yuy + zuz − ku = 0,

and the Laplace
uxx + uyy + uzz = 0,

equations

2 Denote by
E (i ) ⊂ J i , i = 1, 2, .., k

the correspondig equations and their prolongations.
3 Lie group SO (3) is the obvious symmetry group of these equations
and all E (i ) are affi ne algebraic manifolds equipped with the algebraic
SO (3)−action.
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Invariants

1 Denote by Hk the vector space of harmonic polynomials of degree
k ≥ 1, i.e. the solution space of the Euler-Laplace equations. It is a
SO (3)-module.

2 We say that a rational SO (3)-invariant function on Hk is an
algebraic metric invariant of spheric harmonics.

3 The field of algebraic invariants we’ll denote by F ak .
4 We say that a rational SO (3)-invariant function on affi ne manifold
E (i ) is a differential metric invariant of spheric harmonics.

5 The field of differenatial invariants we denote by F di
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How structure on Weyl algebra

1 The Weyl algebra A3 is the associative algebra of linear differential
operators on R3 with polynomial coeffi cients.

2 The Lie algebra sl (2) ⊂ A3, is generated by the following operators

X+ =
r2

2
,H = δ+

3
2
,X− =

∆
2
,

where

r2 = x2 + y2 + z2, δ = x∂x + y∂y + z∂z , ∆ = ∂2x + ∂2y + ∂2z ,

and operators (X+,H,X−) form the Weyl basis in sl (2) :
[H,X+] = 2X+, [H,X−] = −2X−, [X−,X+] = H.

3 The Lie algebra so (3) ⊂ A3 generated by the angular momentum
operators

Lz = x∂y − y∂x , Ly = x∂z − z∂x , Lx = y∂z − z∂y .
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How structure on Weyl algebra-2

1 These two Lie algebras mutually commute and
the universal enveloping algebra U (sl (2)) ⊂ A3 is the subalgebra of
so (3)-invariant operators in A3.

2 Casimir operator in Lie algebra so (3) is the orbital angular
momentum operator

M = L2x + L
2
y + L

2
z

and it coincides with Casimir operator in Lie algebra sl (2) :

M = r2∆− δ2 − δ.

3 The restriction of operator M on the unit sphere is the spherical
Laplace operator.
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Harmonic polynomials

1 The following sequence

0→Hk → Pk
∆→ Pk−2 → 0

is exact, and dimHk = 2k + 1.

2 Splitting Pk : for any homogeneous polynomial pk ∈ Pk there are
(and unique) spheric harmonics hk−2i ∈Hk−2i , 0 ≤ i ≤ [ k2 ], such
that

p =
[ k2 ]

∑
i=0
r2ihk−2i .

3 We have
M (hk ) = −k (k + 1) hk ,

for all hk ∈Hk .
4 The restriction of spheric harmonics on the unit sphere S2 ⊂ R3 are
eigenfunctions of the spherical laplacian ∆S with eigenvalues
−k (k + 1) and any continuous function on S2 could be approximated
(with any accuracy) by linear combination of spherical harmonics.
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Harmonic projections

1 Harmonic projections ηk ,2i : Pk →Hk−2i are the following

ηk ,2i = r
−2iQk ,2i (M) ,

where

Qk ,2i (λ) =
[ k2 ]

∏
j 6=i

λ− λj
λi − λj

, λi = − (k − 2i) (k − 2i + 1) .

2 The following sequence 0→ Pk−2
r 2→ Pk

ηk ,0→ Hk → 0 is exact.
3 Define the following product of spheric harmonics hk ∈Hk , hl ∈Hl

: hk ∗ hl = ηk+l ,0 (hkhl ) ∈Hk+l .

4 Here

ηk+l ,0 =
[ k+l2 ]

∏
j=1

M + (k + l − 2j) (k + l − 2j + 1)
2j (2j − 2k − 2l − 1) .
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Algebra of spherical harmonics

1 Spherical harmonics
H∗ = ⊕k≥0Hk

form a graded commutative algebra with respect to the product ∗.

2 Algebra (H∗, ∗) generated by linear functions (x , y , z) satisfying the
relation

x ∗ x + y ∗ y + z ∗ z = 0.
3 The complixification H∗ = H⊗C is the algebra of regular functions
on the null cone

{
x2 + y2 + z2 = 0

}
in C3.

4 Example.

x ∗ x = xx − r
2

3
, x ∗ y = xy .
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Algebraic invariants

1 The space Hk of spherical harmonics is a vector space of dimension
2k + 1. The Lie group SO (3) acts in algebraic way on Hk , and in
Hk , all irreducible representations of the group SO (3) are realized .

2 Due to Hilbert theorem polynomial invariants of this action (i.e.
polynomial invariants of spherical harmonics) form a finite generated
commutative algebra.

3 Due to Rosenlicht theorem rational invariants of this action (i.e.
rational invariants of spherical harmonics) form a field of trancedence
degree equals to the codimension of regular orbit.

4 Regular orbit has codimension (2k − 2) ,when k ≥ 2, and
codimention 1, when k = 1. Therefore, in order to define a regular
orbit, we need 2k − 2 algebraicly independent rational invariants, for
k > 2, and only one invariant, for k = 1.
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Differential invariants

1 Equations E (i ) are affi ne manifolds of dimension 2i + 4, if 2 ≤ i < k.
The regular SO (3)−orbits correspond to smooth points of the
quotient E (i )/SO (3) ) Thus, due to Hilbert theorem, the quotients
are affi ne manifolds of dimension 2i + 1. Rational differential
invariants of order ≤ i are rational functions on E (i )/SO (3) and
therefore the trancedence degree of field F di equals to 2i + 1.

2 As we have seen, the trancedence degree of field F ak equals 2 (k − 1) .
3 Take a regular harmonic h ∈Hk . Then it is easy to check that the
SO (3)−orbit of the 2-jet j2 (h) into E (2) is a 6-dimensional
submanifold into 8-dimensional manifold E (2) and therefore we need 2
differential invariants of order 2 to describe the orbit (compare with
2 (k − 1) algebraic invariants).
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Iinvariant coframe

1 Total differentials of the obvious invariants J−1 = r 2
2 and J0 = u give

us two SO (3)-invariant horizontal 1−forms:

ω1 = xdx + ydy + zdz ,

ω2 = uxdx + uydy + uzdz .

2 Their cross product gives us

ω3 = (yuz − zuy ) dx + (zux − xuz ) dy + (xuy − yux ) dz .

3 Then coframe (ω1,ω2,ω3) is SO (3)-invariant.
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Iinvariant frame

1

D1 = x
d
dx
+ y

d
dy
+ z

d
dz
,

D2 = ux
d
dx
+ uy

d
dy
+ uz

d
dz
,

D3 = (yuz − zuy )
d
dx
+ (zux − xuz )

d
dy
+ (xuy − yux )

d
dz
.
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First invariants

J−1 =
r2

2
, J0 = u,

J1 = D2 (J0) = u2x + u
2
y + u

2
z ,

J21 =
D2 (J1)
2

= u2xuxx + u
2
yuyy + u

2
z uzz +

2 (uxuyuxy + uxuzuxz + uyuzuyz ) .
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Invariant symmteric forms and operators

1 Symmetric differenatial i-forms

Θi = ∑
i1+i2+i3=i

ui1,i2,i3
dx i1

i1!
· dy

i2

i2!
· dz

i3

i3!

are invariants with respect to Lie group of affi ne transformations in
R3.

2 Differential operators

Θ̂i = ∑
i1+i2+i3=i

ui1,i2,i3
i1!i2!i3!

dk

dx i1dy i2dz i3

are SO (3)-invariant.
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Invariants
Let

dx = t11ω1 + t12ω2 + t13ω3,

dy = t21ω1 + t22ω2 + t23ω3,

dz = t31ω1 + t32ω2 + t33ω3,

where tij are rational functions on J1
(
R3
)
, and let

Θi = ∑
i1+i2+i3=i

Ti1,i2,i3
ωi1
1

i1!
· ωi2

2

i2!
· ωi3

3

i3!
.

Theorem
Functions Ti1,i2,i3 are rational differential SO (3)-invariants of order
i = i1 + i2 + i3 and any rational differential SO (3)-invariants of order i is
a rational function of them.
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Example

Remark that invariants

Gi = Θ̂i (u) = ∑
i1+i2+i3=i

u2i1,i2,i3
i1!i2!i3!

are squares of lengths of symmetric forms Θi .
Thus,

Θ̂1 = ux
d
dx
+ uy

d
dy
+ uz

d
dz
,

Θ̂2 =
1
2

(
uxx

d2

dx2
+ uyy

d2

dy2
+ uzz

d2

dz2

)
+ uxy

d2

dxdy
+ uxz

d2

dxdz
+ uyz

d2

dydz
,

and

Θ̂1 (u) = u2x + u
2
y + u

2
z ,

Θ̂1 (u) = J22 =
u2xx + u

2
yy + u

2
zz

2
+ u2xy + u

2
xz + u

2
yz .
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Theorem
The field of rational differential SO (3)-invariants of spherical harmonics is
generated by invariants

(
J−1 = r 2

2 , J0 = u, J22
)
and derivation ∇ = Θ̂1.
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Monoid of invariants

1 SO (3)−Invariants ⇐⇒ SO (3)−invariant differential operators:

φ ∈ C∞
(
Jk
(
R3))⇐⇒ ∆φ : C∞ (R3)→ C∞ (R3) ,

∆φ (f ) = jk (f )
∗ (φ) .

2 Monoid structure on SO (3)−invariants is defined by the composition
of invariant operators, and id = u.

3 Thus, the field F dk is the monoid.
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Weights

1 Let
W = x∂x + y∂y + z∂z + ku∂u ,

and let W ∗ be its ∞-prolongation.

2 We say that a polynomial differential invariant I has weight w (I ) if

W ∗ (I ) = w (I ) I .

3 In other words, if h is a homogeneous polynomial of degree k then
I (h) has degree w (I ) .
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Differential or Algebraic invariants

1 Algebraic invariants on Hk are differential invariants of order k.

2 Let I be a polynomial differential invariant of weight w , and h ∈Hk .

3 Then I (h) ∈ Pw , (ηw ,2l ◦ ∆I ) (h) ∈Hw−2l and its length(
∆Gw−2l ◦ ηw ,2l ◦ ∆I

)
(h) is a scalar, i.e invariant Gw−2l ◦ ηw ,2l ◦ I is

an algebraic invariant.
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