Metric Invariants of Spherical Harmonics

Valentin Lychagin

IPU, RAS, Moscow \& UiTo, Tromso, Norway

November 25, 2021

Spherical Harmonics

(1) Spherical harmonics of degree k are smooth solutions of the Euler

$$
x u_{x}+y u_{y}+z u_{z}-k u=0
$$

and the Laplace

$$
u_{x x}+u_{y y}+u_{z z}=0
$$

equations

Spherical Harmonics

(1) Spherical harmonics of degree k are smooth solutions of the Euler

$$
x u_{x}+y u_{y}+z u_{z}-k u=0
$$

and the Laplace

$$
u_{x x}+u_{y y}+u_{z z}=0
$$

equations
(2) Denote by

$$
\mathcal{E}^{(i)} \subset J^{i}, i=1,2, \ldots, k
$$

the correspondig equations and their prolongations.

Spherical Harmonics

(1) Spherical harmonics of degree k are smooth solutions of the Euler

$$
x u_{x}+y u_{y}+z u_{z}-k u=0
$$

and the Laplace

$$
u_{x x}+u_{y y}+u_{z z}=0
$$

equations
(2) Denote by

$$
\mathcal{E}^{(i)} \subset J^{i}, i=1,2, \ldots, k
$$

the correspondig equations and their prolongations.
(3) Lie group SO (3) is obvious symmetry group of these equations and all $\mathcal{E}^{(i)}$ are affine algebraic manifolds equipped with the algebraic SO (3) -action.

Invariants

(1) Denote by \mathbb{H}_{k} the vector space of harmonic polynomials of degree k i.e. the solution space of the Euler-Laplace equations. It is a SO (3)-module.

Invariants

(1) Denote by \mathbb{H}_{k} the vector space of harmonic polynomials of degree k i.e. the solution space of the Euler-Laplace equations. It is a SO (3)-module.
(2) We say that a rational $\mathbf{S O}$ (3)-invariant function on \mathbb{H}_{k} is an algebraic metric invariant of spheric harmonics, having degree k.

Invariants

(1) Denote by \mathbb{H}_{k} the vector space of harmonic polynomials of degree k i.e. the solution space of the Euler-Laplace equations. It is a SO (3)-module.
(2) We say that a rational $\mathbf{S O}$ (3)-invariant function on \mathbb{H}_{k} is an algebraic metric invariant of spheric harmonics, having degree k.
(3) The field of algebraic invariants we denote by \mathcal{F}_{k}^{a}.

Invariants

(1) Denote by \mathbb{H}_{k} the vector space of harmonic polynomials of degree k i.e. the solution space of the Euler-Laplace equations. It is a SO (3)-module.
(2) We say that a rational $\mathbf{S O}$ (3)-invariant function on \mathbb{H}_{k} is an algebraic metric invariant of spheric harmonics, having degree k.
(3) The field of algebraic invariants we denote by \mathcal{F}_{k}^{a}.
(1) We say that a rational SO (3)-invariant function on affine manifold $\mathcal{E}^{(i)}$ is a differential metric invariant of spheric harmonics, having order $\leq i$.

Invariants

(1) Denote by \mathbb{H}_{k} the vector space of harmonic polynomials of degree k i.e. the solution space of the Euler-Laplace equations. It is a SO (3)-module.
(2) We say that a rational $\mathbf{S O}$ (3)-invariant function on \mathbb{H}_{k} is an algebraic metric invariant of spheric harmonics, having degree k.
(3) The field of algebraic invariants we denote by \mathcal{F}_{k}^{a}.
(1) We say that a rational SO (3)-invariant function on affine manifold $\mathcal{E}^{(i)}$ is a differential metric invariant of spheric harmonics, having order $\leq i$.
(0) The field of differenatial invariants we denote by \mathcal{F}_{k}^{d}

How structure on Weyl algebra

(1) The Weyl algebra \mathbb{A}_{3} is the associative algebra of linear differential operators on \mathbb{R}^{3} with polynomial coefficients.

How structure on Weyl algebra

(1) The Weyl algebra \mathbb{A}_{3} is the associative algebra of linear differential operators on \mathbb{R}^{3} with polynomial coefficients.
(2) The Lie algebra $\mathfrak{s l}(2) \subset \mathbb{A}_{3}$, generated by the following operators

$$
X_{+}=\frac{r^{2}}{2}, H=\delta+\frac{3}{2}, X_{-}=\frac{\Delta}{2}
$$

where

$$
r^{2}=x^{2}+y^{2}+z^{2}, \delta=x \partial_{x}+y \partial_{y}+z \partial_{z}, \Delta=\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}
$$

and operators $\left(X_{+}, H, X_{-}\right)$form the Weyl basis in $\mathfrak{s l}(2)$:

$$
\left[H, X_{+}\right]=2 X_{+},\left[H, X_{-}\right]=-2 X_{-},\left[X_{-}, X_{+}\right]=H
$$

How structure on Weyl algebra

(1) The Weyl algebra \mathbb{A}_{3} is the associative algebra of linear differential operators on \mathbb{R}^{3} with polynomial coefficients.
(2) The Lie algebra $\mathfrak{s l}(2) \subset \mathbb{A}_{3}$, generated by the following operators

$$
X_{+}=\frac{r^{2}}{2}, H=\delta+\frac{3}{2}, X_{-}=\frac{\Delta}{2}
$$

where

$$
r^{2}=x^{2}+y^{2}+z^{2}, \delta=x \partial_{x}+y \partial_{y}+z \partial_{z}, \Delta=\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}
$$

and operators $\left(X_{+}, H, X_{-}\right)$form the Weyl basis in $\mathfrak{s l}(2)$:

$$
\left[H, X_{+}\right]=2 X_{+},\left[H, X_{-}\right]=-2 X_{-},\left[X_{-}, X_{+}\right]=H .
$$

(3) The Lie algebra $\mathfrak{s o}(3) \subset \mathbb{A}_{3}$ generated by the angular momentum operators

$$
L_{z}=x \partial_{y}-y \partial_{x}, L_{y}=x \partial_{z}-z \partial_{x}, L_{x}=y \partial_{z}-z \partial_{y}
$$

How structure on Weyl algebra-2

(1) These Lie algebras mutually commute and the universal enveloping algebra $U(\mathfrak{s l}(2)) \subset A_{3}$ is the subalgebra of so (3)-invariant operators in \mathbb{A}_{3}.

How structure on Weyl algebra-2

(1) These Lie algebras mutually commute and the universal enveloping algebra $U(\mathfrak{s l}(2)) \subset A_{3}$ is the subalgebra of so (3)-invariant operators in \mathbb{A}_{3}.
(2) Casimir operator in Lie algebra so (3) is the orbital angular momentum operator

$$
M=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}
$$

and it coincides with Casimir operator in Lie algebra sl (2) :

$$
M=r^{2} \Delta-\delta^{2}-\delta
$$

How structure on Weyl algebra-2

(1) These Lie algebras mutually commute and the universal enveloping algebra $U(\mathfrak{s l}(2)) \subset A_{3}$ is the subalgebra of so (3)-invariant operators in \mathbb{A}_{3}.
(2) Casimir operator in Lie algebra so (3) is the orbital angular momentum operator

$$
M=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}
$$

and it coincides with Casimir operator in Lie algebra sl (2) :

$$
M=r^{2} \Delta-\delta^{2}-\delta
$$

(3) Operator M is also the spherical Laplace operator.

Harmonic polynomials

(1) The following sequence

$$
0 \rightarrow \mathbb{H}_{k} \rightarrow \mathbb{P}_{k} \xrightarrow{\Delta} \mathbb{P}_{k-2} \rightarrow 0
$$

is exact, and $\operatorname{dim} \mathbb{H}_{k}=2 k+1$.

Harmonic polynomials

(1) The following sequence

$$
0 \rightarrow \mathbb{H}_{k} \rightarrow \mathbb{P}_{k} \xrightarrow{\Delta} \mathbb{P}_{k-2} \rightarrow 0
$$

is exact, and $\operatorname{dim} \mathbb{H}_{k}=2 k+1$.
(2) Splitting \mathbb{P}_{k} : for any homogeneous polynomial $p_{k} \in \mathbb{P}_{k}$ there are (and unique) spheric harmonics $h_{k-2 i} \in \mathbb{H}_{k-2 i}, 0 \leq i \leq\left[\frac{k}{2}\right]$, such that

$$
p=\sum_{i=0}^{\left[\frac{k}{2}\right]} r^{2 i} h_{k-2 i}
$$

Harmonic polynomials

(1) The following sequence

$$
0 \rightarrow \mathbb{H}_{k} \rightarrow \mathbb{P}_{k} \xrightarrow{\Delta} \mathbb{P}_{k-2} \rightarrow 0
$$

is exact, and $\operatorname{dim} \mathbb{H}_{k}=2 k+1$.
(2) Splitting \mathbb{P}_{k} : for any homogeneous polynomial $p_{k} \in \mathbb{P}_{k}$ there are (and unique) spheric harmonics $h_{k-2 i} \in \mathbb{H}_{k-2 i}, 0 \leq i \leq\left[\frac{k}{2}\right]$, such that

$$
p=\sum_{i=0}^{\left[\frac{k}{2}\right]} r^{2 i} h_{k-2 i}
$$

(3) We have

$$
M\left(h_{k}\right)=-k(k+1) h_{k}
$$

for all $h_{k} \in \mathbb{H}_{k}$.

Harmonic polynomials

(1) The following sequence

$$
0 \rightarrow \mathbb{H}_{k} \rightarrow \mathbb{P}_{k} \xrightarrow{\Delta} \mathbb{P}_{k-2} \rightarrow 0
$$

is exact, and $\operatorname{dim} \mathbb{H}_{k}=2 k+1$.
(2) Splitting \mathbb{P}_{k} : for any homogeneous polynomial $p_{k} \in \mathbb{P}_{k}$ there are (and unique) spheric harmonics $h_{k-2 i} \in \mathbb{H}_{k-2 i}, 0 \leq i \leq\left[\frac{k}{2}\right]$, such that

$$
p=\sum_{i=0}^{\left[\frac{k}{2}\right]} r^{2 i} h_{k-2 i}
$$

(3) We have

$$
M\left(h_{k}\right)=-k(k+1) h_{k}
$$

for all $h_{k} \in \mathbb{H}_{k}$.
(9) The restriction of spheric harmonics on the unit sphere $\mathbf{S}^{2} \subset \mathbb{R}^{3}$ are eigenfunctions of the spherical laplacian Δ_{S} with eigenvalues $-k(k+1)$ and any continuous function on \mathbf{S}^{2} could be approximated (with any accuracy) by linear combination of spherical harmonics.

Harmonic projections

(1) Harmonic projections $\eta_{k, 2 i}: \mathbb{P}_{k} \rightarrow \mathbb{H}_{k-2 i}$ are the following

$$
\eta_{k, 2 i}=r^{-2 i} Q_{k, 2 i}(M)
$$

where

$$
Q_{k, 2 i}(\lambda)=\prod_{j \neq i}^{\left[\frac{k}{2}\right]} \frac{\lambda-\lambda_{j}}{\lambda_{i}-\lambda_{j}}, \quad \lambda_{i}=-(k-2 i)(k-2 i+1)
$$

Harmonic projections

(1) Harmonic projections $\eta_{k, 2 i}: \mathbb{P}_{k} \rightarrow \mathbb{H}_{k-2 i}$ are the following

$$
\eta_{k, 2 i}=r^{-2 i} Q_{k, 2 i}(M)
$$

where

$$
Q_{k, 2 i}(\lambda)=\prod_{j \neq i}^{\left[\frac{k}{2}\right]} \frac{\lambda-\lambda_{j}}{\lambda_{i}-\lambda_{j}}, \quad \lambda_{i}=-(k-2 i)(k-2 i+1)
$$

(2) The following sequence

$$
\mathbf{0} \rightarrow \mathbb{P}_{k-2} \xrightarrow{r^{2}} \mathbb{P}_{k} \xrightarrow{\eta_{k, 0}} \mathbb{H}_{k} \rightarrow \mathbf{0}
$$

is exact.

Harmonic projections

(1) Harmonic projections $\eta_{k, 2 i}: \mathbb{P}_{k} \rightarrow \mathbb{H}_{k-2 i}$ are the following

$$
\eta_{k, 2 i}=r^{-2 i} Q_{k, 2 i}(M)
$$

where

$$
Q_{k, 2 i}(\lambda)=\prod_{j \neq i}^{\left[\frac{k}{2}\right]} \frac{\lambda-\lambda_{j}}{\lambda_{i}-\lambda_{j}}, \quad \lambda_{i}=-(k-2 i)(k-2 i+1)
$$

(2) The following sequence

$$
\mathbf{0} \rightarrow \mathbb{P}_{k-2} \xrightarrow{r^{2}} \mathbb{P}_{k} \xrightarrow{\eta_{k, 0}} \mathbb{H}_{k} \rightarrow \mathbf{0}
$$

is exact.
(3) Define product of spheric harmonics $h_{k} \in \mathbb{H}_{k}, h_{l} \in \mathbb{H}_{\text {l }}$ as follows

$$
h_{k} * h_{l}=\eta_{k+l, 0}\left(h_{k} h_{l}\right) \in \mathbb{H}_{k+l} .
$$

Harmonic projections

(1) Harmonic projections $\eta_{k, 2 i}: \mathbb{P}_{k} \rightarrow \mathbb{H}_{k-2 i}$ are the following

$$
\eta_{k, 2 i}=r^{-2 i} Q_{k, 2 i}(M)
$$

where

$$
Q_{k, 2 i}(\lambda)=\prod_{j \neq i}^{\left[\frac{k}{2}\right]} \frac{\lambda-\lambda_{j}}{\lambda_{i}-\lambda_{j}}, \quad \lambda_{i}=-(k-2 i)(k-2 i+1)
$$

(2) The following sequence

$$
\mathbf{0} \rightarrow \mathbb{P}_{k-2} \xrightarrow{r^{2}} \mathbb{P}_{k} \xrightarrow{\eta_{k, 0}} \mathbb{H}_{k} \rightarrow \mathbf{0}
$$

is exact.
(3) Define product of spheric harmonics $h_{k} \in \mathbb{H}_{k}, h_{l} \in \mathbb{H}_{\text {l }}$ as follows

$$
h_{k} * h_{l}=\eta_{k+l, 0}\left(h_{k} h_{l}\right) \in \mathbb{H}_{k+l}
$$

(c) Here

$$
\eta_{k+l, 0}=\prod_{1}^{\left[\frac{k+1}{2}\right]} \frac{M+(k+l-2 j)(k+l-2 j+1)}{2 i(2 j-2 k-2 l-1)}
$$

Algebra of spherical harmonics

(1) Spherical harmonics

$$
\mathbb{H}_{*}=\oplus_{k \geq 0} \mathbb{H}_{k}
$$

form a graded commutative algebra with respect to the product $*$.

Algebra of spherical harmonics

(1) Spherical harmonics

$$
\mathbb{H}_{*}=\oplus_{k \geq 0} \mathbb{H}_{k}
$$

form a graded commutative algebra with respect to the product $*$.
(2) Algebra $\left(\mathbb{H}_{*}, *\right)$ generated by linear functions (x, y, z) satisfying the relation

$$
x * x+y * y+z * z=0
$$

Algebra of spherical harmonics

(1) Spherical harmonics

$$
\mathbb{H}_{*}=\oplus_{k \geq 0} \mathbb{H}_{k}
$$

form a graded commutative algebra with respect to the product $*$.
(2) Algebra $\left(\mathbb{H}_{*}, *\right)$ generated by linear functions (x, y, z) satisfying the relation

$$
x * x+y * y+z * z=0
$$

(3) The complixification $\mathbb{H}_{*}=\mathbb{H} \otimes \mathbb{C}$ is the algebra of regular functions on the null cone $\left\{x^{2}+y^{2}+z^{2}=0\right\}$ in \mathbb{C}^{3}.

Algebra of spherical harmonics

(1) Spherical harmonics

$$
\mathbb{H}_{*}=\oplus_{k \geq 0} \mathbb{H}_{k}
$$

form a graded commutative algebra with respect to the product $*$.
(2) Algebra $\left(\mathbb{H}_{*}, *\right)$ generated by linear functions (x, y, z) satisfying the relation

$$
x * x+y * y+z * z=0
$$

(3) The complixification $\mathbb{H}_{*}=\mathbb{H} \otimes \mathbb{C}$ is the algebra of regular functions on the null cone $\left\{x^{2}+y^{2}+z^{2}=0\right\}$ in \mathbb{C}^{3}.
(9) Example.

$$
x * x=x x-\frac{r^{2}}{3}, x * y=x y
$$

Algebraic invariants

(1) The space \mathbb{H}_{k} of spherical harmonics is a vector space of dimension $2 k+1$. The Lie group $\mathbf{S O}(3)$ acts in algebraic way on \mathbb{H}_{k}, and in H_{k} are realized all irreducible representations of $\mathbf{S O}$ (3).

Algebraic invariants

(1) The space \mathbb{H}_{k} of spherical harmonics is a vector space of dimension $2 k+1$. The Lie group $\mathbf{S O}(3)$ acts in algebraic way on \mathbb{H}_{k}, and in \mathbb{H}_{k} are realized all irreducible representations of $\mathbf{S O}$ (3).
(2) Due to Hilbert theorem polynomial invariants of this action (i.e. polynomial invariants of spherical harmonics) form a finite generated commutative algebra.

Algebraic invariants

(1) The space \mathbb{H}_{k} of spherical harmonics is a vector space of dimension $2 k+1$. The Lie group $\mathbf{S O}(3)$ acts in algebraic way on \mathbb{H}_{k}, and in \mathbb{H}_{k} are realized all irreducible representations of $\mathbf{S O}$ (3).
(2) Due to Hilbert theorem polynomial invariants of this action (i.e. polynomial invariants of spherical harmonics) form a finite generated commutative algebra.
(3) Due to Rosenlicht theorem rational invariants of this action (i.e. rational invariants of spherical harmonics) form a field of trancedence degree equals the codimension of regular orbit.

Algebraic invariants

(1) The space \mathbb{H}_{k} of spherical harmonics is a vector space of dimension $2 k+1$. The Lie group $\mathbf{S O}(3)$ acts in algebraic way on \mathbb{H}_{k}, and in \mathbb{H}_{k} are realized all irreducible representations of $\mathbf{S O}$ (3).
(2) Due to Hilbert theorem polynomial invariants of this action (i.e. polynomial invariants of spherical harmonics) form a finite generated commutative algebra.
(3) Due to Rosenlicht theorem rational invariants of this action (i.e. rational invariants of spherical harmonics) form a field of trancedence degree equals the codimension of regular orbit.
(9) Regular orbit has codimension $(2 k-2)$, when $k \geq 2$, and codimention 1 , when $k=1$. Therefore, in order to define a regular orbit we need $2 k-2$ algebraicly independent rational invariants, for $k>2$, and only one invariant, for $k=1$.

Differential invariants

(1) Equations $\mathcal{E}^{(i)}$ are affine manifolds of dimension $2 i+4$,if $2 \leq i<k$. The regular $\mathbf{S O}(3)$-orbits (that correspond to smooth points of quotient $\mathcal{E}^{(i)} / \mathbf{S O}$ (3)) Thus, due to Hilbert theorem, the quotients are affine manifolds of dimension $2 i+1$. Rational differential invariants of order $\leq i$ are rational functions on $\mathcal{E}^{(i)} / \mathbf{S O}(3)$ and therefore the trancedence degree of field \mathcal{F}_{i}^{d} equals to $2 i+1$.

Differential invariants

(1) Equations $\mathcal{E}^{(i)}$ are affine manifolds of dimension $2 i+4$,if $2 \leq i<k$. The regular SO (3) -orbits (that correspond to smooth points of quotient $\left.\mathcal{E}^{(i)} / \mathbf{S O}(3)\right)$ Thus, due to Hilbert theorem, the quotients are affine manifolds of dimension $2 i+1$. Rational differential invariants of order $\leq i$ are rational functions on $\mathcal{E}^{(i)} / \mathbf{S O}(3)$ and therefore the trancedence degree of field \mathcal{F}_{i}^{d} equals to $2 i+1$.
(2) As we have seen, the trancedence degree of field \mathcal{F}_{k}^{a} equals $2(k-1)$.

Differential invariants

(1) Equations $\mathcal{E}^{(i)}$ are affine manifolds of dimension $2 i+4$,if $2 \leq i<k$. The regular SO (3) -orbits (that correspond to smooth points of quotient $\left.\mathcal{E}^{(i)} / \mathbf{S O}(3)\right)$ Thus, due to Hilbert theorem, the quotients are affine manifolds of dimension $2 i+1$. Rational differential invariants of order $\leq i$ are rational functions on $\mathcal{E}^{(i)} / \mathbf{S O}(3)$ and therefore the trancedence degree of field \mathcal{F}_{i}^{d} equals to $2 i+1$.
(2) As we have seen, the trancedence degree of field \mathcal{F}_{k}^{a} equals $2(k-1)$.
(3) Take a regular harmonic $h \in \mathbb{H}_{k}$. Then it is easy to check that the $\mathbf{S O}(3)$-orbit of the 2 -jet $j_{2}(h)$ into $\mathcal{E}^{(2)}$ is a 6-dimensional submanifold into 8 -dimensional manifold $\mathcal{E}^{(2)}$ and therefore we need 2 differential invariants of order 2 to describe the orbit (compare with $2(k-1)$ algebraic invariants).

linvariant coframe

(1) Total differentials of the obvious invariants $J_{-1}=\frac{r^{2}}{2}$ and $J_{0}=u$ give us two SO (3)-invariant horizontal 1-forms:

$$
\begin{aligned}
& \omega_{1}=x d x+y d y+z d z \\
& \omega_{2}=u_{x} d x+u_{y} d y+u_{z} d z
\end{aligned}
$$

linvariant coframe

(1) Total differentials of the obvious invariants $J_{-1}=\frac{r^{2}}{2}$ and $J_{0}=u$ give us two SO (3)-invariant horizontal 1-forms:

$$
\begin{aligned}
& \omega_{1}=x d x+y d y+z d z \\
& \omega_{2}=u_{x} d x+u_{y} d y+u_{z} d z
\end{aligned}
$$

(2) Their cross product gives us

$$
\omega_{3}=\left(y u_{z}-z u_{y}\right) d x+\left(z u_{x}-x u_{z}\right) d y+\left(x u_{y}-y u_{x}\right) d z
$$

linvariant coframe

(1) Total differentials of the obvious invariants $J_{-1}=\frac{r^{2}}{2}$ and $J_{0}=u$ give us two SO (3)-invariant horizontal 1 -forms:

$$
\begin{aligned}
& \omega_{1}=x d x+y d y+z d z \\
& \omega_{2}=u_{x} d x+u_{y} d y+u_{z} d z
\end{aligned}
$$

(2) Their cross product gives us

$$
\omega_{3}=\left(y u_{z}-z u_{y}\right) d x+\left(z u_{x}-x u_{z}\right) d y+\left(x u_{y}-y u_{x}\right) d z
$$

(3) Then coframe $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ is $\mathbf{S O}$ (3)-invariant.

linvariant frame

(1)

$$
\begin{aligned}
D_{1} & =x \frac{d}{d x}+y \frac{d}{d y}+z \frac{d}{d z} \\
D_{2} & =u_{x} \frac{d}{d x}+u_{y} \frac{d}{d y}+u_{z} \frac{d}{d z} \\
D_{3} & =\left(y u_{z}-z u_{y}\right) \frac{d}{d x}+\left(z u_{x}-x u_{z}\right) \frac{d}{d y}+\left(x u_{y}-y u_{x}\right) \frac{d}{d z}
\end{aligned}
$$

First invariants

$$
\begin{aligned}
J_{-1}= & \frac{r^{2}}{2}, J_{0}=u \\
J_{1}= & D_{2}\left(J_{0}\right)=u_{x}^{2}+u_{y}^{2}+u_{z}^{2} \\
J_{21}= & \frac{D_{2}\left(J_{1}\right)}{2}=u_{x}^{2} u_{x x}+u_{y}^{2} u_{y y}+u_{z}^{2} u_{z z}+ \\
& 2\left(u_{x} u_{y} u_{x y}+u_{x} u_{z} u_{x z}+u_{y} u_{z} u_{y z}\right) .
\end{aligned}
$$

Invariant symmteric forms and operators

(1) Symmetric differenatial i-forms

$$
\Theta_{i}=\sum_{i_{1}+i_{2}+i_{3}=i} u_{i_{1}, i_{2}, i_{3}} \frac{d x^{i_{1}}}{i_{1}!} \cdot \frac{d y^{i_{2}}}{i_{2}!} \cdot \frac{d z^{i_{3}}}{i_{3}!}
$$

are invariants with respect to Lie group of affine transformations in \mathbb{R}^{3}.

Invariant symmteric forms and operators

(1) Symmetric differenatial i-forms

$$
\Theta_{i}=\sum_{i_{1}+i_{2}+i_{3}=i} u_{i_{1}, i_{2}, i_{3}} \frac{d x^{i_{1}}}{i_{1}!} \cdot \frac{d y^{i_{2}}}{i_{2}!} \cdot \frac{d z^{i_{3}}}{i_{3}!}
$$

are invariants with respect to Lie group of affine transformations in \mathbb{R}^{3}.
(2) Differential operators

$$
\widehat{\Theta}_{i}=\sum_{i_{1}+i_{2}+i_{3}=i} \frac{u_{i_{1}, i_{2}, i_{3}}}{i_{1}!i_{2}!i_{3}!} \frac{d^{k}}{d x^{i_{1}} d y^{i_{2}} d z^{i_{3}}}
$$

are SO (3)-invariant.

Invariants

Let

$$
\begin{aligned}
d x & =t_{11} \omega_{1}+t_{12} \omega_{2}+t_{13} \omega_{3} \\
d y & =t_{21} \omega_{1}+t_{22} \omega_{2}+t_{23} \omega_{3} \\
d z & =t_{31} \omega_{1}+t_{32} \omega_{2}+t_{33} \omega_{3},
\end{aligned}
$$

where $t_{i j}$ are rational functions on $J^{1}\left(\mathbb{R}^{3}\right)$, and let

$$
\Theta_{i}=\sum_{i_{1}+i_{2}+i_{3}=i} T_{i_{1}, i_{2}, i_{3}} \frac{\omega_{1}^{i_{1}}}{i_{1}!} \cdot \frac{\omega_{2}^{i_{2}}}{i_{2}!} \cdot \frac{\omega_{3}^{i_{3}}}{i_{3}!} .
$$

Theorem

Functions $T_{i_{1}, i_{2}, i_{3}}$ are rational differential $\mathbf{S O}$ (3)-invariants of order $i=i_{1}+i_{2}+i_{3}$ and any rational differential SO (3)-invariants of order i is a rational function of them.

Example

Remark that invariants

$$
G_{i}=\widehat{\Theta}_{i}(u)=\sum_{i_{1}+i_{2}+i_{3}=i} \frac{u_{i_{1}, i_{2}, i_{3}}^{2}}{i_{1}!i_{2}!i_{3}!}
$$

are squares of lengths of symmetric forms Θ_{i}.
Thus,
$\widehat{\Theta}_{1}=u_{x} \frac{d}{d x}+u_{y} \frac{d}{d y}+u_{z} \frac{d}{d z}$,
$\widehat{\Theta}_{2}=\frac{1}{2}\left(u_{x x} \frac{d^{2}}{d x^{2}}+u_{y y} \frac{d^{2}}{d y^{2}}+u_{z z} \frac{d^{2}}{d z^{2}}\right)+u_{x y} \frac{d^{2}}{d x d y}+u_{x z} \frac{d^{2}}{d x d z}+u_{y z} \frac{d^{2}}{d y d z}$
and

$$
\begin{aligned}
& \widehat{\Theta}_{1}(u)=u_{x}^{2}+u_{y}^{2}+u_{z}^{2} \\
& \widehat{\Theta}_{1}(u)=J_{22}=\frac{u_{x x}^{2}+u_{y y}^{2}+u_{z z}^{2}}{2}+u_{x y}^{2}+u_{x z}^{2}+u_{y z}^{2}
\end{aligned}
$$

Theorem

The field of rational differential $\mathbf{S O}$ (3)-invariants of spherical harmonics is generated by invariants $\left(J_{-1}=\frac{r^{2}}{2}, J_{0}=u, J_{22}\right)$ and derivation $\nabla=\widehat{\Theta}_{1}$.

Monoid of invariants

(1) SO (3) - Invariants $\Longleftrightarrow S O$ (3) -invariant differential operators:

$$
\begin{aligned}
\phi \in & C^{\infty}\left(\mathbf{J}^{k}\left(\mathbb{R}^{3}\right)\right) \Longleftrightarrow \Delta_{\phi}: C^{\infty}\left(\mathbb{R}^{3}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{3}\right) \\
& \Delta_{\phi}(f)=j_{k}(f)^{*}(\phi)
\end{aligned}
$$

Monoid of invariants

(1) SO (3) - Invariants $\Longleftrightarrow S O$ (3) - invariant differential operators:

$$
\begin{aligned}
\phi \in & C^{\infty}\left(\mathbf{J}^{k}\left(\mathbb{R}^{3}\right)\right) \Longleftrightarrow \Delta_{\phi}: C^{\infty}\left(\mathbb{R}^{3}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{3}\right) \\
& \Delta_{\phi}(f)=j_{k}(f)^{*}(\phi)
\end{aligned}
$$

(2) Monoid structure on SO (3) -invariants defines by the composition of invariant operators, and id $=u$.

Monoid of invariants

(1) SO (3) - Invariants $\Longleftrightarrow S O$ (3) - invariant differential operators:

$$
\begin{aligned}
\phi \in & C^{\infty}\left(\mathbf{J}^{k}\left(\mathbb{R}^{3}\right)\right) \Longleftrightarrow \Delta_{\phi}: C^{\infty}\left(\mathbb{R}^{3}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{3}\right) \\
& \Delta_{\phi}(f)=j_{k}(f)^{*}(\phi)
\end{aligned}
$$

(2) Monoid structure on SO (3) -invariants defines by the composition of invariant operators, and id $=u$.
(3) Thus, the field \mathcal{F}_{k}^{k} is the monoid.

Weights

(1) Let

$$
W=x \partial_{x}+y \partial_{y}+z \partial_{z}+k u \partial_{u}
$$

and let W^{*} be its ∞-prolongation.

Weights

(1) Let

$$
W=x \partial_{x}+y \partial_{y}+z \partial_{z}+k u \partial_{u}
$$

and let W^{*} be its ∞-prolongation.
(2) We say that a polynomial differential invariant I has weight $w(I)$ if

$$
W^{*}(I)=w(I) I
$$

Weights

(1) Let

$$
W=x \partial_{x}+y \partial_{y}+z \partial_{z}+k u \partial_{u}
$$

and let W^{*} be its ∞-prolongation.
(2) We say that a polynomial differential invariant I has weight $w(I)$ if

$$
W^{*}(I)=w(I) I
$$

(3) In other words, if h is a homogeneous polynomial of degree k then $I(h)$ has degree $w(I)$.

Differential or Algebraic invariants

(1) Algebraic invariants on \mathbb{H}_{k} are differential invariants of order k.

Differential or Algebraic invariants

(1) Algebraic invariants on \mathbb{H}_{k} are differential invariants of order k.
(2) Let I be a polynomial differential invariant of weight w, and $h \in \mathbb{H}_{k}$.

Differential or Algebraic invariants

(1) Algebraic invariants on \mathbb{H}_{k} are differential invariants of order k.
(2) Let I be a polynomial differential invariant of weight w, and $h \in \mathbb{H}_{k}$.
(3) Then $I(h) \in \mathbb{P}_{w},\left(\eta_{w, 2 l} \circ \Delta_{I}\right)(h) \in \mathbb{H}_{w-2 l}$ and its length $\left(\Delta_{G_{w-2 l}} \circ \eta_{w, 2 l} \circ \Delta_{l}\right)(h)$ is a scalar, i.e invariant $G_{w-2 l} \circ \eta_{w, 2 l} \circ l$ is an algebraic invariant.

