Recent developments in singularity formation of nonlinear waves.

Joachim Krieger (EPFL)

Banff, September 2021

Bubbling off dynamics

 Consider an evolution equation of either wave or Schrodinger type

$$-u_{tt} + \triangle u = F(u, \nabla_{t, \times} u)$$

$$iu_t + \triangle u = G(u)$$

We are interested in solutions of a 'bubbling type' of essentially the following form

$$u(t,x) = \lambda^{\alpha}(t)Q(\lambda(t)x) + \epsilon(t,x)$$

where $\lambda(t)$ blows up either in finite or infinite time, while $\epsilon(t,x)$ stays 'regular' and bounded.

Bubbling off dynamics

 Consider an evolution equation of either wave or Schrodinger type

$$-u_{tt} + \triangle u = F(u, \nabla_{t,x} u)$$

$$iu_t + \triangle u = G(u)$$

We are interested in solutions of a 'bubbling type' of essentially the following form

$$u(t,x) = \lambda^{\alpha}(t)Q(\lambda(t)x) + \epsilon(t,x)$$

where $\lambda(t)$ blows up either in finite or infinite time, while $\epsilon(t,x)$ stays 'regular' and bounded.

• Usually the bulk profile Q(x) is either a stationary or even static solution of the problem.

Bubbling off dynamics

 Consider an evolution equation of either wave or Schrodinger type

$$-u_{tt} + \triangle u = F(u, \nabla_{t, \times} u)$$

$$iu_t + \triangle u = G(u)$$

We are interested in solutions of a 'bubbling type' of essentially the following form

$$u(t,x) = \lambda^{\alpha}(t)Q(\lambda(t)x) + \epsilon(t,x)$$

where $\lambda(t)$ blows up either in finite or infinite time, while $\epsilon(t,x)$ stays 'regular' and bounded.

- Usually the bulk profile Q(x) is either a stationary or even static solution of the problem.
- Smoothness of solution before blow up : only require smoothness H^s -class in which problem is strongly locally well-posed, i. e. not just C^{∞} -data.

L²-Critical NLS

 \bullet L^2 -critical NLS, for example in one spatial dimension given by

$$iu_t + u_{xx} = -|u|^4 u,$$

admits static solution $Q(x) = \frac{(\frac{3}{2})^{\frac{1}{4}}}{\cosh^{\frac{1}{2}}(\frac{x}{2})}$. Application of suitable pseudo-conformal transformation leads to

$$u(t,x)=t^{-\frac{1}{2}}e^{\frac{x^2}{4it}}Q(\frac{x}{t})$$

L²-Critical NLS

 \bullet L^2 -critical NLS, for example in one spatial dimension given by

$$iu_t + u_{xx} = -|u|^4 u,$$

admits static solution $Q(x) = \frac{(\frac{3}{2})^{\frac{1}{4}}}{\cosh^{\frac{1}{2}}(\frac{x}{2})}$. Application of suitable pseudo-conformal transformation leads to

$$u(t,x)=t^{-\frac{1}{2}}e^{\frac{x^2}{4it}}Q(\frac{x}{t})$$

• Application of inherent symmetry leads to a very rigid blow up type (precisely one blow up rate).

L²-Critical NLS

 \bullet L^2 -critical NLS, for example in one spatial dimension given by

$$iu_t + u_{xx} = -|u|^4 u,$$

admits static solution $Q(x) = \frac{(\frac{3}{2})^{\frac{1}{4}}}{\cosh^{\frac{1}{2}}(\frac{x}{2})}$. Application of suitable pseudo-conformal transformation leads to

$$u(t,x)=t^{-\frac{1}{2}}e^{\frac{x^2}{4it}}Q(\frac{x}{t})$$

- Application of inherent symmetry leads to a very rigid blow up type (precisely one blow up rate).
- Most 'natural problems' don't admit such inherent algebraic symmetries to infer bubbling off blow up. Nonetheless, the latter is quite ubiquitous.

Models for Bubbling off dynamics

 Key examples which are typically Hamiltonian and also critical:

Critical Wave Maps :
$$-u_{tt} + u_{rr} + \frac{1}{r}u_r = \frac{\sin 2u}{2r^2}$$
Critical focussing NLW on \mathbf{R}^{3+1} : $-u_{tt} + \Delta u = -u^5$
Critical Yang-Mills : $-u_{tt} + \Delta u = -\frac{2}{r^2}u(1-u^2)$
critical Schrodinger Maps : $u_t = u \times \Delta u$
Energy critical NLS on \mathbf{R}^{3+1} : $iu_t + \Delta u = -|u|^4 u$

Models for Bubbling off dynamics

 Key examples which are typically Hamiltonian and also critical:

Critical Wave Maps :
$$-u_{tt} + u_{rr} + \frac{1}{r}u_r = \frac{\sin 2u}{2r^2}$$
Critical focussing NLW on \mathbf{R}^{3+1} : $-u_{tt} + \triangle u = -u^5$
Critical Yang-Mills : $-u_{tt} + \triangle u = -\frac{2}{r^2}u(1-u^2)$
critical Schrodinger Maps : $u_t = u \times \triangle u$
Energy critical NLS on \mathbf{R}^{3+1} : $iu_t + \triangle u = -|u|^4 u$

Outlier example :
 Hyperbolic Vanishing mean curvature flow :

$$\sum_{\alpha=0}^{n} \partial_{\alpha} \left(\frac{\partial^{\alpha} u}{\sqrt{1 + \partial_{\alpha} u \partial^{\alpha} u}} \right) = 0, \ n = 8.$$
 (1)

Bubbling off blow up for WM I

• Specific example : co-rotational critical Wave Maps $\phi: \mathbb{R}^{2+1} \longrightarrow S^2$:

$$-\phi_{tt} + \triangle \phi = \phi(|\phi_t|^2 - |\nabla_x \phi|^2), \ \phi \in S^2 \hookrightarrow \mathbf{R}^3.$$

$$\phi(t, x) = \begin{pmatrix} \cos \theta \sin u \\ \sin \theta \sin u \\ \cos u \end{pmatrix}, \ u = u(t, r) \ r = |x|.$$

implies the equation

$$-u_{tt} + u_{rr} + \frac{1}{r}u_r = \frac{\sin 2u}{2r^2}.$$
 (2)

Bubbling off blow up for WM I

• Specific example : co-rotational critical Wave Maps $\phi: \mathbb{R}^{2+1} \longrightarrow S^2:$

$$-\phi_{tt} + \Delta\phi = \phi(|\phi_t|^2 - |\nabla_x \phi|^2), \ \phi \in S^2 \hookrightarrow \mathbf{R}^3.$$

$$\phi(t, x) = \begin{pmatrix} \cos\theta \sin u \\ \sin\theta \sin u \\ \cos u \end{pmatrix}, \ u = u(t, r) \ r = |x|.$$

implies the equation

$$-u_{tt} + u_{rr} + \frac{1}{r}u_r = \frac{\sin 2u}{2r^2}.$$
 (2)

• Model admits non-trivial finite energy static solution $Q(r) = 2 \arctan r$, corresponding to stereographic projection.

Bubbling off blow up for WM II

• Two approaches to building finite time bubbling off blow up.

Bubbling off blow up for WM II

- Two approaches to building finite time bubbling off blow up.
- Raphael-Rodnianski('09) approach: exhibits open data set within sufficiently smooth class of (co-rotational) data resulting in solutions of the form

$$u(t,r) = Q(\lambda(t)r) + \epsilon(t,r), \ \lambda(t) = (T-t)^{-1}e^{\sqrt{\log(T-t)}}.$$

The result implies the same blow up rate for an open data set, but the topology is important. The following appears a natural conjecture:

Conjecture: Stable finite time blow up solutions of (2) with C^{∞} -data are of the preceding form.

Bubbling off blow up for WM II

- Two approaches to building finite time bubbling off blow up.
- Raphael-Rodnianski('09) approach: exhibits open data set within sufficiently smooth class of (co-rotational) data resulting in solutions of the form

$$u(t,r) = Q(\lambda(t)r) + \epsilon(t,r), \ \lambda(t) = (T-t)^{-1}e^{\sqrt{\log(T-t)}}.$$

The result implies the same blow up rate for an open data set, but the topology is important. The following appears a natural conjecture :

Conjecture: Stable finite time blow up solutions of (2) with C^{∞} -data are of the preceding form.

 One may also conjecture quantized set of blow up rates corresponding to sufficiently smooth data and unstable blow up.

Bubbling off blow up for WM III

• Important to note: the Raphael-Rodnianski solutions live in a strictly sub-critical topology, namely H^2 , while the problem is actually strongly locally well-posed in H^1 .

Bubbling off blow up for WM III

- Important to note: the Raphael-Rodnianski solutions live in a strictly sub-critical topology, namely H^2 , while the problem is actually strongly locally well-posed in H^1 .
- Can be contrasted with the following theorem of Donninger('16) for the ODE-type blow up solutions $u(t,x)=c(T-t)^{-\frac{1}{2}}$ for the energy-critical NLW on \mathbf{R}^{3+1}

$$-u_{tt}+\triangle u=-u^5.$$

Theorem(Donninger'16) : The ODE blow up solutions are stable under radial H^1 -perturbations

Bubbling off blow up for WM III

- Important to note: the Raphael-Rodnianski solutions live in a strictly sub-critical topology, namely H^2 , while the problem is actually strongly locally well-posed in H^1 .
- Can be contrasted with the following theorem of Donninger('16) for the ODE-type blow up solutions $u(t,x)=c(T-t)^{-\frac{1}{2}}$ for the energy-critical NLW on \mathbf{R}^{3+1}

$$-u_{tt} + \triangle u = -u^5.$$

Theorem(Donninger'16): The ODE blow up solutions are stable under radial H^1 -perturbations

• This is the strongest stability statement one can hope for since H^1 is the largest natural space in which the problem is locally well-posed.

The phenomenon of a continuum of blow up rates

Back to co-rotational critical Wave Maps into S², another approach for finite time bubbling off blow up due to K.-Schlag-Tataru('06): exhibits solutions of the form

$$u(t,r) = Q(\lambda(t)r) + \epsilon(t,r), \ \lambda(t) = t^{-1-\nu}, \ \epsilon \in C^{\nu+\frac{1}{2}-} \cap H^{1+\nu-}.$$

Any $\nu>0$ is admissible. Original result gave no stability, even of conditional type.

The phenomenon of a continuum of blow up rates

Back to co-rotational critical Wave Maps into S², another approach for finite time bubbling off blow up due to K.-Schlag-Tataru('06): exhibits solutions of the form

$$u(t,r)=Q(\lambda(t)r)+\epsilon(t,r),\ \lambda(t)=t^{-1-\nu},\ \epsilon\in C^{\nu+\frac{1}{2}-}\cap H^{1+\nu-}.$$

Any $\nu > 0$ is admissible. Original result gave no stability, even of conditional type.

• Two peculiar features: (1) continuum of blow up rates. (2) The solutions are only of finite regularity, depending on the blow up rate.

The phenomenon of a continuum of blow up rates

Back to co-rotational critical Wave Maps into S², another approach for finite time bubbling off blow up due to K.-Schlag-Tataru('06): exhibits solutions of the form

$$u(t,r) = Q(\lambda(t)r) + \epsilon(t,r), \ \lambda(t) = t^{-1-\nu}, \ \epsilon \in C^{\nu+\frac{1}{2}-} \cap H^{1+\nu-}.$$

Any $\nu > 0$ is admissible. Original result gave no stability, even of conditional type.

- Two peculiar features: (1) continuum of blow up rates. (2) The solutions are only of finite regularity, depending on the blow up rate.
- More precisely, the solutions are of class C^{∞} in the inside of light cone |x| < |t| centered at singularity, but experience a shock on the light cone |x| = |t|.

• There are two key steps in the construction : (1) construction of an approximate solution u_{approx} . Here the shock on light cone already manifests itself. (2) Completion of approximate solution to an exact one via spectral methods.

- There are two key steps in the construction: (1) construction
 of an approximate solution u_{approx}. Here the shock on light
 cone already manifests itself. (2) Completion of approximate
 solution to an exact one via spectral methods.
- Approximate solution : distinguish the regions $r \ll |t|$ (elliptic region) and $r \sim |t|$ (wave region).

- There are two key steps in the construction: (1) construction
 of an approximate solution u_{approx}. Here the shock on light
 cone already manifests itself. (2) Completion of approximate
 solution to an exact one via spectral methods.
- Approximate solution : distinguish the regions $r \ll |t|$ (elliptic region) and $r \sim |t|$ (wave region).
- In the elliptic region, one can make a formal power series ansatz

$$u_{approx} = \sum_{j>0} t^{\nu j} f_j(R), \ R = \lambda(t) r.$$

- There are two key steps in the construction: (1) construction
 of an approximate solution u_{approx}. Here the shock on light
 cone already manifests itself. (2) Completion of approximate
 solution to an exact one via spectral methods.
- Approximate solution : distinguish the regions $r \ll |t|$ (elliptic region) and $r \sim |t|$ (wave region).
- In the elliptic region, one can make a formal power series ansatz

$$u_{approx} = \sum_{j \geq 0} t^{\nu j} f_j(R), \ R = \lambda(t) r.$$

• In the wave region introduce $a = \frac{r}{t}$, and write

$$u_{approx} = \sum_{j>0} t^{\nu j} g_j(R, a)$$

where the g_j admit suitable Puiseux type expansion in a reflecting the shock across the light cone.

 All of the models mentioned at the beginning admit analoga of the KST blow ups.

- All of the models mentioned at the beginning admit analoga of the KST blow ups.
- **Theorem**(Gal. Perelman('12)) : The critical Schrodinger Maps $u: \mathbb{R}^{2+1} \longrightarrow S^2$ admits finite time blow up solutions of the form

$$u(t,x) = Q(\lambda(t)x) + \zeta(t,x), \ \lambda(t) = t^{-\frac{1}{2}-\nu}, \nu > 1.$$

- All of the models mentioned at the beginning admit analoga of the KST blow ups.
- **Theorem**(Gal. Perelman('12)) : The critical Schrodinger Maps $u: \mathbb{R}^{2+1} \longrightarrow S^2$ admits finite time blow up solutions of the form

$$u(t,x) = Q(\lambda(t)x) + \zeta(t,x), \ \lambda(t) = t^{-\frac{1}{2}-\nu}, \nu > 1.$$

• The restriction $\nu > 1$ can probably be relaxed to $\nu > 0$.

- All of the models mentioned at the beginning admit analoga of the KST blow ups.
- **Theorem**(Gal. Perelman('12)) : The critical Schrodinger Maps $u: \mathbb{R}^{2+1} \longrightarrow S^2$ admits finite time blow up solutions of the form

$$u(t,x) = Q(\lambda(t)x) + \zeta(t,x), \ \lambda(t) = t^{-\frac{1}{2}-\nu}, \nu > 1.$$

- The restriction $\nu > 1$ can probably be relaxed to $\nu > 0$.
- To build approximate solution, one needs to distinguish between elliptic region $r \ll t^{\frac{1}{2}}$, the Schrodinger wave region $r \sim t^{\frac{1}{2}}$ and the far region $r \gg t^{\frac{1}{2}}$.

- All of the models mentioned at the beginning admit analoga of the KST blow ups.
- **Theorem**(Gal. Perelman('12)) : The critical Schrodinger Maps $u: \mathbb{R}^{2+1} \longrightarrow S^2$ admits finite time blow up solutions of the form

$$u(t,x) = Q(\lambda(t)x) + \zeta(t,x), \ \lambda(t) = t^{-\frac{1}{2}-\nu}, \nu > 1.$$

- The restriction $\nu > 1$ can probably be relaxed to $\nu > 0$.
- To build approximate solution, one needs to distinguish between elliptic region $r \ll t^{\frac{1}{2}}$, the Schrodinger wave region $r \sim t^{\frac{1}{2}}$ and the far region $r \gg t^{\frac{1}{2}}$.
- By analyzing the approximate solution in far region, Perelman can extract the leading radiation part that is left over at the singularity formation.

A further natural candidate which blends wave and Schrodinger

• The critical Zakharov system on \mathbb{R}^{4+1} :

$$i\partial_t u + \triangle u = -nu,$$

 $(-\partial_{tt} + \triangle)u = \triangle(|u|^2)$

A further natural candidate which blends wave and Schrodinger

• The critical Zakharov system on **R**⁴⁺¹ :

$$i\partial_t u + \triangle u = -nu,$$

 $(-\partial_{tt} + \triangle)u = \triangle(|u|^2)$

• Admits the static solution $(u, n) = (W, -W^2)$ where (same as for energy critical NLS on \mathbb{R}^{4+1})

$$W(x) = \frac{1}{1 + \frac{|x|^2}{8}}.$$

A further natural candidate which blends wave and Schrodinger

• The critical Zakharov system on \mathbb{R}^{4+1} :

$$i\partial_t u + \triangle u = -nu,$$

 $(-\partial_{tt} + \triangle)u = \triangle(|u|^2)$

• Admits the static solution $(u, n) = (W, -W^2)$ where (same as for energy critical NLS on \mathbb{R}^{4+1})

$$W(x) = \frac{1}{1 + \frac{|x|^2}{8}}.$$

• Conjecture : Zakharov admits a finite time bubbling off blow up where

$$u(t,x) = e^{i\alpha(t)}\lambda(t)W(\lambda(t)x) + \zeta(t,x), \ \lambda(t) = t^{-\frac{1}{2}-\nu},$$

and $\nu > \nu_* > 0$

• The issue of stability: the following appears reasonable but non-trivial since due to a nonlinear instability: **Conjecture**: A KST type blow up solution with $\lambda(t) = t^{-1-\nu}$ and ν large is unstable, but stable along a manifold of finite co-dimension in a sufficiently smooth class of perturbations.

- The issue of stability: the following appears reasonable but non-trivial since due to a nonlinear instability: **Conjecture**: A KST type blow up solution with $\lambda(t) = t^{-1-\nu}$ and ν large is unstable, but stable along a manifold of finite co-dimension in a sufficiently smooth class of perturbations.
- Recent progress on the question of stability for KST blowup in context of critical Wave Maps into S^2 . The case of $\lambda(t)=t^{-1-\nu}$ with $\nu>0$ small was considered.

- The issue of stability: the following appears reasonable but non-trivial since due to a nonlinear instability: **Conjecture**: A KST type blow up solution with $\lambda(t) = t^{-1-\nu}$ and ν large is unstable, but stable along a manifold of finite co-dimension in a sufficiently smooth class of perturbations.
- Recent progress on the question of stability for KST blowup in context of critical Wave Maps into S^2 . The case of $\lambda(t)=t^{-1-\nu}$ with $\nu>0$ small was considered.
- Recall that these solutions experience shock across light cone of the form $(1-a)^{\frac{1}{2}+\nu}\log(1-a), a=\frac{r}{|t|}$.

- The issue of stability: the following appears reasonable but non-trivial since due to a nonlinear instability: **Conjecture**: A KST type blow up solution with $\lambda(t) = t^{-1-\nu}$ and ν large is unstable, but stable along a manifold of finite co-dimension in a sufficiently smooth class of perturbations.
- Recent progress on the question of stability for KST blowup in context of critical Wave Maps into S^2 . The case of $\lambda(t)=t^{-1-\nu}$ with $\nu>0$ small was considered.
- Recall that these solutions experience shock across light cone of the form $(1-a)^{\frac{1}{2}+\nu}\log(1-a), a=\frac{r}{|t|}$.
- Displacing this shock 'costs a lot', i. e. requires a rough perturbation of the data. Hence natural to consider smooth perturbations which 'cannot displace' the shock.

Stability of KST blow up for critical WM into S^2

• Theorem(K.-Miao '19) The KST finite time blow up solutions for critical co-rotational wave maps $u: \mathbf{R}^{2+1} \longrightarrow S^2$ are stable under sufficiently smooth and small co-rotational perturbations, provided $\nu>0$ is sufficiently small. More precisely if $\nu>0$ is sufficiently small and $u_{\nu}(t,x)$ a KST blow up solution with $\lambda(t)=t^{-1-\nu}$, constructed on some interval $[t_0,0)$, and if (ϵ_0,ϵ_1) is sufficiently small in the $H^4\times H^3$ -norm, then the data

$$u_{\nu}[t_0] + (\epsilon_0, \epsilon_1)$$

lead to a finite time blow up solution of the form

$$u(t,r) = Q(\lambda(t)r) + \epsilon(t,r)$$

with $\epsilon \in H^{1+\nu-}$. In particular, the perturbed solution blows up in the same space-time location (*rigidity of blow up*).

Comments on result

• One key difficulty in proof has to do with the low regularity (just H^{1+}) of the solution u_{ν} being perturbed. On the other hand, the low regularity is solely linked to the shock along the light cone.

Comments on result

- One key difficulty in proof has to do with the low regularity (just H^{1+}) of the solution u_{ν} being perturbed. On the other hand, the low regularity is solely linked to the shock along the light cone.
- Remarkable feature of co-rotational reduction : no derivatives in nonlinearity :

$$\Box u = \frac{\sin 2u}{2r^2} \text{ versus } \Box u = u(|u_t|^2 - |\nabla_x u|^2).$$

Comments on result

- One key difficulty in proof has to do with the low regularity (just H^{1+}) of the solution u_{ν} being perturbed. On the other hand, the low regularity is solely linked to the shock along the light cone.
- Remarkable feature of co-rotational reduction : no derivatives in nonlinearity :

$$\Box u = \frac{\sin 2u}{2r^2} \text{ versus } \Box u = u(|u_t|^2 - |\nabla_x u|^2).$$

• Applying Duhamel parametrix to source term $\frac{\sin 2u}{2r^2}$ leads to terms of regularity H^{2+} , which gives a key boost in regularity.

• Up until recently, the stability of either the KST type blow up or the Raphael-Rodnianski blow up for the co-rotational critical Wave Maps into S^2 and under generic, non-equivariant perturbations has been completely open. In fact, for the (Ra-Ro) solutions it is conjectured that they are unstable.

- Up until recently, the stability of either the KST type blow up or the Raphael-Rodnianski blow up for the co-rotational critical Wave Maps into S^2 and under generic, non-equivariant perturbations has been completely open. In fact, for the (Ra-Ro) solutions it is conjectured that they are unstable.
- For the KST blow up u_{ν} at low ν (where $\lambda(t)=t^{-1-\nu}$ and solutions are at regularity $H^{1+\nu-}$), even if one uses very smooth perturbations (ϵ_0,ϵ_1) of the data, the interactions of u_{ν} with perturbation in the nonlinearity

$$u(|u_t|^2-|\nabla u|^2)$$

lead to terms of same regularity as u_{ν} . Modulations needed, but only of the kind preserving the locus of the shock.

• Theorem(K.-Miao-Schlag '20) The KST finite time blow up solutions for critical co-rotational wave maps $u: \mathbf{R}^{2+1} \longrightarrow S^2$ are stable under sufficiently smooth and small generic perturbations, provided $\nu>0$ is sufficiently small. The perturbed solutions are of the form

$$u(t,x) = \mathcal{R}_{h(t)}^{\alpha(t),\beta(t)} \mathcal{L}_{v(t)} \mathcal{S}_{c(t)} (Q(\lambda(t)r) + \epsilon(t,x)).$$

where $\mathcal{R}_{h(t)}^{\alpha(t),\beta(t)}$ represents a suitable combination of rotations on the target in terms of Euler angles, $\mathcal{L}_{v(t)}$ a suitable Lorentz transform, and $\mathcal{S}_{c(t)}$ a suitable scaling transformation.

 Key aspects of this work : non-equivariant setting forces one to work in suitable frame for tangent bundle :

$$\left(\begin{array}{c}
\cos\theta\cos U \\
\sin\theta\cos U \\
-\sin U
\end{array}\right), \left(\begin{array}{c}
-\sin\theta \\
\cos\theta \\
0
\end{array}\right)$$

 Key aspects of this work : non-equivariant setting forces one to work in suitable frame for tangent bundle :

$$\left(\begin{array}{c}
\cos\theta\cos U \\
\sin\theta\cos U \\
-\sin U
\end{array}\right), \left(\begin{array}{c}
-\sin\theta \\
\cos\theta \\
0
\end{array}\right)$$

• If we write $\phi_1 E_1 + \phi_2 E_2$ for the tangential part of perturbation, then. $\phi_1 \pm i\phi_2$ can be decomposed into Fourier series with respect to θ , resulting in

$$\epsilon_{\pm}(n) = \phi_1(n) \pm i\phi_2(n).$$

• Key aspects of this work : non-equivariant setting forces one to work in suitable frame for tangent bundle:

$$\left(\begin{array}{c}
\cos\theta\cos U \\
\sin\theta\cos U \\
-\sin U
\end{array}\right), \left(\begin{array}{c}
-\sin\theta \\
\cos\theta \\
0
\end{array}\right)$$

• If we write $\phi_1 E_1 + \phi_2 E_2$ for the tangential part of perturbation, then. $\phi_1 \pm i\phi_2$ can be decomposed into Fourier series with respect to θ , resulting in

$$\epsilon_{\pm}(n) = \phi_1(n) \pm i\phi_2(n).$$

Schrodinger operators

$$H_n^{\pm} = \partial_{RR} + \frac{1}{R} \partial_R - f_n(R) \pm g_n(R), \ f_n = \frac{n^2 + 1}{R^{2^{-1}}} - \frac{8}{(1 + R^2)^2}$$

• We require an asymptotic (in n) spectral analysis for these operators, in particular asymptotics for the generalized eigenfunctions $\phi_n(R;\xi)$.

- We require an asymptotic (in n) spectral analysis for these operators, in particular asymptotics for the generalized eigenfunctions $\phi_n(R;\xi)$.
- 'Semiclassical variable' $h = \frac{1}{|n|+1}$, $\alpha = h \cdot E$,

$$\phi_n(R;\xi) = h^{\frac{1}{3}} \alpha^{-\frac{1}{2}} q^{-\frac{1}{4}}(\tau) \operatorname{Ai}(h^{-\frac{2}{3}}\tau) (1 + ha_0(-\tau,\alpha,h)).$$

- We require an asymptotic (in n) spectral analysis for these operators, in particular asymptotics for the generalized eigenfunctions $\phi_n(R;\xi)$.
- 'Semiclassical variable' $h = \frac{1}{|n|+1}$, $\alpha = h \cdot E$,

$$\phi_n(R;\xi) = h^{\frac{1}{3}} \alpha^{-\frac{1}{2}} q^{-\frac{1}{4}}(\tau) \operatorname{Ai}(h^{-\frac{2}{3}}\tau) (1 + ha_0(-\tau,\alpha,h)).$$

• For each mode *n*, one tries to mimic the estimates in the co-rotational case (as in K.-Miao).

- We require an asymptotic (in n) spectral analysis for these operators, in particular asymptotics for the generalized eigenfunctions $\phi_n(R;\xi)$.
- 'Semiclassical variable' $h = \frac{1}{|n|+1}$, $\alpha = h \cdot E$,

$$\phi_n(R;\xi) = h^{\frac{1}{3}}\alpha^{-\frac{1}{2}}q^{-\frac{1}{4}}(\tau)\operatorname{Ai}(h^{-\frac{2}{3}}\tau)(1 + ha_0(-\tau,\alpha,h)).$$

- For each mode n, one tries to mimic the estimates in the co-rotational case (as in K.-Miao).
- The symmetries of the problem lead to certain algebraic instabilities which manifest in the Fourier modes $n=0,\pm 1$. This is where the modulations are being used.

Outlook : classification in terms of radiation at blow up time?

 Recent(2019) work by Jendrej-Lawrie-Rodriguez: write co-rotational WM blow up solution as

$$u(t,r) = Q(\lambda(t)r) + u_*(r) + g(t)$$

where $\lim_{t\to 0} g(t) = 0$. Then if

$$u_*(r) = qr^{\nu} + o(r^{\nu}), \ \nu > \frac{9}{2},$$

then $\lambda(t) \sim \frac{|\log t|}{t^{\nu+1}}$.

Outlook : classification in terms of radiation at blow up time?

 Recent(2019) work by Jendrej-Lawrie-Rodriguez: write co-rotational WM blow up solution as

$$u(t,r) = Q(\lambda(t)r) + u_*(r) + g(t)$$

where $\lim_{t\to 0} g(t) = 0$. Then if

$$u_*(r) = qr^{\nu} + o(r^{\nu}), \ \nu > \frac{9}{2},$$

then $\lambda(t) \sim \frac{|\log t|}{t^{\nu+1}}$.

• KST solutions have similar radiation part (but also with $\nu>0$ very small). Probably similar classification?

Outlook : classification in terms of radiation at blow up time?

 Recent(2019) work by Jendrej-Lawrie-Rodriguez: write co-rotational WM blow up solution as

$$u(t,r) = Q(\lambda(t)r) + u_*(r) + g(t)$$

where $\lim_{t\to 0} g(t) = 0$. Then if

$$u_*(r) = qr^{\nu} + o(r^{\nu}), \ \nu > \frac{9}{2},$$

then $\lambda(t) \sim \frac{|\log t|}{t^{\nu+1}}$.

- KST solutions have similar radiation part (but also with $\nu > 0$ very small). Probably similar classification?
- How about more general radiation part asymptotics near
 r = 0. More exotic blow up rates?

Outlook: multibubble solutions; how much freedom?

• Precise characterization of two bubble solutions for equivariant wave maps and under a minimal energy condition (threshold blow up) by Jendrej-Lawriew ('20) for $k \ge 2$ and in the co-rotational case k=1 by Rodriguez('18). Rigid blow up rates

Outlook: multibubble solutions; how much freedom?

- Precise characterization of two bubble solutions for equivariant wave maps and under a minimal energy condition (threshold blow up) by Jendrej-Lawriew ('20) for $k \ge 2$ and in the co-rotational case k = 1 by Rodriguez('18). Rigid blow up rates.
- In these scenarios only one bubble collapses while the other one converges to a 'limiting bubble'.

Outlook: multibubble solutions; how much freedom?

- Precise characterization of two bubble solutions for equivariant wave maps and under a minimal energy condition (threshold blow up) by Jendrej-Lawriew ('20) for $k \ge 2$ and in the co-rotational case k = 1 by Rodriguez('18). Rigid blow up rates.
- In these scenarios only one bubble collapses while the other one converges to a 'limiting bubble'.
- Can there be multi-bubble solutions where all bubbles collapse in finite or infinite time? This will require more than the threshold energy. Is there a link between the topology one is working with and the possible collapsing rates?