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Motivation

Quantum cellular automata model strictly local dynamics. However:

Lieb-Robinson: Local Hamiltonian evolution obeys approximate light cone.

For short-range interactions, there is Lieb- Robinson velocity v such that
support of local operators grows as vt, up to exponential tails.

Can the theory of QCAs be generalized to this setting?
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Motivation and summary

Physics question: Are local dynamics generated by local Hamiltonians?
▶ That is, can we find converse to Lieb-Robinson bounds?
▶ How about lattice translations?
▶ Boundary dynamics generated by bulk local Hamiltonian?

Mathematics question: Classify approximately local dynamics.

Our results: Approximately local dynamics in 1D have structure & index
theory similar to QCAs. In particular, obtain a converse to LR bounds.

3 / 22



Motivation and summary

Physics question: Are local dynamics generated by local Hamiltonians?
▶ That is, can we find converse to Lieb-Robinson bounds?
▶ How about lattice translations?
▶ Boundary dynamics generated by bulk local Hamiltonian?

Mathematics question: Classify approximately local dynamics.

Our results: Approximately local dynamics in 1D have structure & index
theory similar to QCAs. In particular, obtain a converse to LR bounds.

3 / 22



Motivation and summary

Physics question: Are local dynamics generated by local Hamiltonians?
▶ That is, can we find converse to Lieb-Robinson bounds?
▶ How about lattice translations?
▶ Boundary dynamics generated by bulk local Hamiltonian?

Mathematics question: Classify approximately local dynamics.

Our results: Approximately local dynamics in 1D have structure & index
theory similar to QCAs. In particular, obtain a converse to LR bounds.

3 / 22



Quantum Cellular Automata
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Setup: Infinite spin chains
Cd

n︸ ︷︷ ︸
X

It is convenient to work in the Heisenberg picture:

An = Mat(d) ; AX =
⊗
n∈X

An ; Aloc =
⋃

X∈Λ

AX

Quasi-local C∗-algebra:
A = Aloc

∥·∥
= “

⊗
n∈Z

An”

We can also define A⩾n = A{n,n+1,... } ⊆ A, etc.

Local dynamics are naturally modeled by automorphisms α : A → A.
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Quantum cellular automata (QCAs) [Margolus, Schumacher-Werner, . . . ]

Quasi-local algebra on infinite 1D lattice:

A =
⊗
n∈Z

An, An = Mat(d)

An automorphism α : A → A is a quantum cellular automaton (QCA)
or locality preserving unitary (LPU) with radius R > 0 if:

α(An) ⊆ A{n−R,...,n+R}

That is, the support of any local operator grows by at most R:
R︷︸︸︷ R︷︸︸︷

α
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Classification of QCAs in 1D

Examples:

Quantum circuit Shift

Theorem (Gross-Nesme-Vogts-Werner, GNVW):
▶ Any QCA is a composition of circuit and shift.
▶ Shift cannot be implemented by circuit.
▶ QCAs modulo circuits are classified by quantized index.
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Index of QCAs

GNVW gave axiomatic, algebraic, and analytic definitions. Intuively:

index = amount of quantum information flowing right
− amount of quantum information flowing left

Classification of 1D QCAs
ind U ≡ 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑓𝑙𝑜𝑤𝑖𝑛𝑔 𝑟𝑖𝑔ℎ𝑡 − 𝑎𝑚𝑜𝑢𝑛𝑡 𝑓𝑙𝑜𝑤𝑖𝑛𝑔 𝑙𝑒𝑓𝑡

How to define the index for shift QCAs:

index = log d1 index = − log d2

index = log d1 − log d2 = log d1
d2

This intuition can be made precise. . .
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(Re)defining the index
L ′︷ ︸︸ ︷ R ′︷ ︸︸ ︷

︸ ︷︷ ︸
L

︸ ︷︷ ︸
R

α

Cut chain in halves and consider corresponding Choi state ρLRL ′R ′ . Then:

indexα =
1
2
(
I(L : R ′) − I(L ′ : R)

)
where I(A : B) = S(ρAB∥ρA ⊗ ρB) is the quantum mutual information.

Properties:
▶ quantized: indexα ∈ Z[{log pi }], pi = prime factors of local dimension
▶ additive: indexα⊗ β = indexα+ indexβ
▶ robust: if α ≈ β then indexα = indexβ
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Approximately Locality-Preserving Unitaries
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Approximately locality-preserving unitaries (ALPUs)

Idea: Replace strict locality → Lieb-Robinson type bounds.

b

α

An automorphism α : A → A is an approximately locality preserving
unitary (ALPU) with f (r)-tails if for all X ⊆ Z and all r > 0:

∀b ∈ AX : ∃c ∈ Ar -Neighborhood(X) : ∥α(b) − c∥ ⩽ f (r)∥b∥
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Classification of ALPUs?

Why do we care?
▶ A theory of local dynamics should allow local Hamiltonian dynamics. . .
▶ Converse to Lieb-Robinson bounds?
▶ Is there a local Hamiltonian that generates lattice translation (shift)?
▶ Stability of chiral many-body localized 2D Floquet systems? [Po et al]
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But: Can always approximate by circuits. How about ALPUs?
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Our results: Classification of ALPUs

ALPUs modulo (time-dependent) quasi-local Hamiltonian dynamics
∼= QCAs modulo circuits

Theorem:
▶ ALPUs are classified by index that is quantized, additive, robust:

indexα = indexβ iff α = quasi-local Hamiltonian dynamics ◦ β

iff α, β can be ‘blended’

▶ Any ALPU is composition of quasi-local Hamilt. dynamics and shift.
▶ Any ALPU can be approximated by a sequence of QCAs.

▶ Converse to Lieb-Robinson bound: ALPU generated by quasi-local
Hamiltonian iff index = 0. Always the case for finite open chain!

▶ Shift cannot be approximated by quasi-local Hamiltonian dynamics.
13 / 22
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Proof Ideas
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A first attempt

Suppose we have an ALPU:

α

n

For any fixed n, can truncate tails to obtain approximate morphism

An → A{n−r,...,n+r}.

By a version of Ulam stability, can even find exact such morphism nearby.

However, for different sites n, the images of these morphisms
need not commute → unclear how to patch together!

Need a more clever strategy. . .
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Main tool: Stability of inclusion

Theorem (Christensen, 80s): If B ⊆ε C for hyperfinite von Neumann
algebras and ε < 1

8 , then there is a unitary u ∈ (B ∪ C) ′′ such that

uBu∗ ⊆ C and ∥u − I∥ ⩽ 12ε.

We extend this to show that, moreover:
▶ If x ∈δ B and x ∈δ C, then ∥x − uxu∗∥ = O(δ∥x∥).
▶ If x ∈δ B ′ and x ∈δ C ′, then ∥x − uxu∗∥ = O(δ∥x∥).

Applied to ALPU, can localize image of any region, while preserving tails.
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▶ If x ∈δ B ′ and x ∈δ C ′, then ∥x − uxu∗∥ = O(δ∥x∥).

Applied to ALPU, can localize image of any region, while preserving tails.
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How to use this?

Key idea: For any fixed cut, can apply unitaries near identity to construct
automorphism that looks like QCA near this cut:

αn

n n+1

Left and right are decoupled – stronger than what we had before!

This allows us to glue different αn, αn+2, . . . together.

Approximation Theorem: For any 1D ALPU α, there are QCAs βr of
radius 2r such that βr → α strongly. In fact, if f (r) are the tails of α,

∥(α− βr )AX ∥ ⩽ Cf f (r) diam(X )

r .
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1. How to create QCA near cut?
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1. How to create QCA near cut?

α

n

Consider an ALPU that is ε-nearest neighbor. In particular:

α(A⩾n) ⊆ε A⩾n−1

By Christensen’s theorem, we can find unitary u ≈ I s.th.

uα(A⩾n)u∗ ⊆ A⩾n−1.

We can visualize this as above. . .
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1. How to create QCA near cut?

α =

n

α ′

The new ALPU α ′ is still ε ′-nearest neighbor. In particular:

α ′(A⩾n) ⊇ε ′ A⩾n+1

and both algebras are in A⩾n−1. Thus, the latter contains unitary v s.th.

vα ′(A⩾n)v∗ ⊇ A⩾n+1

and hence

vα ′(A⩽n−1)v∗ ⊆ A⩽n

Key fact: Second unitary does not destroy locality achieved in first step!
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1. How to create QCA near cut?

α ′ =

n

α ′′

We continue in this way, successively rotating images and preimages. . .

. . . until we obtain automorphism that looks like a QCA near fixed cut:
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2. Why can we glue?

Compare two such local QCAs:

αn

αn+2

≈

n n+2

We can glue the red and the blue morphism by applying a unitary

u ∈ An+1,n+2.

Inductively we obtain a QCA.
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Index of an ALPU

Thus we proved that any ALPU α in 1D can be approximated by sequence
of QCAs βr (sufficiently fast). This allows us to define the index:

indexα := lim
r→∞ indexβr

▶ well-defined, independent of choice of {βr }

▶ inherits properties of GNVW index: quantized, additive, continuous, . . .

If O( 1
r1+δ )-tails, can also compute as mutual information difference:

indexα =
1
2
(
I(L : R ′) − I(L ′ : R)

)
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How to obtain time-dependent quasi-local Hamiltonians?

▶ Start with ALPU of indexα = 0.
▶ Approximate α by QCA β1 of same index. Thus β1 is circuit and can

be implemented by time-dependent local Hamiltonian evolution.
▶ Repeat with β−1

1 α.

For an appropriate “schedule”, obtain time-dependent Hamiltonian

H(t) =
∑

X
HX (t)

that is piecewise constant and has geometrically local interactions

∥HX (t)∥ = O(f (k) log k) with |X | = k ⩽ k(t).
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Summary and outlook

≈

Approximately locality preserving unitaries (ALPUs) in 1D have structure
& index theory generalizing the one of QCAs. In particular, implies a
converse to Lieb-Robinson bounds. Main techniques are stability results
for near inclusions of algebras. Many open problems:

▶ Periodic chain in 1D?
▶ Extension to high dimensions? 2D within reach. . .
▶ Beyond automorphisms: Is there a QCA near any “noisy” QCA?
▶ Other applications of stability results in QI?

Thank you for your attention!
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