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Elliptic Darboux-Integrable Systems

Conventions Let I denote an exterior differential system (EDS) on manifold M .
(Recall, I is a graded ideal in Ω∗(M) closed under exterior derivative.)

For k > 0 let Ik denote kth graded piece (assume no 0-forms), which spans a sub-
bundle Ik ⊂ ΛkT ∗M . For Pfaffian systems, write I1 = I .

Submanifold f : S ⊂M is an integral manifold of I if f ∗ψ = 0 for all ψ ∈ I.

Defn1 An EDS I is decomposable if it is generated algebraically by finitely many
1-forms and 2-forms on M , and there are sub-bundles V̂ , qV ⊂ T ∗M such that

• the 1-form generators of I are precisely the sections of V̂ ∩ qV ;

• the 2-form generators of I are either sections of Λ2V̂ or of Λ2
qV .

These V̂ , qV are called the singular systems of I.

1Anderson, Fels and Vassiliou (Advance in Mathematics 221 (2009), 1910–1963)
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Elliptic Darboux-Integrable Systems

Example Solutions to a second-order PDE for u(x, y) correspond to integral surfaces
of an EDS I on M 7 ⊂ J2(R2,R). Use coordinates x, y, u, ui, uij = uji on jet space,
assume the PDE is ‘wavelike’:

u12 = F (x, y, u, u1, u2).

and let M 7 is the submanifold defined by this equation. The integral surfaces of I
are the 2-graphs of solutions, defined by u = f (x, y), u1 = fx, u2 = fy, etc.

Then I is generated by 1-forms

θ0 := du−u1 dx−u2 dy, θ1 := du1−u11 dx−u12 dy, θ2 := du2−u12 dx−u22 dy

and decomposable 2-forms

(du11 −DxF dy) ∧ dx, (du22 −DyF dx) ∧ dy.

where DxF = Fx+u1Fu+u11Fu1 +u12Fu2 and DyF = Fy+u2Fu+u12Fu1 +u22Fu2.

This is a decomposable EDS, with singular systems

V̂ = {θ0, θ1, θ2, dx, du11 −DxF dy},
qV = {θ0, θ1, θ2, dy, du22 −DyF dx}
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Elliptic Darboux-Integrable Systems

A decomposable EDS I is ‘integrable by the method of Darboux’ if each singular
system V has ‘enough’ independent first integrals, i.e., functions f ∈ C∞(M) such
that df ∈ V . Such differentials span the terminal derived system V (∞) ⊂ V . These
first integrals are called the Darboux invariants.

Defn I is Darboux-integrable (DI) if

T ∗M = V̂ (∞) + qV = qV (∞) + V̂ (non-direct sum), and V̂ (∞) ∩ qV (∞) = 0.

We’ll say the integrability is lean if these sums are direct, i.e., V̂ (∞) ∩ qV = 0 =
qV (∞) ∩ V̂ .

Example Solutions of Liouville’s equation uxy = eu, the singular systems are

V̂ = {θ0, θ1, θ2, dx, d(u11 − 1
2(u1)

2)},
qV = {θ0, θ1, θ2, dy, d(u22 − 1

2(u2)
2)},

For any solution there will be functions φ, ψ such that

u11 − 1
2u

2
1 = φ(x), u22 − 1

2u
2
2 = ψ(y)

Moreover,‘integrability’ stems from the fact that imposing such functional dependen-
cies among the invariants defines a submanifold L ⊂M to which I restricts to be a
Frobenius system (in fact, a pair of equations of Lie type).
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Singular systems for a decomposable EDS I are made up of factors of its real decom-
posable 2-form generators. We will refer to this as the hyperbolic case.

For elliptic PDE in the plane (e.g., Laplace’s equation ∆u = 0) decomposable 2-forms
only arise via complex linear combinations of real generators.

Example Solutions of the elliptic version of Liouville’s equation uxx + uyy = 2eu

correspond to integral surfaces of EDS I on M 7 ⊂ J2(R2,R) generated by 1-forms

θ0 := du−p dx−q dy, θ1 := dp−(eu+r) dx−s dy, θ2 := dq−s dx−(eu−r) dy

(where p = ux, q = uy, r = uxx − uyy and s = uxy on solutions) and their reduced
exterior derivatives

dθ1 ≡ dx ∧ (dr − euq dy) + dy ∧ ds, dθ2 = dx ∧ ds− dy ∧ (dr − eup dx).

Taking complex linear combinations gives a pair of decomposable 2-forms,

(dx + idy) ∧ (dr − ids− 1
2e
u(p− iq)(dx− idy))

and its conjugate. We therefore define ‘complexified’ singular systems

V̂ = {θ0, θ1, θ2, dx + idy, dr − ids− 1
2e
u(p− iq)(dx− idy)} ⊂ T ∗M ⊗ C

and qV = V̂ .
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Elliptic Darboux-Integrable Systems

Defn Let I be an EDS on M and let I1 ⊂ T ∗M be the span of the 1-forms of I.
Then I is elliptic decomposable if there is a splitting

(T ∗M/I1)⊗ C = W ⊕W

such that I is generated algebraically by sections of I1 and sections of Λ2V̂ and Λ2
qV ,

where V̂ , qV are pre-images ofW,W under the C-linear extension of the quotient map
T ∗M → T ∗M/I1. Hence V̂ ∩ qV = I1 ⊗ C.

Rk Necessarily, D = ann(I1) must have even rank. The splitting corresponds to a
complex structure on D ⊂ TM which doesn’t necessarily extend to TM .

Defn Such a system is elliptic DI if

T ∗M ⊗ C = V̂ (∞) + qV (non-direct sum), and V̂ (∞) ∩ qV (∞) = 0.

Example For elliptic Liouville uxx + uyy = 2eu, compute that

V̂ (∞) =
{
d(x + iy), d

(
r − is− 1

4(p− iq)2
)}
.

Hence T ∗M ⊗ C = V̂ (∞) ⊕ qV and the system is leanly Darboux-integrable.
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Examples of Darboux-Integrable Elliptic PDE

(based on Goursat-Vessiot classification)

Here, u is a real function of z = x + iy and z = x− iy.

(z + z)uzz = 2
√
uzuz

uuzz =
√

1 + u2z

√
1 + u2z

(sinu)uzz =
√

1 + u2z

√
1 + u2z

uuzz = ±φ(uz)φ(uz)

where φ(t) is a solution of the ODE df/dt± t/f = c for a nonzero real constant c,

(z + z)uzz = γ(uz)γ(uz)

where γ is implicitly defined by γ(t)− 1 = exp(t− γ(t)),

uzz = eu,

uzz =

(
1

u + z
+

1

u + z

)
uzuz.
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Elliptic Darboux-Integrable Systems

Construction of solutions for hyperbolic DI systems depends on the action of the
Vessiot group. Its existence for any DI system I is revealed through careful coframe
adaptations. Its action lets us construct an integrable extension of I that splits into
simpler systems.

Thm (Anderson-Fels-Vassiliou)
Let I be a lean DI hyperbolic decomposable system on manifold M . Let n = rk I1,
p = rk V̂ − n, q = rk qV − n, and let 1 ≤ i, j, k ≤ n, 1 ≤ a, b ≤ p, 1 ≤ α, β ≤ q.

Near any point there exists 1-forms θiX , θ
i
Y , π̂

a, π̌α such that (θX , π̂, π̌) and (θY , π̂, π̌)

are each coframes such that

I1 = {θX} = {θY }, V̂ (∞) = {π̂}, qV (∞) = {π̌},

and which satisfy structure equations

dπ̂a = 0, dπ̌α = 0,

dθiX = 1
2A

i
abπ̂

a ∧ π̂b + 1
2B

i
αβπ̌

α ∧ π̌β + 1
2C

i
jkθ

j
X ∧ θ

k
X + M i

ajθ
j
X ∧ π̂

a,

dθiY = 1
2E

i
abπ̂

a ∧ π̂b + 1
2F

i
αβπ̌

α ∧ π̌β − 1
2C

i
jkθ

j
Y ∧ θ

k
Y + N i

αjθ
j
Y ∧ π̌

α,

where C i
jk are structure constants for a real Lie algebra g, the Vessiot algebra of I.

Rk There exist local coordinates xa, yα, tk such that π̂a = dxa and π̌α = dyα.
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Elliptic Darboux-Integrable Systems

‘Corollary’ There exist 1-forms

θ̂i = R̂(x)ijθ
j
X + Ŝ(x)iaπ̂

a, θ̌i = Ř(y)ijθ
j
Y + Š(y)iαπ̌

α

such that

dθ̂i = 1
2C

i
jkθ̂

j ∧ θ̂k + (∗)π̌ ∧ π̌, dθ̌i = −1
2C

i
jkθ̌

j ∧ θ̌k + (∗)π̂ ∧ π̂.

Moreover, if θiX = Qi
jθ
j
Y and λ = R̂QŘ

−1
then the 1-forms

ω̂i = θ̂i + λijŠ(y)jαπ̌
α, ω̌i = θ̌i + (λ−1)ijŜ(x)jaπ̂

a

span a Frobenius system {ω̂i} = {ω̌i} and satisfy Maurer-Cartan equations

dω̂i = 1
2C

i
jkω̂

j ∧ ω̂k, dω̌i = −1
2C

i
jkω̌

j ∧ ω̌k.

Define vector fields X̂i on M such that X̂i
¬ ω̂j = δij and X̂i

¬ π̂a = X̂i
¬ π̌α = 0.

These generate a locally free G-action onM . Let S ⊂M be a integral submanifold of
{ω̂i} = {ω̌i} which is a slice for this action. Then the action lets us (locally) identify

Φ : S ×G→M,

so that Φ∗ω̂i = τ i left-invariant and Φ∗ω̌i = µi right-invariant Maurer-Cartan forms
on G. (The xa and yα pull back to be coordinates on S.)
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Theorem Let G1, G2 be copies of G. On N = S ×G1 ×G2 define a ‘superposition
map’ Σ : N → S ×G ∼= M by

Σ(s, c1, c2) = (s, c1c
−1
2 ).

Note that this is the quotient map for the right diagonal G-action defined by

(c1, c2) · g = (c1g, c2g).

Let Λi
j be the function on G such that τ i = Λi

jµ
j (hence Φ∗λij = Λi

j).
Let τ i1, µ

i
1 denote the left- and right-invariant Maurer-Cartan forms respectively on

G1, and similarly τ i2, µ
i
2 on G2. Then the Pfaffian system E on N generated by

E = {τ i1 − Λ(c1)
i
jŠ(y)jαdy

α, µi2 + Ŝ(x)iadx
a}

is an integrable extension of I.

In other words, E is generated algebraically by Σ∗I and sections of E. Moreover, any
integral manifold of I is the image of an integral manifold of E.

Rk System E is the product of Pfaffian systems on G1 × (y-variables) and on G2 ×
(x-variables), each of which is of Lie type. To see why it’s an extension, compute the
pullbacks of generators of I:

Σ∗(R̂i
jθ
j
X) = −(µi2 + Ŝ(x)iadx

a) + Λ−1(c2)
i
j

(
τ j1 − Λj

k(c1)Š(y)kαdy
α
)
.
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Coframes for Lean DI Elliptic Systems

Locally on M there are complex-valued 1-forms θi, π̂a such that

I1 ⊗ C = {θi} = {θi}, V̂ (∞) = {π̂a}

and θi, π̂a, π̌a = π̂a are a local coframe.
Thm These can be chosen to satisfy structure equations dπ̂a = 0 and

dθi = 1
2A

i
abπ̂

a ∧ π̂b + 1
2B

i
αβπ̌

α ∧ π̌β + 1
2C

i
jkθ

j ∧ θk + M i
ajθ

j ∧ π̂a,

with complex coefficients. Call this an adapted coframe.
Rk If we choose local coordinates such that π̂a = dza, then Ai

ab, C
i
jk, M

i
aj are

holomorphic functions of the z1, . . . zp.

Conjecture Based on examples we’ve calculated, these coframes can always be chosen
so that the C i

jk are real and constant. Consequently, they are structure constants of
the Vessiot algebra g. Say an adapted coframe is of Vessiot type if this is the case.

Corollary Let θi, π̂a, π̌a be Vessiot adapted coframe. Then there exist 1-forms

θ̂i = R̂(z)ijθ
j + Ŝ(z)iaπ̂

a

such that dθ̂i = 1
2C

i
jkθ̂

j ∧ θ̂k + (∗)π̂ ∧ π̂. Moreover if θi = Qi
jθ
j and λ = R̂QR̂

−1

then the 1-forms
ω̂i = θ̂i + λijŜ(z)jaπ̌

a

satisfy dω̂i = 1
2C

i
jkω̂

j ∧ ω̂k and span a real Frobenius system.
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Elliptic Darboux-Integrable Systems

These enable us to identify M with the product of a homogeneous space with a
maximal integral submanifold of the {ω̂}.

Canonical Extension for DI Elliptic Systems (A Conjectural Picture)

Given the 1-forms ω̂i, π̂a on M , define complex vector fields Ẑj such that

Ẑj
¬ ω̂i = δij, Ẑj

¬ π̂a = Ẑj
¬ π̌a = 0.

By the structure equations, [Ẑj, Ẑk] = 0, so the real and imaginary parts

Xj = Ẑj + Ẑj, Yj = i(Ẑj − Ẑj)

form a Lie algebra k of real vector fields on M , such that k ∼= g ⊗ C where g is the
Vessiot algebra.

These generate a (non-free) action ofK (the complexification of the Vessiot group) on
M . Given p ∈M we can adapt the ω̂i so that the Xi generate the isotropy subgroup
G at p.

Let S be the maximal integral manifold {ω̂i} through p. (The za restrict to give
complex coords on S.) Since this is a slice for the K-action, we have an identification

Φ : S ×K/G→M.
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Left and Right Actions
There is a natural projection π : K → K/G which we extend to the product with
S. Then π gives the quotient modulo the G-action on K by right multiplication, but
Φ◦π is also equivariant for the K-actions onM and on S×K via left-multiplication.

S ×K

S ×K/G M

π
Φ

K	

On K the right-invariant vector fields XR
j , Y

R
j satisfy

[XR
j , X

R
k ] = C`

jkX
R
` , [XR

j , Y
R
k ] = C`

jkY
R
` , [Y R

j , Y
R
k ] = −C`

jkX
R
` .

Since they generate left-multiplication on K, these push forward under π to give
well-defined vector fields on K/G. Moreover, if we form the (1, 0)-vector fields

ZR
j = 1

2(XR
j − iY R

j )

then π∗ZR
j spans the tangent spaces on K/G and (Φ ◦ π)∗Z

R
j = Ẑj.
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Elliptic Darboux-Integrable Systems

OnK define right-invariant (1, 0)-forms µj(1,0) and left-invariant (1,0)-forms τ j(1,0) which
are dual to respectively to the ZR

j and the

ZL
j = 1

2(XL
j − iY L

j ).

Define functions Λi
j on K such that τ i(1,0) = Λi

jµ
j
(1,0).

Then we conjecture that an integrable extension of I is given by the Pfaffian system
E on N = S ×K generated by

E = {τ i(1,0) − Λi
jŜ

j
a(z)dza} + (complex conjugates).

Integral submanifolds of this extension are solutions of a Lie equation on K given by
holomorphic functions of the za.

Thus, we can use this to obtain solutions of the original system I in terms of holo-
morphic data.
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Potential Applications to Isometric Embedding

Let B2 be a Riemannian surface with orthonormal frame field v1, v2.
Define dual 1-forms η1, η2 on M and connection form η12:

∇wv2 = η12(w)v1, ∀w ∈ TB.

Let F be the Euclidean frame bundle of R3:

F6 = {(p, e1, e2, e3) | ei oriented o.n. basis for TpR3},

with canonical forms ωa and connection forms ωab = −ωba defined by

dp = ea ⊗ ωa, dea = eb ⊗ ωba.

Prop An isometric f : B → R3 induces lift f̂ : B → F by ei = f∗vi, e3 = e1 × e2.
The graph S of f̂ is an integral surface of 1-forms

θ1 := ω1 − η1, θ2 := ω2 − η2, θ3 := ω3, θ4 := ω1
2 − η12.

Conversely, any integral surface S ⊂ B×F that submerses ontoB defines an isometric
immersion.

The isometric immersion system I is the Pfaffian EDS on M = B ×F generated by
θ1, θ2, θ3, θ4.
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This system satisfies structure equations

dθ1 ≡ 0, dθ2 ≡ 0,

dθ3 ≡ ω3
1 ∧ η1 + ω3

2 ∧ η2,
dθ4 ≡ ω3

1 ∧ ω3
2 −Kη1 ∧ η2

 mod θ1 . . . , θ4,

where K is the Gauss curvature of (B, g).

Consider the ‘elliptic case’ where K > 0. If we let k =
√
K, then there are decom-

posable 2-form generators

(ω3
1 ∓ ikη2) ∧ (ω3

2 ± ikη1).

Thus, the isometric system I is elliptic decomposable with singular systems

V̂ = {θ1, . . . , θ4, ω3
1 − ikη2, ω3

2 + ikη1}, qV = V̂ .

Thm (Clelland, Vassiliou, I-) There are exactly three surface metrics (up to scale) of
positive curvature for which I is Darboux-integrable. There are local coordinates u, v
on B in which the metrics take the form

g1 = cosh4 u(du)2 + sinh2 u(dv)2,

g−1 = sinh4 u(du)2 + cosh2 u(dv)2,

g0 = u2((du)2 + (dv)2),

Each metric has an intrinsic Killing field ∂/∂v.
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Questions What are the Vessiot groups for the isometric embedding systems associated
to these metrics? What are the canonical extensions? How do we express the isometric
embeddings in terms of holomorphic data?

Each of the above metrics gC can be expressed as (ds)2+q′(s)2(dv)2 where q = K−3/4.
In each case, q satisfies an ODE (13q

′)2 − q2/3 = C. The solution plays an important
role in a kind of Weierstrass representation for the isometric embeddings:

Defn Define a ‘generalized Gauss map’ Ψ : M → C3 by

Ψ : (b, p, e1, e2, e3) 7→ q1/3e3 − 1
3iq′e2.

This lands in the set
◦
QC of non-real points on the quadric QC ⊂ C3 defined by

z21 + z22 + z23 = C.

Thm B (I–, McKay) If S is any solution surface, then Ψ|S is holomorphic with respect
to the complex structure defined by V̂ |S. Moreover, the immersion is determined by
integrating the Weierstrass-type formula

dp|S= X× dY

where X = Re Ψ, Y = Im Ψ.

Rk In fact, the image of an isometric immersion of any of these metrics is an affine
minimal surface in R3, and this is just a special case of Blaschke’s Weierstrass-type
representation for such surfaces.
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Questions What is the relationship between the local extension space N and the
classifying quadric Q? What is the relationship between the complexified Vessiot
group K, the internal symmetry of (B, g), and the extrinsic symmetries of I?

S ×K = N 12

S ×K/G M 8

π
Φ

(B, gC) F

QC ⊂ C3Ψ

Thank You!
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