Metric Invariants of Spherical Harmonics

Valentin Lychagin

IPU, RAS, Moscow & UiTo, Tromso, Norway

November 25, 2021

Spherical Harmonics

lacktriangle Spherical harmonics of degree k are smooth solutions of the Euler

$$xu_x + yu_y + zu_z - ku = 0,$$

and the Laplace

$$u_{xx}+u_{yy}+u_{zz}=0,$$

equations

Spherical Harmonics

 $lue{1}$ Spherical harmonics of degree k are smooth solutions of the Euler

$$xu_x + yu_y + zu_z - ku = 0,$$

and the Laplace

$$u_{xx}+u_{yy}+u_{zz}=0,$$

equations

Oenote by

$$\mathcal{E}^{(i)} \subset J^i, i = 1, 2, ..., k$$

the correspondig equations and their prolongations.

Spherical Harmonics

1 Spherical harmonics of degree k are smooth solutions of the Euler

$$xu_x + yu_y + zu_z - ku = 0,$$

and the Laplace

$$u_{xx}+u_{yy}+u_{zz}=0,$$

equations

Oenote by

$$\mathcal{E}^{(i)} \subset J^i, i = 1, 2, ..., k$$

the correspondig equations and their prolongations.

3 Lie group $\mathbf{SO}(3)$ is obvious symmetry group of these equations and all $\mathcal{E}^{(i)}$ are affine algebraic manifolds equipped with the algebraic $\mathbf{SO}(3)$ —action.

• Denote by \mathbb{H}_k the vector space of harmonic polynomials of degree k i.e. the solution space of the Euler-Laplace equations. It is a $\mathbf{SO}(3)$ -module.

- Denote by IH_k the vector space of harmonic polynomials of degree k i.e. the solution space of the Euler-Laplace equations. It is a SO (3)-module.
- ② We say that a rational **SO** (3)-invariant function on \mathbb{H}_k is an algebraic metric invariant of spheric harmonics, having degree k.

- Denote by IH_k the vector space of harmonic polynomials of degree k i.e. the solution space of the Euler-Laplace equations. It is a SO (3)-module.
- ② We say that a rational **SO** (3)-invariant function on \mathbb{H}_k is an algebraic metric invariant of spheric harmonics, having degree k.
- **3** The field of algebraic invariants we denote by \mathcal{F}_k^a .

- Denote by IH_k the vector space of harmonic polynomials of degree k i.e. the solution space of the Euler-Laplace equations. It is a SO (3)-module.
- ② We say that a rational **SO** (3)-invariant function on \mathbb{H}_k is an algebraic metric invariant of spheric harmonics, having degree k.
- ullet The field of algebraic invariants we denote by \mathcal{F}_k^a .
- We say that a rational **SO** (3)-invariant function on affine manifold $\mathcal{E}^{(i)}$ is a differential metric invariant of spheric harmonics, having order $\leq i$.

- Denote by IH_k the vector space of harmonic polynomials of degree k i.e. the solution space of the Euler-Laplace equations. It is a SO (3)-module.
- ② We say that a rational **SO** (3)-invariant function on \mathbb{H}_k is an algebraic metric invariant of spheric harmonics, having degree k.
- lacktriangle The field of algebraic invariants we denote by \mathcal{F}_k^a .
- We say that a rational **SO** (3)-invariant function on affine manifold $\mathcal{E}^{(i)}$ is a differential metric invariant of spheric harmonics, having order $\leq i$.
- **5** The field of differenatial invariants we denote by \mathcal{F}_k^d

How structure on Weyl algebra

• The Weyl algebra A_3 is the associative algebra of linear differential operators on \mathbb{R}^3 with polynomial coefficients.

How structure on Weyl algebra

- The Weyl algebra \mathbb{A}_3 is the associative algebra of linear differential operators on \mathbb{R}^3 with polynomial coefficients.
- **②** The Lie algebra $\mathfrak{sl}(2) \subset \mathbb{A}_3$, generated by the following operators

$$X_{+} = \frac{r^{2}}{2}, H = \delta + \frac{3}{2}, X_{-} = \frac{\Delta}{2},$$

where

$$r^2 = x^2 + y^2 + z^2$$
, $\delta = x\partial_x + y\partial_y + z\partial_z$, $\Delta = \partial_x^2 + \partial_y^2 + \partial_z^2$,

and operators (X_+, H, X_-) form the Weyl basis in $\mathfrak{sl}(2)$:

$$[H, X_+] = 2X_+, [H, X_-] = -2X_-, [X_-, X_+] = H.$$

How structure on Weyl algebra

- The Weyl algebra \mathbb{A}_3 is the associative algebra of linear differential operators on \mathbb{R}^3 with polynomial coefficients.
- **②** The Lie algebra $\mathfrak{sl}\left(2\right)\subset\mathbb{A}_3$, generated by the following operators

$$X_{+}=\frac{r^{2}}{2}$$
, $H=\delta+\frac{3}{2}$, $X_{-}=\frac{\Delta}{2}$,

where

$$r^2 = x^2 + y^2 + z^2$$
, $\delta = x\partial_x + y\partial_y + z\partial_z$, $\Delta = \partial_x^2 + \partial_y^2 + \partial_z^2$,

and operators (X_+, H, X_-) form the Weyl basis in $\mathfrak{sl}(2)$:

$$[H, X_{+}] = 2X_{+}, [H, X_{-}] = -2X_{-}, [X_{-}, X_{+}] = H.$$

1 The Lie algebra $\mathfrak{so}\left(3\right)\subset\mathbb{A}_{3}$ generated by the angular momentum operators

$$L_z = x\partial_y - y\partial_x$$
, $L_y = x\partial_z - z\partial_x$, $L_x = y\partial_z - z\partial_y$.

◆ロト ◆卸 ▶ ◆ 差 ▶ ◆ 差 ▶ り へ ○

How structure on Weyl algebra-2

• These Lie algebras mutually commute and the universal enveloping algebra $U(\mathfrak{sl}(2)) \subset A_3$ is the subalgebra of so (3)-invariant operators in \mathbb{A}_3 .

How structure on Weyl algebra-2

- These Lie algebras mutually commute and the universal enveloping algebra U (si (2)) ⊂ A₃ is the subalgebra of so (3)-invariant operators in A₃.
- Casimir operator in Lie algebra so (3) is the orbital angular momentum operator

$$M = L_x^2 + L_y^2 + L_z^2$$

and it coincides with Casimir operator in Lie algebra sl(2):

$$M = r^2 \Delta - \delta^2 - \delta.$$

How structure on Weyl algebra-2

- **1** These Lie algebras mutually commute and the universal enveloping algebra $U(\mathfrak{sl}(2)) \subset A_3$ is the subalgebra of so (3)-invariant operators in \mathbb{A}_3 .
- Casimir operator in Lie algebra so (3) is the orbital angular momentum operator

$$M = L_x^2 + L_y^2 + L_z^2$$

and it coincides with Casimir operator in Lie algebra sl(2):

$$M = r^2 \Delta - \delta^2 - \delta.$$

Operator M is also the spherical Laplace operator.

The following sequence

$$0 \to \mathbb{H}_k \to \mathbb{P}_k \xrightarrow{\Delta} \mathbb{P}_{k-2} \to 0$$

is exact, and dim $\mathbb{H}_k = 2k + 1$.

The following sequence

$$0 \to \mathbb{H}_k \to \mathbb{P}_k \xrightarrow{\Delta} \mathbb{P}_{k-2} \to 0$$

is exact, and dim $\mathbb{H}_k = 2k + 1$.

② Splitting \mathbb{P}_k : for any homogeneous polynomial $p_k \in \mathbb{P}_k$ there are (and unique) spheric harmonics $h_{k-2i} \in \mathbb{H}_{k-2i}$, $0 \le i \le \left[\frac{k}{2}\right]$, such that

$$p = \sum_{i=0}^{\left[\frac{k}{2}\right]} r^{2i} h_{k-2i}.$$

The following sequence

$$0 \to \mathbb{H}_k \to \mathbb{P}_k \xrightarrow{\Delta} \mathbb{P}_{k-2} \to 0$$

is exact, and dim $\mathbb{H}_k = 2k + 1$.

② Splitting \mathbb{P}_k : for any homogeneous polynomial $p_k \in \mathbb{P}_k$ there are (and unique) spheric harmonics $h_{k-2i} \in \mathbb{H}_{k-2i}$, $0 \le i \le \left[\frac{k}{2}\right]$, such that

$$p = \sum_{i=0}^{\left[\frac{k}{2}\right]} r^{2i} h_{k-2i}.$$

We have

$$M(h_k) = -k(k+1)h_k,$$

for all $h_k \in \mathbb{H}_k$.

The following sequence

$$0 \to \mathbb{H}_k \to \mathbb{P}_k \xrightarrow{\Delta} \mathbb{P}_{k-2} \to 0$$

is exact, and dim $\mathbb{H}_k = 2k + 1$.

② Splitting \mathbb{P}_k : for any homogeneous polynomial $p_k \in \mathbb{P}_k$ there are (and unique) spheric harmonics $h_{k-2i} \in \mathbb{H}_{k-2i}$, $0 \le i \le \left[\frac{k}{2}\right]$, such that

$$p = \sum_{i=0}^{\left[\frac{k}{2}\right]} r^{2i} h_{k-2i}.$$

We have

$$M(h_k) = -k(k+1)h_k,$$

for all $h_k \in \mathbb{H}_k$.

1 Harmonic projections $\eta_{k,2i}: \mathbb{P}_k \to \mathbb{H}_{k-2i}$ are the following

$$\eta_{k,2i}=r^{-2i}Q_{k,2i}\left(M\right),$$

where

$$Q_{k,2i}(\lambda) = \prod_{j \neq i}^{\lfloor \frac{\kappa}{2} \rfloor} \frac{\lambda - \lambda_j}{\lambda_i - \lambda_j}, \quad \lambda_i = -(k-2i)(k-2i+1).$$

1 Harmonic projections $\eta_{k,2i}: \mathbb{P}_k \to \mathbb{H}_{k-2i}$ are the following

$$\eta_{k,2i}=r^{-2i}Q_{k,2i}\left(M\right)$$
 ,

where

$$Q_{k,2i}\left(\lambda\right) = \prod_{j \neq i}^{\left \lfloor \frac{k}{2} \right \rfloor} \frac{\lambda - \lambda_j}{\lambda_i - \lambda_j}, \quad \lambda_i = -\left(k - 2i\right)\left(k - 2i + 1\right).$$

The following sequence

$$\mathbf{0} \to \mathbb{P}_{k-2} \xrightarrow{r^2} \mathbb{P}_k \xrightarrow{\eta_{k,0}} \mathbb{H}_k \to \mathbf{0}$$

is exact.

Lychagin (IPU, RAS, Moscow & UiTo, Trom

1 Harmonic projections $\eta_{k,2i}: \mathbb{P}_k \to \mathbb{H}_{k-2i}$ are the following

$$\eta_{k,2i}=r^{-2i}Q_{k,2i}\left(M\right),$$

where

$$Q_{k,2i}\left(\lambda\right) = \prod_{j\neq i}^{\left[\frac{k}{2}\right]} \frac{\lambda - \lambda_j}{\lambda_i - \lambda_j}, \quad \lambda_i = -\left(k - 2i\right)\left(k - 2i + 1\right).$$

The following sequence

$$\mathbf{0} \to \mathbb{P}_{k-2} \xrightarrow{r^2} \mathbb{P}_k \xrightarrow{\eta_{k,0}} \mathbb{H}_k \to \mathbf{0}$$

is exact.

3 Define product of spheric harmonics $h_k \in \mathbb{H}_k$, $h_l \in \mathbb{H}_l$ as follows

$$h_k * h_l = \eta_{k+l,0} (h_k h_l) \in \mathbb{H}_{k+l}.$$

Lychagin (IPU, RAS, Moscow & UiTo, Trom

1 Harmonic projections $\eta_{k,2i}: \mathbb{P}_k \to \mathbb{H}_{k-2i}$ are the following

$$\eta_{k,2i}=r^{-2i}Q_{k,2i}\left(M\right)$$
 ,

where

$$Q_{k,2i}\left(\lambda\right) = \prod_{j\neq i}^{\left[\frac{k}{2}\right]} \frac{\lambda - \lambda_j}{\lambda_i - \lambda_j}, \quad \lambda_i = -\left(k - 2i\right)\left(k - 2i + 1\right).$$

The following sequence

$$\mathbf{0} \to \mathbb{P}_{k-2} \xrightarrow{r^2} \mathbb{P}_k \xrightarrow{\eta_{k,0}} \mathbb{H}_k \to \mathbf{0}$$

is exact.

1 Define product of spheric harmonics $h_k \in \mathbb{H}_k$, $h_l \in \mathbb{H}_l$ as follows

$$h_k * h_l = \eta_{k+l,0} (h_k h_l) \in \mathbb{H}_{k+l}.$$

4 Here

$$\eta_{k+l,0} = \prod_{i=1}^{\lfloor \frac{k+l}{2} \rfloor} \frac{M + (k+l-2j)(k+l-2j+1)}{2i(2i-2k-2l-1)}$$

Lychagin (IPU, RAS, Moscow & UiTo, Trom

Spherical harmonics

$$\mathbb{H}_* = \oplus_{k > 0} \mathbb{H}_k$$

form a graded commutative algebra with respect to the product *.

Spherical harmonics

$$\mathbb{H}_* = \oplus_{k \geq 0} \mathbb{H}_k$$

form a graded commutative algebra with respect to the product *.

② Algebra $(\mathbb{H}_*,*)$ generated by linear functions (x,y,z) satisfying the relation

$$x*x+y*y+z*z=0.$$

Spherical harmonics

$$\mathbb{H}_* = \bigoplus_{k \geq 0} \mathbb{H}_k$$

form a graded commutative algebra with respect to the product *.

② Algebra $(\mathbb{H}_*,*)$ generated by linear functions (x,y,z) satisfying the relation

$$x*x+y*y+z*z=0.$$

③ The complixification $\mathbb{H}_* = \mathbb{H} \otimes \mathbb{C}$ is the algebra of regular functions on the null cone $\{x^2 + y^2 + z^2 = 0\}$ in \mathbb{C}^3 .

Spherical harmonics

$$\mathbb{H}_* = \bigoplus_{k \geq 0} \mathbb{H}_k$$

form a graded commutative algebra with respect to the product *.

② Algebra $(\mathbb{H}_*,*)$ generated by linear functions (x,y,z) satisfying the relation

$$x*x+y*y+z*z=0.$$

- **1** The complixification $\mathbb{H}_* = \mathbb{H} \otimes \mathbb{C}$ is the algebra of regular functions on the null cone $\{x^2 + y^2 + z^2 = 0\}$ in \mathbb{C}^3 .
- Example.

$$x*x = xx - \frac{r^2}{3}, x*y = xy.$$

• The space \mathbb{H}_k of spherical harmonics is a vector space of dimension 2k+1. The Lie group $\mathbf{SO}(3)$ acts in algebraic way on \mathbb{H}_k , and in \mathbb{H}_k are realized all irreducible representations of $\mathbf{SO}(3)$.

- **1** The space \mathbb{H}_k of spherical harmonics is a vector space of dimension 2k+1. The Lie group $\mathbf{SO}(3)$ acts in algebraic way on \mathbb{H}_k , and in \mathbb{H}_k are realized all irreducible representations of $\mathbf{SO}(3)$.
- Oue to Hilbert theorem polynomial invariants of this action (i.e. polynomial invariants of spherical harmonics) form a finite generated commutative algebra.

- **1** The space \mathbb{H}_k of spherical harmonics is a vector space of dimension 2k+1. The Lie group $\mathbf{SO}(3)$ acts in algebraic way on \mathbb{H}_k , and in \mathbb{H}_k are realized all irreducible representations of $\mathbf{SO}(3)$.
- ② Due to Hilbert theorem polynomial invariants of this action (i.e. polynomial invariants of spherical harmonics) form a finite generated commutative algebra.
- Oue to Rosenlicht theorem rational invariants of this action (i.e. rational invariants of spherical harmonics) form a field of trancedence degree equals the codimension of regular orbit.

- The space \mathbb{H}_k of spherical harmonics is a vector space of dimension 2k+1. The Lie group $\mathbf{SO}(3)$ acts in algebraic way on \mathbb{H}_k , and in \mathbb{H}_k are realized all irreducible representations of $\mathbf{SO}(3)$.
- ② Due to Hilbert theorem polynomial invariants of this action (i.e. polynomial invariants of spherical harmonics) form a finite generated commutative algebra.
- Oue to Rosenlicht theorem rational invariants of this action (i.e. rational invariants of spherical harmonics) form a field of trancedence degree equals the codimension of regular orbit.
- Regular orbit has codimension (2k-2), when $k \ge 2$, and codimention 1, when k=1. Therefore, in order to define a regular orbit we need 2k-2 algebraicly independent rational invariants, for k > 2, and only one invariant, for k = 1.

Differential invariants

• Equations $\mathcal{E}^{(i)}$ are affine manifolds of dimension 2i+4, if $2 \leq i < k$. The regular $\mathbf{SO}(3)$ —orbits (that correspond to smooth points of quotient $\mathcal{E}^{(i)}/\mathbf{SO}(3)$) Thus, due to Hilbert theorem, the quotients are affine manifolds of dimension 2i+1. Rational differential invariants of order $\leq i$ are rational functions on $\mathcal{E}^{(i)}/\mathbf{SO}(3)$ and therefore the trancedence degree of field \mathcal{F}^d_i equals to 2i+1.

Differential invariants

- Equations $\mathcal{E}^{(i)}$ are affine manifolds of dimension 2i+4, if $2 \leq i < k$. The regular $\mathbf{SO}(3)$ —orbits (that correspond to smooth points of quotient $\mathcal{E}^{(i)}/\mathbf{SO}(3)$) Thus, due to Hilbert theorem, the quotients are affine manifolds of dimension 2i+1. Rational differential invariants of order $\leq i$ are rational functions on $\mathcal{E}^{(i)}/\mathbf{SO}(3)$ and therefore the trancedence degree of field \mathcal{F}^d_i equals to 2i+1.
- ② As we have seen, the trancedence degree of field \mathcal{F}_k^a equals $2\left(k-1
 ight)$.

Differential invariants

- Equations $\mathcal{E}^{(i)}$ are affine manifolds of dimension 2i+4, if $2 \leq i < k$. The regular $\mathbf{SO}(3)$ —orbits (that correspond to smooth points of quotient $\mathcal{E}^{(i)}/\mathbf{SO}(3)$) Thus, due to Hilbert theorem, the quotients are affine manifolds of dimension 2i+1. Rational differential invariants of order $\leq i$ are rational functions on $\mathcal{E}^{(i)}/\mathbf{SO}(3)$ and therefore the trancedence degree of field \mathcal{F}^d_i equals to 2i+1.
- ② As we have seen, the trancedence degree of field \mathcal{F}_k^a equals $2\left(k-1
 ight)$.
- **3** Take a regular harmonic $h \in \mathbb{H}_k$. Then it is easy to check that the SO(3) —orbit of the 2-jet $j_2(h)$ into $\mathcal{E}^{(2)}$ is a 6-dimensional submanifold into 8-dimensional manifold $\mathcal{E}^{(2)}$ and therefore we need 2 differential invariants of order 2 to describe the orbit (compare with 2(k-1) algebraic invariants).

linvariant coframe

1 Total differentials of the obvious invariants $J_{-1} = \frac{r^2}{2}$ and $J_0 = u$ give us two **SO** (3)-invariant horizontal 1-forms:

$$\omega_1 = xdx + ydy + zdz,$$

 $\omega_2 = u_x dx + u_y dy + u_z dz.$

linvariant coframe

1 Total differentials of the obvious invariants $J_{-1} = \frac{r^2}{2}$ and $J_0 = u$ give us two **SO** (3)-invariant horizontal 1-forms:

$$\omega_1 = xdx + ydy + zdz,$$

 $\omega_2 = u_x dx + u_y dy + u_z dz.$

Their cross product gives us

$$\omega_3 = (yu_z - zu_y) dx + (zu_x - xu_z) dy + (xu_y - yu_x) dz.$$

linvariant coframe

1 Total differentials of the obvious invariants $J_{-1} = \frac{r^2}{2}$ and $J_0 = u$ give us two **SO** (3)-invariant horizontal 1-forms:

$$\begin{array}{rcl} \omega_1 & = & xdx + ydy + zdz, \\ \omega_2 & = & u_xdx + u_ydy + u_zdz. \end{array}$$

Their cross product gives us

$$\omega_3 = (yu_z - zu_y) dx + (zu_x - xu_z) dy + (xu_y - yu_x) dz.$$

3 Then coframe $(\omega_1, \omega_2, \omega_3)$ is **SO** (3)-invariant.

linvariant frame

$$\begin{array}{lcl} D_1 & = & x\frac{d}{dx} + y\frac{d}{dy} + z\frac{d}{dz}, \\ \\ D_2 & = & u_x\frac{d}{dx} + u_y\frac{d}{dy} + u_z\frac{d}{dz}, \\ \\ D_3 & = & \left(yu_z - zu_y\right)\frac{d}{dx} + \left(zu_x - xu_z\right)\frac{d}{dy} + \left(xu_y - yu_x\right)\frac{d}{dz}. \end{array}$$

First invariants

$$J_{-1} = \frac{r^2}{2}, J_0 = u,$$

$$J_1 = D_2(J_0) = u_x^2 + u_y^2 + u_z^2,$$

$$J_{21} = \frac{D_2(J_1)}{2} = u_x^2 u_{xx} + u_y^2 u_{yy} + u_z^2 u_{zz} + 2(u_x u_y u_{xy} + u_x u_z u_{xz} + u_y u_z u_{yz}).$$

Invariant symmteric forms and operators

Symmetric differenatial i-forms

$$\Theta_{i} = \sum_{i_{1}+i_{2}+i_{3}=i} u_{i_{1},i_{2},i_{3}} \frac{dx^{i_{1}}}{i_{1}!} \cdot \frac{dy^{i_{2}}}{i_{2}!} \cdot \frac{dz^{i_{3}}}{i_{3}!}$$

are invariants with respect to Lie group of affine transformations in \mathbb{R}^3 .

Invariant symmteric forms and operators

Symmetric differenatial i-forms

$$\Theta_{i} = \sum_{i_{1}+i_{2}+i_{3}=i} u_{i_{1},i_{2},i_{3}} \frac{dx^{i_{1}}}{i_{1}!} \cdot \frac{dy^{i_{2}}}{i_{2}!} \cdot \frac{dz^{i_{3}}}{i_{3}!}$$

are invariants with respect to Lie group of affine transformations in \mathbb{R}^3 .

Differential operators

$$\widehat{\Theta}_{i} = \sum_{i_{1}+i_{2}+i_{3}=i} \frac{u_{i_{1},i_{2},i_{3}}}{i_{1}!i_{2}!i_{3}!} \frac{d^{k}}{dx^{i_{1}}dy^{i_{2}}dz^{i_{3}}}$$

are **SO** (3)-invariant.

Invariants

Let

$$dx = t_{11}\omega_1 + t_{12}\omega_2 + t_{13}\omega_3,$$

$$dy = t_{21}\omega_1 + t_{22}\omega_2 + t_{23}\omega_3,$$

$$dz = t_{31}\omega_1 + t_{32}\omega_2 + t_{33}\omega_3,$$

where t_{ij} are rational functions on $J^1\left(\mathbb{R}^3
ight)$, and let

$$\Theta_i = \sum_{i_1+i_2+i_3=i} T_{i_1,i_2,i_3} \frac{\omega_1^{i_1}}{i_1!} \cdot \frac{\omega_2^{i_2}}{i_2!} \cdot \frac{\omega_3^{i_3}}{i_3!}.$$

Theorem

Functions T_{i_1,i_2,i_3} are rational differential SO(3)-invariants of order $i=i_1+i_2+i_3$ and any rational differential SO(3)-invariants of order i is a rational function of them.

Example

Remark that invariants

$$G_{i} = \widehat{\Theta}_{i}(u) = \sum_{i_{1}+i_{2}+i_{3}=i} \frac{u_{i_{1},i_{2},i_{3}}^{2}}{i_{1}!i_{2}!i_{3}!}$$

are squares of lengths of symmetric forms Θ_i . Thus,

$$\widehat{\Theta}_{1} = u_{x} \frac{d}{dx} + u_{y} \frac{d}{dy} + u_{z} \frac{d}{dz},$$

$$\widehat{\Theta}_{2} = \frac{1}{2} \left(u_{xx} \frac{d^{2}}{dx^{2}} + u_{yy} \frac{d^{2}}{dy^{2}} + u_{zz} \frac{d^{2}}{dz^{2}} \right) + u_{xy} \frac{d^{2}}{dxdy} + u_{xz} \frac{d^{2}}{dxdz} + u_{yz} \frac{d^{2}}{dydz}$$
and

and

$$\widehat{\Theta}_{1}(u) = u_{x}^{2} + u_{y}^{2} + u_{z}^{2},
\widehat{\Theta}_{1}(u) = J_{22} = \frac{u_{xx}^{2} + u_{yy}^{2} + u_{zz}^{2}}{2} + u_{xy}^{2} + u_{xz}^{2} + u_{yz}^{2}.$$

Theorem

The field of rational differential **SO** (3)-invariants of spherical harmonics is generated by invariants $\left(J_{-1}=\frac{r^2}{2},J_0=u,J_{22}\right)$ and derivation $\nabla=\widehat{\Theta}_1$.

Monoid of invariants

9 SO (3) — Invariants \iff SO (3) — invariant differential operators:

$$\phi \in C^{\infty}\left(\mathbf{J}^{k}\left(\mathbb{R}^{3}\right)\right) \Longleftrightarrow \Delta_{\phi}: C^{\infty}\left(\mathbb{R}^{3}\right) \to C^{\infty}\left(\mathbb{R}^{3}\right),$$

$$\Delta_{\phi}\left(f\right) = j_{k}\left(f\right)^{*}\left(\phi\right).$$

Monoid of invariants

9 SO (3) — Invariants \iff SO (3) — invariant differential operators:

$$\phi \in C^{\infty}\left(\mathbf{J}^{k}\left(\mathbb{R}^{3}\right)\right) \Longleftrightarrow \Delta_{\phi}: C^{\infty}\left(\mathbb{R}^{3}\right) \to C^{\infty}\left(\mathbb{R}^{3}\right),$$

$$\Delta_{\phi}\left(f\right) = j_{k}\left(f\right)^{*}\left(\phi\right).$$

2 Monoid structure on **SO** (3) —invariants defines by the composition of invariant operators, and id = u.

Monoid of invariants

9 SO (3) —Invariants \iff *SO* (3) —invariant differential operators:

$$\phi \in C^{\infty}\left(\mathbf{J}^{k}\left(\mathbb{R}^{3}\right)\right) \Longleftrightarrow \Delta_{\phi}: C^{\infty}\left(\mathbb{R}^{3}\right) \to C^{\infty}\left(\mathbb{R}^{3}\right),$$

$$\Delta_{\phi}\left(f\right) = j_{k}\left(f\right)^{*}\left(\phi\right).$$

- **2** Monoid structure on **SO** (3) —invariants defines by the composition of invariant operators, and id = u.
- **1** Thus, the field \mathcal{F}_k^k is the monoid.

Weights

Let

$$W = x\partial_x + y\partial_y + z\partial_z + ku\partial_u,$$

and let W^* be its ∞ -prolongation.

Weights

Let

$$W = x\partial_x + y\partial_y + z\partial_z + ku\partial_u,$$

and let W^* be its ∞ -prolongation.

② We say that a polynomial differential invariant I has weight w(I) if

$$W^{*}(I) = w(I)I.$$

Weights

Let

$$W = x\partial_x + y\partial_y + z\partial_z + ku\partial_u,$$

and let W^* be its ∞ -prolongation.

② We say that a polynomial differential invariant I has weight $w\left(I\right)$ if

$$W^*(I) = w(I) I.$$

1 In other words, if h is a homogeneous polynomial of degree k then I(h) has degree w(I).

Differential or Algebraic invariants

1 Algebraic invariants on \mathbb{H}_k are differential invariants of order k.

Differential or Algebraic invariants

- **1** Algebraic invariants on \mathbb{H}_k are differential invariants of order k.
- **2** Let I be a polynomial differential invariant of weight w, and $h \in \mathbb{H}_k$.

Differential or Algebraic invariants

- **1** Algebraic invariants on \mathbb{H}_k are differential invariants of order k.
- **2** Let I be a polynomial differential invariant of weight w, and $h \in \mathbb{H}_k$.
- Then I (h) ∈ P_w , (η_{w,2I} ∘ Δ_I) (h) ∈ ℍ_{w-2I} and its length (Δ_{G_{w-2I}} ∘ η_{w,2I} ∘ Δ_I) (h) is a scalar, i.e invariant G_{w-2I} ∘ η_{w,2I} ∘ I is an algebraic invariant.