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Can we describe the structure of these classes?

@ guarantees
sublinear separators
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o does not capture
everything :(

A class has sublinear separators if its n-vertex
subgraphs have separators of size O(n'~¢) for ¢ > 0.



The following classes have sublinear separators.
o planar graphs: O(n*/?)

(Lipton-Tarjan 79)



The following classes have sublinear separators.

o planar graphs: O(n*/?)

o classes with product structure: O(n'/?)

o090 o

(Dvorak-Huynh-Joret-Liu-Wood 21)



The following classes have sublinear separators.

o planar graphs: O(n*/?)

o classes with product structure: O(n'/?)
(for each c, subgraphs of H X P where tw(H) < ¢)
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The following classes have sublinear separators.
o planar graphs: O(n'/?)
o classes with product structure: O(n'/2)
o classes with a forbidden minor: O(n'/2)

figure by
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https://tcs.rwth-aachen.de/~reidl/
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These are the only classes with sublinear separators.
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The following classes have sublinear separators.
o planar graphs: O(n'/?)
o classes with product structure: O(n'/?)
o classes with a forbidden minor: O(n'/2)
o classes whose depth-r minors have average degree poly(r)
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These are the only classes with sublinear separators.
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Q r-comparable

For each point x in the “larger” shape, there is a
translate S of the “smaller” shape which contains x
so that the volume of the intersection > 1vol(S).
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Theorem

The class of intersection graphs of r-comparable,
k-wise disjoint, compact convex sets in R has
separators of size O(n'~2).

Products work if all of
these shapes are both
“large” and “small”.
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Lemma

There exists a class with sublinear separators which
cannot be represented by “comparable
axis-aligned rectangles”.

Problem (Joret-Wood; see Esperet-Raymond 18)

Does every class with sublinear separators have
strong coloring numbers < poly(r)?

Problem (van den Heuvel-Kierstead 19)

If a class has strong coloring numbers < poly(r),
then is there a single vertex ordering for all r?



Thank you!



