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Square-free words

The square of a word w is the word w2 = ww . For instance (ab)2 = abab.
A word is square-free, or non-repetitive if it contains no square.

Examples. square is square-free, but repetition is not.

What is the smallest size of an alphabet for which we can find arbitrarily
large square-free words?

Question

There is an infinite square-free word on 3 letters.

Theorem (Thue 1906)

abcabacabcbacbcacbabcabacabcb. . .
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Nonrepetitive coloring

A coloring of the vertices of a graph is nonrepetitive if for any path P, the
colors on P form a square-free word.

Let π(G ) be the minimum number of colors in a nonrepetitive coloring of
G (π(G ) is called the nonrepetitive chromatic number of G ).

If G is a path, then π(G ) ≤ 3.

Theorem (Thue 1906)

If G is a tree, then π(G ) ≤ 4.

Observation (Alon, Grytczuk, Haluszczak, Riordan 2002)
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trees

A walk v1, . . . , v2t is boring if vi = vi+t for any 1 ≤ i ≤ t.

A walk v1, . . . , v2t is repetitive if c(vi ) = c(vi+t) for any 1 ≤ i ≤ t.

Any path has a 4-coloring such that every repetitive walk is boring.

Observation (Folklore)
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A product structure in planar graphs

denoted by A� B, is the graph with vertex set V (A)× V (B), where
distinct vertices (v , x), (w , y) ∈ V (A)× V (B) are adjacent if

v = w and xy ∈ E (B), or

x = y and vw ∈ E (A), or

vw ∈ E (A) and xy ∈ E (B).

� =

Every planar graph is a subgraph of H � P for some graph H with
treewidth at most 8 and some path P.

Theorem (Dujmović, Joret, Micek, Morin, Ueckerdt, Wood 2019)



Strongly nonrepetitive coloring

A coloring is strongly nonrepetitive if for any repetitive walk v1, . . . , v2t ,
there exist 1 ≤ i ≤ t such that vi = vi+t .

Let π∗(G ) be the least number of colors in a strongly nonrepetitive
coloring of G . Clearly π(G ) ≤ π∗(G ).

If G has treewidth k , then π∗(G ) ≤ 4k .

Theorem (Kündgen, Pelsmajer 2008)
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Application to nonrepetitive coloring

For every graph H and every path P, we have π∗(H � P) ≤ 4π∗(H).

Lemma (Dujmović, Esperet, Joret, Walczak, Wood 2019)
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Lemma (Dujmović, Esperet, Joret, Walczak, Wood 2019)

Every planar G is a subgraph of H � P with H of treewidth at most 8.

π∗(G ) ≤ π∗(H � P) ≤ 4π∗(H) ≤ 4 · 48 = 49



Application to nonrepetitive coloring

For every graph H and every path P, we have π∗(H � P) ≤ 4π∗(H).

Lemma (Dujmović, Esperet, Joret, Walczak, Wood 2019)

Every planar G is a subgraph of H � P with H of treewidth at most 8.

π∗(G ) ≤ π∗(H � P) ≤ 4π∗(H) ≤ 4 · 48 = 49

Planar graphs have nonrepetitive chromatic number at most 768.
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Graphs of Euler genus g have nonrepetitive chromatic number at most
256 ·max(3, 2g).

Theorem (Dujmović, Esperet, Joret, Walczak, Wood 2019)



Beyond planar graphs

The product structure theorem actually holds for graphs embeddable
on a fixed surface plus a bounded number of vortices.

Adding a constant number of universal vertices (= apices) only
increases π by a constant.

Using the graph minor structure theorem of Robertson and Seymour
we can extend the result to any proper minor-closed class.

Graphs of bounded degree have bounded π.

Using the structure theorem for graphs avoiding a fixed topological
minor of Grohe and Marx, we can extend the result to any proper
topologically minor-closed class.

Graphs avoiding a fixed minor or topological minor have bounded non-
repetitive chromatic number.

Theorem (Dujmović, Esperet, Joret, Walczak, Wood 2019)
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Theorem (Dujmović, Esperet, Joret, Walczak, Wood 2019)



Beyond planar graphs

The product structure theorem actually holds for graphs embeddable
on a fixed surface plus a bounded number of vortices.

Adding a constant number of universal vertices (= apices) only
increases π by a constant.

Using the graph minor structure theorem of Robertson and Seymour
we can extend the result to any proper minor-closed class.

Graphs of bounded degree have bounded π.

Using the structure theorem for graphs avoiding a fixed topological
minor of Grohe and Marx, we can extend the result to any proper
topologically minor-closed class.

Graphs avoiding a fixed minor or topological minor have bounded non-
repetitive chromatic number.
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Open problems

What is the maximum nonrepetitive chromatic number of graphs of
genus g? Is it o(g) ? (It is Ω(g2/3) and O(g)).

Is there a constant c such that every locally planar graph (i.e. graph
with an embedded on a surface of genus g with sufficiently large
facewidth, as a function of g), has nonrepetitive chromatic number at
most c ?

+ Several questions of Gwen and David about the connections
between bounded expansion and nonrepetitive chromatic number.
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