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Background: Haldane Pseudopotentials

Haldane pseudopotentials were originally introduced as Hamiltonian models for the fractional

quantum Hall effect for ν = 1/(p + 2) with p ≥ 0 odd.

I Laughlin ’83: Ansatz for many-body ground state wave function Ψp .

I Haldane, ’83: Pseudopotential W p ≥ 0 obtained via projection onto lowest Landau level of

repulsive, short-range, radially symmetric pair potential.

W p =
∑
i<j

PLLLvp(zi , z
′
j )PLLL, vp ∝ ∆p

δ, z = x + iy

Tailored so Ψp ∈ ker W p .

I Haldane-Rezayi ’85, Trugman-Kivelson ’85, Lee-Papic-Thomale ’17, ...: More generalized

study of various pseudopotentials on different 2D geometries.

I Regnault-Jolicoeur ’04, Cooper ’08,...: Also model rapidly rotating Bose gases (p even).

I Lewin-Seiringer ’09, Seiringer-Yngvason ’20: Obtained as scaling limit.

I Johri-Papic-Schmitteckert-Bhatt-Haldane ’12: Properties of pseudopotentials robust under

change of geometry.

I Nachtergale, Warzel, Y. ’21: Gap of truncated p = 1 fermionic pseudopotential in thin

cylinder regime.
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Properties and Conjectures:

Λ = physical space, N = number of particles, ν =
N

|Λ|
filling factor

1. Ground States: Zero energy states ψ ∈ GΛ = ker W p
Λ satisfy ν ≤ ν(p) :=

1

p + 2
.

I E.g. Ψp has maximal filling ν(p).

2. Spectral Rigidity: For states with higher fillings ν > ν(p):

E0(HN
Λ ) = inf

0 6=ψ∈HN
Λ

〈ψ|W p
Λψ〉

‖ψ‖2
∝ |Λ| × increasing function of ν

I Determines Yrast line for Bose gases: Viefers-Hansson-Reimann ’00, Regnault-Jolicoeur
’04, Lewin-Seiringer ’09,...

3. Spectral Gap Conjecture: Haldane ’83, Haldane-Rezayi ’85, ...

γ := inf
Λ

gap(W p
Λ ) > 0 where gap(W p

Λ ) = inf
0 6=ψ⊥GΛ

〈ψ|W p
Λψ〉

‖ψ‖2

I The gap is responsible for the incompressibility of the FQH fluid: E0(HN
Λ ) = 0 for

ν ≤ ν(p) and E0(HN
Λ ) > γ for ν > ν(p).

4 Anyonic Excitations with Fractional Charge and their topological stability:

Hastings-Michalakis ’15, Haah ’16, Cha-Naaijkens-Nachtergaele ’20,...
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The 1/2-Haldane Pseudopotential

In second quantization, the pseudopotentials become one-dimensional (orbital) lattice
models. Lee-Leinaas ’04, Bergholtz-Karlhede, ’05, Nakamura-Wang-Bergholtz ’12,...

Today: We study the low-lying spectral properties of a truncated version of the lattice
model for the 1/2-pseudopotential (p = 0) in the thin cylinder geometry.
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The 1/2-Haldane Pseudopotential

R

B

x

y

magnetic length: `

ratio: α = `/R
|ψk (x, y)|2

x
1 2 Lα`

Figure: The Landau orbitals. A magnetic flux 2πβ along the cylinder axis shifts the orbitals by βα` (not shown).

Landau orbitals: Single particle Hilbert space is HLLL = span{ψk |k ∈ Z} where

ψk (x, y) ∝ exp

(
ik
αy

`

)
exp

(
−

1

2

[
x

`
− kα

]2)
.

W 0: Projection of v0 ∝ δ onto bosonic Fock space F =
⊕
N≥0

SymNHLLL:

W 0 =
∑

s∈Z/2

B∗s Bs , Bs =
∑

k∈s+Z
e−α

2k2
as−kas+k

where ak is the bosonic annihilation operator for ψk .

Truncated model: We consider the model restricted to |k| ≤ 1:

s ∈ Z +
1

2
: Bs = 2e−

α2

4 a
s− 1

2
a
s+ 1

2
, s ∈ Z : Bs = a2

s + 2e−α
2
as−1as+1
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The Finite-Volume Truncated 1/2-Model

R

ψa

a a + 1 b

=⇒

a bk − 1 k + 1

q∗k qk

Finite volume model: Λ = [a, b] ⊆ Z with open and periodic boundary conditions:

HΛ =

b−1∑
k=a

nknk+1 + κ

b−1∑
k=a+1

q∗k qk , Hper
Λ =

b∑
k=a

nknk+1 + κ
b∑

k=a

q∗k qk

nk = a∗k ak , qk = a2
k − λak−1ak+1 for some κ > 0, λ ∈ C

are self-adjoint operators with dense domain in the Fock space

HΛ = span {|µa, . . . , µb〉 : µk ∈ N0} , µk = number of particles occupyingψk

Symmetries:

Particle number: NΛ =
∑b

k=a nk , Center of mass: MΛ =
∑b

k=a knk

Physical regime: κ =
eα

2/2

4
and λ = −2e−α

2
where α = `

R .

Tao-Thouless limit: λ→ 0 as R → 0.
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Spectral Gap

For any finite interval min spec(H#
Λ ) = 0 for # ∈ {obc, per} implying

gap(H#
Λ ) := sup{δ > 0 : spec(HΛ) ∩ (0, δ) = ∅}.

Simple Case λ = 0: gap(H#
Λ ) = min{1, 2κ}.

Edge Modes for OBC: E.g. Lowest eigenvalue of HΛ ≡ Hobc
Λ is 2κ|λ|2

κ+1
+O(|λ|4) in

invariant subspace span{|2010 . . . 0〉, |1200 . . . 0〉}

Figure: Plot of the spectrum for H[1,9](λ) and H
per
[1,9]

(λ), resp., for 1/3-truncated model in physical regime.
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Main Result: Spectral Gap

Edge Modes for OBC: E.g. Lowest eigenvalue of HΛ is 2κ|λ|2
κ+1

+O(|λ|4) in invariant

subspace span{|2010 . . . 0〉, |1200 . . . 0〉}

γobc =
1

5
min

{
4γper,

2κ|λ|2

κ+ 1

}
γper =

1

4
min

{
1,

2κ

κ+ 1
,

2κ

1 + κ|λ|2

}

Theorem: [Warzel, Y. ’21] For all λ 6= 0 with f (|λ|2/2) < 1/3 (i.e. |λ| < 7.49...)

I OBC gap: inf
|Λ|≥10

gap(HΛ) ≥ min

{
γobc,

2κ

3

(
1−

√
3f (|λ|2/2)

)2
}

I Bulk gap: lim inf
|Λ|→∞

gap(Hper
Λ ) ≥ min

{
γper,

κ

3(1 + |λ|2)

(
1−

√
3f (|λ|2/2)

)2
}

Remarks:

I Bulk gap stays open despite edge states for OBC.

I Same strategy strengths the gap results in [Nachtergaele, Warzel, Y. ’21]
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Invariant Subspace Strategy

We identify a closed subspace C#
Λ ⊆ dom(H#

Λ ) for both # ∈ {obc, per} such that:

I Invariant under H#
Λ : H#

Λ C
#
Λ ⊆ C

#
Λ

I Contains ground state space: G#
Λ := ker(H#

Λ ) ⊆ C#
Λ

Since H#
Λ = C#

Λ ⊕ (C#
Λ )⊥, the gap is given by

gap(H#
Λ ) = min

{
E1(C#

Λ ), E0

(
(C#

Λ )⊥
)}

where

E1(C#
Λ ) := inf

ψ∈C#
Λ
∩(G#

Λ
)⊥

〈ψ|H#
Λ ψ〉

‖ψ‖2
, E0

(
(C#

Λ )⊥
)

:= inf
ϕ∈(C#

Λ
)⊥∩dom(H

#
Λ

)

〈ϕ|H#
Λ ϕ〉

‖ϕ‖2
.

For Bulk Gap: Edge states of HΛ ≡ Hobc
Λ are contained in (CobcΛ )⊥ ⊆ (CperΛ )⊥
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Identifying Invariant Subspaces

We first identify invariant subspaces for the model with open boundary conditions:

HΛ =

b−1∑
k=a

nknk+1 + κ

b−1∑
k=a+1

q∗k qk , qk = a2
k − λak−1ak+1

Observation 1: The occupation basis

{|µ〉 = |µa . . . µb〉 : µk ∈ N0 ∀ k} ⊆ dom(HΛ)

forms an orthonormal basis of eigenstates for the electrostatic terms:

b−1∑
k=a

nknk+1|µ〉 =

(
b−1∑
k=a

µkµk+1

)
|µ〉.

Observation 2: For any subspace VΛ ⊆ dom(HΛ) spanned by occupation states

q∗k qkVΛ ⊆ VΛ ∀ k =⇒ HΛVΛ ⊆ VΛ.

a bk − 1 k + 1

q∗k qk
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Example: Constructing Invariant Subspaces with Ground States
Since the interaction terms are all nonnegative:

ker(HΛ) =

b−1⋂
k=a

ker(nknk+1) ∩
b−1⋂

k=a+1

ker(qk ).

Observations:
• |µ〉 is a ground state of the electrostatic terms iff µkµk+1 = 0 for all k.

• qk = a2
k − λak−1ak+1 acts nontrivially on the sites {k − 1, k, k + 1}:

qk

(
|101〉+

λ
√

2
|020〉

)
= 0

Moreover, A simple calculation shows q∗k qk{|101〉, |020〉} ⊆ span{|101〉, |020〉}.

Starting with the alternating string |1010...〉 can construct a set of occupation states
by replacing ‘101’ with ’020’ that span an invariant subspace of HΛ:

ψΛ(R) =
∑
T↔R

(
λ
√

2

)d(T )

|σ(T )〉

[Jansen ’12], [Nakamura, Wang, Bergholtz ’12]
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BVMD Tiling Spaces

We describe invariant subspaces of HΛ using lattice tilings. Each subspace is
generated by a root tiling R of void, monomer, and boundary tiles:

where n ≥ 2. E.g. Root Tiling:

The Boundary-Void-Monomer-Dimer (BVMD) space generated by R is

CΛ(R) = span{|σ(T )〉 : T ↔ R}, σ(T ) ∈ N|Λ|0

CΛ(R) contains a unique ground state: ψΛ(R) =
∑
T↔R

(
λ
√

2

)d(T )

|σ(T )〉.
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BVMD Tiling Spaces

Lemma: [Warzel, Y. ’21] For any root tilings R ∈ RΛ on Λ = [1, L] with L ≥ 3,

1. CΛ(R) is a finite dimensional invariant subspace of HΛ.

2. GΛ ∩ CΛ(R) = span{ψΛ(R)}.
3. CΛ(R) ⊥ CΛ(R′) for all R′ 6= R.

4. HΛ �CΛ
is bounded where CΛ =

⊕
R CΛ(R). Thus, HΛCΛ ⊆ CΛ.

Theorem: [Warzel, Y. ’21] For all Λ = [1, L] with L ≥ 5,

GΛ = span{ψΛ(R) : R a root tiling}.

Thus, GΛ ⊆ CΛ and dim(GΛ) =∞.

For PBC: Analogous construction of CperΛ and GperΛ using root tilings of the ring
Λ = [a, b] consisting of monomers and voids:

Properties: 1. dimGperΛ ∝
(

1+
√

5
2

)|Λ|
2. Maximum filling: NΛ(R)/|Λ| ≤ 1/2
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Relation Between Ring and Interval Tilings

The bulk tiling space C∞Λ ⊆ CΛ is the subspace spanned by tilings obtained as a
truncation of a periodic tiling, i.e.

C∞Λ =
⊕

R bulk root

CΛ(R)

where a bulk root tiling R is any root tiling of Λ constructed from the tiles:
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Relation Between E1(CΛ) and E1(C∞Λ ): An Isospectral Reduction

Note that CobcΛ ≡ CΛ =
⊕

R CΛ(R) is infinite dimensional.

HΛCΛ(R) = |m00〉 ⊗ HΛ′CΛ′ (R
′)⊗ |0n〉 =⇒ E1(CΛ(R)) = E1(CΛ′ (R

′))

However, C∞Λ is finite-dimensional and the above implies

E1(CΛ) ≥ min
|Λ′|=|Λ|−k:
k=0,2,3,5

E1(C∞Λ′ ).
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Gap Estimating Strategy

Recap: For both # ∈ {obc, pbc}, we have written HΛ = C#
Λ ⊕ (C#

Λ )⊥ where

G#
Λ ⊆ C

#
Λ =

⊕
R∈R#

Λ

C#
Λ (R), (C#

Λ )⊥ = span{|µ〉 = |µa . . . µb〉 : |µ〉 /∈ C#
Λ }

are both invariant subspaces of H#
Λ . Moreover, the edge states of HΛ are contained in

(CobcΛ )⊥ ⊆ (CperΛ )⊥. Thus,

gap(H#
Λ ) = min

{
E1(C#

Λ ), E0

(
(C#

Λ )⊥
)}

Methods: Lower bounds uniform in |Λ| are obtained with the following approaches:

I For E1(C#
Λ ), apply gap techniques previously developed for quantum spin models

and lattice fermions:

I E1(Cobc
Λ ): martingale method on C∞Λ [Nachtergaele, ’96], [Nachtergaele, Sims, Y. ’18]

I E1(Cper
Λ ): finite size criterion [Knabe, ’89] + OBC result for E1(C∞Λ )

I For E0

(
(C#

Λ )⊥
)
, use electrostatic estimates to lower bound minimum energy.

Important: PBC estimate does not require use of OBC estimate!
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Gap Methods for Quantum Spin Models

I For dim(HΛ) <∞ and frustration-free model: GΛ′ ≡ ker(HΛ′ ⊗ 1lΛ\Λ′ ) ∀Λ′ ⊆ Λ.

I Uses a covering of Λ by a sequence of smaller intervals with OBC.

γ = inf
i
gap(HΛi

), Γ = sup
i
‖HΛi
‖, Λn,k =

n−k+1⋃
i=k

Λi

• Martingale Method: If ε := supn ‖GΛn+1
(1l− GΛn+1,1

)GΛn,1
‖ < 1/

√
`, then

gap(HΛ) ≥
γ

`
(1− ε

√
`)2.

• Finite Size Criterion: For any n such that |Λn,k | < |Λ| for all k:

gap(Hper
Λ ) ≥

γ(n − 1)

`Γn

[
inf

1≤k≤L
gap(HΛn,k

)−
Γ

n

]
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Spectral Rigidity: Motivation for Bounding E0

(
(C#

Λ )⊥
)

Question: How does the lowest energy in the N-particle sector depend on ν := N/|Λ|?

E0(HN
Λ ) := inf

ψ 6=0:
NΛψ=Nψ

〈ψ|Hper
Λ ψ〉
‖ψ‖2

Spectral Rigidity: By Cauchy-Schwarz

q∗k qk ≥ (1− δ)nk (nk − 1)− |λ|2
1− δ
δ

nk−1nk+1, ∀ δ ∈ (0, 1),

which bounds the Hamiltonian from below by purely electrostatic operators

Hper
Λ ≥

∑
k∈Λ

nk

[
nk+1 +

κ

2
(nk − 1)− κ|λ|2nk+2

]
.

For fillings ν > 1 and κ|λ|2 < 1, which includes the thin cylinder regime, this yields

E0(Hν|Λ|Λ ) ≥ ν|Λ|
[
ν(1 + κ/2− κ|λ|2)− κ/2

]
.

Idea for E0

(
(C#

Λ )⊥
)
: Refine CS bound to treat individual non-BVMD occupation

states.
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Bounding E0

(
(C#

Λ )⊥
)

Partition set of non-BVMD tiling configurations S#
Λ = {µ : |µ〉 /∈ C#

Λ } as

S#
Λ = S#

E ∪̇ S
#
D , S

#
E =

{
µ ∈ NΛ

0 : e#
Λ (µ) > 0

}
where e#

Λ (µ) is the electrostatic energy:

eobc
Λ (µ) =

b−1∑
k=a

µkµk+1, eper
Λ (µ) = eobc

Λ (µ) + µbµa.

For any ψ =
∑
µ∈S#

Λ

ψ(µ)|µ〉 ∈ (C#
Λ )⊥ ∩ dom(H#

Λ ), the expected energy is

〈ψ|H#
Λ ψ〉 =

∑
µ∈S#

E

e#
Λ (µ)|ψ(µ)|2 +

∑
ν∈NΛ

0

∑
k∈Λ#

|〈ν|qkψ〉|2

where Λobc = [a + 1, b − 1] and Λper = [a, b].

Goal: Choose (νµ, kµ) for each µ ∈ S#
D and apply CS to show 〈ψ|H#

Λ ψ〉 ≥ γ
#
∑
µ∈S#

Λ

|ψ(µ)|2 :

γ
obc =

1

5
min

{
4γper

,
2κ|λ|2

κ + 1

}
, γ

per =
1

4
min

{
1,

2κ

κ + 1
,

2κ

1 + κ|λ|2

}
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Bounding E0

(
(Cobc

Λ )⊥
)

Example: µ = (201000 . . . 0) ∈ SobcD (an edge state configuration).

a ba + 2 k + 1 a ba + 2 k + 1

For OBC: Choosing kµ = a + 1 there is a νµ so that

|〈νµ|qkµψ〉|
2 = |

√
2ψ(η)− λ

√
2ψ(µ)|2 ≥ −2

1− δ
δ
|ψ(η)|2 + 2|λ|2(1− δ)|ψ(µ)|2

where η = (1200 . . . 0) ∈ Sobc
E .

Picking δ = 2κ/(1 + 2κ) produces the estimate

eobcΛ (η)|ψ(η)|2 + κ|〈νµ|qkµψ〉|
2 ≥ |ψ(η)|2 +

2κ|λ|2

1 + 2κ
|ψ(µ)|2.

This reflects γobc = O(|λ|2) and goes to zero in Tao-Thouless limit!

General Strategy: Systematically chose a unique (νµ, kµ) for each µ ∈ SobcD so that

don’t “eat” all electrostatic energy of any given η ∈ SobcE .
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Bounding E0

(
(Cobc

Λ )⊥
)

Example: µ = (201000 . . . 0) ∈ SobcD (an edge state configuration).

a ba + 2 k + 1 a ba + 2 k + 1

For OBC: Choosing kµ = a + 1 there is a νµ so that

|〈νµ|qkµψ〉|
2 = |

√
2ψ(η)− λ

√
2ψ(µ)|2 ≥ −2

1− δ
δ
|ψ(η)|2 + 2|λ|2(1− δ)|ψ(µ)|2

where η = (1200 . . . 0) ∈ Sobc
E . Picking δ = 2κ/(1 + 2κ) produces the estimate

eobcΛ (η)|ψ(η)|2 + κ|〈νµ|qkµψ〉|
2 ≥ |ψ(η)|2 +

2κ|λ|2

1 + 2κ
|ψ(µ)|2.

This reflects γobc = O(|λ|2) and goes to zero in Tao-Thouless limit!

General Strategy: Systematically chose a unique (νµ, kµ) for each µ ∈ SobcD so that

don’t “eat” all electrostatic energy of any given η ∈ SobcE .
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Bounding E0

(
(Cper

Λ )⊥
)

Example: µ = (201000 . . . 0) ∈ SperD (same configuration).

a ba + 2 k + 1 a ba + 2 k + 1

For PBC: For same µ, choosing kµ = a with appropriate νµ produces:

|〈νµ|qkµψ〉|
2 = |

√
2ψ(µ)− λψ(η)|2

and applying similar strategy with a particular choice of 0 < δ < 1 yields:

eperΛ (η)|ψ(η)|2 + κ|〈νµ|qkµψ〉|
2 ≥

1

2
|ψ(η)|2 +

2κ

1 + 2κ|λ|2
|ψ(µ)|2

where η = (0110 . . . 01). Recall in physical regime κ = O(1) when λ << 1.
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Edge Tiling Spaces

For open boundary conditions, every state with energy O(|λ|2) belongs to an invariant
subspace generated from a root tiling consisting of the BVMD-tiles

and at least one edge boundary tile: for n ≥ 2

The edge tiling spaces require several new tiles and replacement rules. Nevertheless,
these lattice tilings only differ from BVMD tilings at the edge.
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Bulk Excitations

Lowest bulk excitations expected in quasi-hole/particle state. [Girvin, MacDonald,
Platzman ’85], [Yang, Hu, Papic, Haldane ’12], [Wang, Nakamura ’15]

We conjecture such states belong to invariant subspaces D
(m)
l,r generated by roots of

the form:

These spaces generate two new tiles and replacement rules:

Theorem: [Warzel, Y. ’21] For any l , r ≥ 3, κ > 1/2 and |λ| sufficiently small:

min
m∈N

E0(D
(m)
l,r ) = 1−

2κ

2κ− 1
+O(|λ|4).

Can also identify a slew of many-body scars of mid- and high- energy:
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Conclusion:

Summary:

1. Proved conjectured low-lying energy properties of truncated pseudopotentials in a
cylinder geometry facilitated by invariant subspaces described in terms of tilings.

2. A bulk gap strategy: approach valid for other models where edge states and
ground states can be separated into different invariant subspaces.

I E.g. our approach improves bulk gap result for 1/3-truncated model studied in
[Nachtergaele, Warzel, Y. ’21]

Interesting Questions and Future Directions:

1. Additional algebraic structure beyond symmetries?

2. Better control of first and second excited states. Low complexity?

3. Longer range truncations? Stability of the gap?

4. The untruncated Haldane model.

Thank you for your attention!
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Bounding E1(C∞Λ )

We apply the martingale method to the Hilbert space C∞Λ and Hamiltonians

H∞Λ′ := (HΛ′ ⊗ 1lΛ\Λ′ ) �C∞Λ ∀Λ′ ⊆ Λ

where the overlapping intervals are chosen so that ` = 3 and either |Λi | = 5, 6, for all i .

Calculations using isospectrality and orthogonality of the BVMD states/spaces gives

γ = gap(H∞Λi
) = 2κ

ε = sup
n
‖G∞Λn+1

(1l− G∞Λn+1,1
)G∞Λn,1

‖ ≤
√

f (|λ|2/2)

where G∞
Λ′ = ker(H∞

Λ′ ) ⊆ C∞Λ . This produces the final estimate:

E1(C∞Λ ) ≥
2κ

3

(
1−

√
3f (|λ|2/2)

)2

.
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Bounding E1(Cper
Λ )

We apply Knabe’s finite size criteria to the Hilbert space CperΛ and Hamiltonians

Hper
Λ �Cper

Λ
and HΛn,k

�Cper
Λ

where Λn,k =
⋃n+1−k

i=k Λi chosen so |Λi | = 5, 6. Another isospectral argument shows

‖HΛi
�Cper

Λ
‖ = 2κ(1 + |λ|2) and gap(HΛn,k

�Cper
Λ

) = E1(C∞Λ )

This yields:

E1(CperΛ ) ≥
n − 1

2n(1 + |λ|2)

(
E1(C∞Λn,k

)−
2κ(1 + |λ|2)

n

)


