
1

BIRS Virtually, 13 October 2021

Topology and Entanglement in Many-Body Systems

Spectral gaps, stability

and O(n) spin chains

Bruno Nachtergaele (UC Davis)

joint work with

Robert Sims (Arizona) and Amanda Young (MCQST-TUM)

Jakob Björnberg (Gothenburg), Peter Mühlbacher (Warwick),
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Quantum lattice systems
Here, ‘lattice’ is some nice discrete metric space (Γ, d), such as Zν with
the usual `1 distance, or a Delone subset of Rν .
For each x ∈ Γ, observables are finite-dimensional matrix algebra A{x};
for finite Λ ⊂ Γ,

AΛ =
⊗
x∈Λ

A{x}, Aloc =
⋃

finite Λ⊂Γ

AΛ, AΓ = Aloc
‖·‖
.

A ∈ AΛ is said to be supported in Λ, any A ∈ Aloc is a local observable,
and A ∈ AΓ are the quasi-local observables.
A system is defined by its Heisenberg dynamics τΦ

t , t ∈ R, in terms of an
interaction Φ: Φ(X ) = Φ(X )∗ ∈ AX , for all finite X ⊂ Γ, through the
derivation δ : Aloc → AΓ. Formally:

δ(A) =
∑
X

[Φ(X ),A];
d

dt
τΦ
t (A) = iδ(τΦ

t (A)), τΦ
0 = 1; τΦ

t = e itδ.

This requires sufficient decay of ‖Φ(X )‖ for large X ⊂ Γ to ensure δ is
well-defined and that its closure generates a group of automorphisms τΦ

t .
An invariant domain for δ will be strictly larger than Aloc but smaller
than AΓ.
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Locality, Quasi-Locality, Almost-Locality
By construction, for all A ∈ AΓ and any sequence Λn ↑ Γ, there exist
AΛn 3 An → A. A concrete sequence of local approximations of any
A ∈ AΓ can be obtained by using the conditional expectations ΠΛ:

ΠΛ = idAΛ
⊗ ρ �AΓ\Λ

, where ρ is the tracial state.

Given (Λn) (for example Λ = bx(n), n ≥ 0, balls centered at x ∈ Γ),
A ∈ AΓ, one has f , decreasing to 0, for which

‖A− ΠΛn(A)‖ ≤ ‖A‖f (n), n ≥ 1.

For a fixed sequence (Λn) and f , positive and decreasing to 0, we can
define

Af = {A ∈ AΓ | ∃C > 0, ‖A− ΠΛn(A)‖ ≤ C‖A‖f (n), all n ≥ 1}.

Useful relation connection between locality and Lieb-Robinson bounds:

‖A− ΠΛ(A)‖ ≤ sup
B∈AΓ\Λ,‖B‖=1

‖[A,B]‖ ≤ 2‖A− ΠΛ(A)‖.
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If (Γ, d) is a Delone subset of Rν , one can assume that Φ is supported on
balls bx(n) ⊂ Γ and express decay by a conditions of the form

‖Φ(bx(n))‖ ≤ ‖Φ‖f f (n), for all x ∈ Γ, n ≥ 0.

For suitable f and g , there is h for which δ(A) ∈ Ah, for all A ∈ Ag .

Examples: if f and g are characteristic functions, h can be taken to be a

characteristic function; if f (n) = g(n) = e−an
θ

, one can take

h(n) = e−a
′nθ , with a′ < a.

Upshot: for infinite systems with sufficiently short-range interactions, we
can define

hx =
∑
n

Φ(bx(n))

and
δ(A) =

∑
x

[hx ,A], A ∈ Ag ⊂ dom δ.

(N-Sims-Young, JMP 2019, Moon-Ogata JFA 2019, Kapustin-Sopenko JMP

2020, Bachmann-Lange arXiv:2105.14168, Henheik-Teufel

arXiv:2012.15238/9.)
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Ground states
A state ω on A is a ground state for the dynamics τt with generator δ if

ω(A∗δ(A)) ≥ 0, for all A ∈ dom δ.

It is sufficient to check this condition for A in a core for δ, such as Aloc.
The GNS representation
The GNS representation of a state on AΓ is given by a Hilbert space H, a
representation π of A on H, and a cyclic vector Ω ∈ H such that, for all
A ∈ A

ω(A) = 〈Ω, π(A)Ω〉, A ∈ AΓ.

For ground states one finds that τt is implemented by a strongly
continuous group of unitaries on H:

π(τt(A)) = U∗t π(A)Ut = e itHωπ(A)e−itHω

Hω ≥ 0, HωΩ = 0

If there is only one ground state for τt , we necessarily have that it is a
pure state (hence, π is irreducible) and that kerHω = CΩ.
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Gapped ground states
Consider the case of a pure ground state with kerHω = CΩ. Then, for
any γ > 0

specHω ∩ (0, γ) = ∅ iff ω(A∗δ(A)) ≥ γω(A∗A),A ∈ Aloc with ω(A) = 0

If this condition holds for some γ > 0, the ground state is gapped. Then

gap(Hω) = sup{γ > 0 | specHω ∩ (0, γ) = ∅}.

For infinite systems with Γ without boundary, e.g., Γ = Zν : gap(Hω) is
the bulk gap. If Γ is a half-space of Zν , it may be referred to as the edge
gap etc.
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Stability of Spectral Gaps
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Stability of the bulk gap
Suppose {hx}x∈Γ defines generator δ with (for simplicity) a unique
ground state ω and a gap γ0 > 0:

ω(A∗δ(A)) ≥ γ0(ω(A∗A)− |ω(A)|2),A ∈ dom δ ⇔ gap(Hω) ≥ γ0.

Define perturbations of the form

hx(s) = hx + sΦx , s ∈ R,Φx =
∑
n

Φ(bx(n)), with ‖Φ(bx(n))‖ ≤ g(n).

The gap of the model is stable under such perturbations if for all
γ ∈ (0, γ0), there exists s0(γ) > 0 such that the gap for the perturbed
model, γs , satisfies

γs ≥ γ, for all |s| < s0(γ).
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Stability theorem for frustration free finite range
interactions
We consider perturbations of finite-range (R) frustration-free models
with Hamiltonians of the form

HΛ(s) =
∑
x∈Λ

hx + s
∑

x∈Λ,n≥0

Φ(bx(n))

with uniformly bounded hx ∈ Abx (R), supx ‖hx‖ <∞. Γ ⊂ Rν , Delone.
C1: There are C > 0, q ≥ 0 such that gap(Hbx (n)(0)) ≥ Cn−q (non-zero
edge modes do not vanish faster than a power law).
C2: gap(HGNS(0)) = γ0 > 0.

C3: ‖Φ(bx(n))‖ ≤ ‖Φ‖e−anθ , for some a > 0, θ > 0.
C4: LTQO. Denote by PΛ the projection onto kerHΛ(0). There exists a
positive decreasing function G0 for which, for all A ∈ Abx (k),

‖Pbx (m)APbx (m) − ω0(A)Pbx (m)‖ ≤ ‖A‖(k + 1)νG0(m − k).

and ∑
n≥1

nq+3ν/2
√
G0(n) <∞.
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Not assuming a uniform gap in finite volume!

Figure: Penrose tiling. Ammann-Beenker tiling. Edges state or not? (T. Loring,
J. Math. Phys. 60, 081903 (2019))
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Theorem
(Stability of the bulk gap, N-Sims-Young, arXiv:arXiv:2102.07209)
If conditions C1-C4 are satisfied, then, for all γ ∈ (0, γ0), there is a
constant β > 0, such that the ground state of H(s) with

|s| ≤ γ0 − γ
βγ0

is unique, and gapHGNS(s) > γ.

Proved using the strategy of Bravyi-Hastings-Michalakis 2010, applied to
the GNS Hamiltonian. β is explicit.
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O(n) spin chains

H = −
∑
x

Qx,x+1

with Q the rank-1 projection determined by

ψ =
1√
n

n∑
α=1

|α, α〉.

- translation-invariant nn 1D model of n-dimensional spins
- manifestly O(n)-invariant and not frustration-free
- case n = 2 is Heisenberg anti-ferromagnet, Bethe-ansatz solvable,
unique gapless ground state
- for n ≥ 3, H has (at least) two 2-periodic gapped ground states:

ω±(Qx,x+1) = −en ± (−1)xδn, δn > 0, n ≥ 3

recently proved by Aizenman, Duminil-Copin, and Warzel (AHP 2020).
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A little bit of stability
Perturbing H with nn swap operator T |α, β〉 = |β, α〉, we obtain the
family of Hamiltonians:

H(u, v) =
∑
x

uTx,x+1 + vQx,x+1, u, v ∈ R

This is the O(n) extension of the spin-1 bilinear-biquadratic chain, with
the most general O(n)-symmetric nn interaction.
We now proved that these dimerized ground states and the spectral gap
above them persists for |u| small and n large.

Theorem (Björnberg-Mühlbacher-N-Ueltschi, CMP 2021)
There exist constants n0, u0 > 0 such that for all n > n0, for the O(n)
chain with v = −1 and |u| < u0, there are two pure 2-periodic gapped
ground states.

Previous stability results do not apply since these models are not
frustration-free.



15

Graphical respresentation
On finite chains of even length, [−`+ 1, `] ⊂ Z, The ground state of
H(u,−1), with |u| not too large, is unique. Call it Ω. Then

|Ω〉〈Ω| = lim
β→∞

e−2βH

Tre−2βH
,

and

〈Ω|A|Ω〉 = lim
β→∞

Tre−βHAe−βH

Tre−2βH
.

By writing (for integer β)

e−βH = lim
N→∞

(1l− 1

N
H)βN

= lim
N→∞

(
1l− u

N

`−1∑
x=−`+1

Tx,x+1 −
v

N

`−1∑
x=−`+1

Qx,x+1

)βN
.

and expanding the product we get a weighted sum of terms that are a
products of βN factors 1l,Tx,x+1 and Qx,x+1.
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〈α′, β′|Q|α, β〉 =
1

n
δαβδα′β′

〈α′, β′|T |α, β〉 = δαβ′δα′β

〈α′, β′|1l|α, β〉 = δαα′δββ′

Graphically we represent the
operators by crosses and double bars:

T = , Q = , 1l = | |

Basis labels are constant along lines.
After limN→∞, one gets a space-time
picture of loops:

Tre−2βH(u,−1) =

∫
Ω`,β

dρu(ω)nL(ω)−|ω |

with

dρu(ω) = e(1+u)2β(2`−1)u|ω |dx⊗|ω|.
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Correlations
The basic correlation functions are integrals of indicator functions of
‘events’ for loop configurations.

x
+←→ y : the set of configurations ω where the top of (x , 0) is connected

to the bottom of (y , 0);

x
−←→ y : the set of configurations ω where the top of (x , 0) is connected

to the top of (y , 0)
Define Lα,α

′
= |α〉〈α′| − |α′〉〈α|.

Proposition
For the spin chain of length 2` with interaction
hx,x+1 = −uTx,x+1 − Qx,x+1, we have for all 1 ≤ α < α′ ≤ n,

Tr Lα,α
′

x Lα,α
′

y e−2βH

Tre−2βH

= 2
n

∫
Ω`,β

dρu(ω) nL(ω)−|ω |(1l[x −←→ y ]− 1l[x
+←→ y ]

)∫
Ω`,β

dρu(ω)nL(ω)−|ω |
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short loops, long loops, winding loops

`

β

−β
−`+1

- the winding loop are those that
are not contractible (blue and
orange)

- the long loops are those that are
winding or visit 3 or more sites
(red, blue, orange)

- short loops are those that are
not long (green, brown, purple)

For large β, winding loops become negligible.

If there were only short loops, the measure would clearly be dominated by
a perfectly dimerized state.

The challenge is to show that dimerization survives in spite of the
non-vanishing contributions of long loops.
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Contours
In the case u = 0, long loops can serve as contours separating one
dimerized phase from the other:

The short loops outside and inside
the contour are out of phase.
A Peierls argument using such
contours was used to prove
dimerization for n ≥ 17
(N-Ueltschi, 2017).
Later, special properties of the
random loop measure were used
to prove dimerization for all n ≥ 3
(Aizenman, Duminil-Copin, Warzel,

2020).
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Clusters
For u 6= 0, configurations contain crosses ( ), which may be crossings of
different loops or self-crossings. Similarly, the top and bottom part of a
double bar ( ), may belong to the same loop or to different loops. Since
these distinction are non-local, we define clusters of long loops that share
a or a .

As in the case u = 0, the short loops describe the reference dimerized
states. A convergent cluster expansion of the partition function is the
tool that allows us to prove that short loops dominate (for large n and
small |u|).
Theorem (Björnberg-Mühlbacher-N-Ueltschi, CMP 2021)
There exist constants n0, u0, c1, c2,C > 0 (independent of `) such that
for n > n0 and |u| < u0, we have

〈Ω|Lα,α
′

x e−tHLα,α
′

y etH |Ω〉 ≤ Ce−c1|x−y |−c2|t|
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Figure: Ground state phase diagram
for the S = 1 chain (n = 3) with
nearest-neighbor interactions
cosφSx · Sx+1 + sinφ(Sx · Sx+1)2.

I φ = 0 Heisenberg AF chain,
Haldane phase (Haldane, 1983)

I tanφ = 1/3, AKLT point
(Affleck-Kennedy-Lieb-Tasaki,

1987,1988), FF, MPS, gapped
I tanφ = 1, solvable, gapless,

SU(3) invariant, (Sutherland,

1975)
I φ ∈ [π/2, 3π/2], ferromagnetic,

FF, gapless
I φ = −π/2, solvable, SU(3)

invariant, Temperley-Lieb
algebra, dimerized, gapped
(Klümper; Affleck,1990)

I φ− = −π/4 gapless,
Bethe-ansatz, (Takhtajan;

Babujian, 1982)
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u

v

AA’

B

B’ C

Reshetikhin

v = − 2n
n−2u

ferromagnetic

dimerization

incommensurate

phase correlations

Matrix-product state(s)
v = −2u

Figure: Ground state phase diagram
for the chain with nearest-neighbor
interactions uT + vQ for n ≥ 3,
studied by Tu & Zhang, 2008.

I v = −2nu/(n − 2), n ≥ 3, Bethe
ansatz point (Reshetikhin, 1983)

I v = −2u: frustration free point,
equivalent to ⊥ projection onto
symmetric vectors 	 one. Unique
g.s. if n odd; two 2-periodic g.s.
for even n; spectral gap in all
cases and stable phase
(N-Sims-Young, 2021).

I u = 0, v = −1. Equivalent to the
SU(n) −P(0) models aka
Temperley-Lieb chain; Affleck,

1990, Nepomechie-Pimenta 2016).
Dimerized for all n ≥ 3
(Aizenman, Duminil-Copin, Warzel,

2020). New result: a proof of
stability for large n
(Björnberg-Mühlbacher-N-Ueltschi,

2021).
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Concluding Comments
I gap for O(n) chains is more stable than that little bit we proved

I need a good general method for non-frustration-free models, for
proving gaps and their stability

I more general formulation of LTQO?


