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Let 7(G) be the minimum number of colors in a nonrepetitive coloring of
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———/

Observation (Alon, Grytczuk, Haluszczak, Riordan 2002)
If G is a tree, then 7(G) < 4.
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NON-REPETITIVE COLORING
A coloring of the vertices of a graph is nonrepetitive if for any path P, the
colors on P form a square-free word.

Let 7(G) be the minimum number of colors in a nonrepetitive coloring of
G (m(G) is called the nonrepetitive chromatic number of G).

Theorem (Thue 1906)]
If G is a path, then 7(G) < 3. ]

’_[Observation (Alon, Grytczuk, Haluszczak, Riordan 2002)|

If G is a tree, then 7(G) < 4.

.

’_[Question (Alon, Grytczuk, Haluszczak, Riordan 2002)]

Do planar graphs have bounded nonrepetitive chromatic number?

.




A PRODUCT STRUCTURE IN PLANAR GRAPHS

denoted by AX B, is the graph with vertex set V(A) x V(B), where
distinct vertices (v, x), (w,y) € V(A) x V(B) are adjacent if

e v=w and xy € E(B), or

e x =y and vw € E(A), or

e vw € E(A) and xy € E(B).

Theorem (Dujmovi¢, Joret, Micek, Morin, Ueckerdt, Wood 2019)

Every planar graph is a subgraph of H X P for some graph H with
treewidth at most 8 and some path P.
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Lemma (Dujmovi¢, Esperet, Joret, Walczak, Wood 2019)

For every graph H and every path P, we have 7*(H X P) < 47*(H).

Every planar G is a subgraph of HX P with H of treewidth at most 8.
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Theorem (Dujmovié, Esperet, Joret, Walczak, Wood 2019)

Graphs of Euler genus g have nonrepetitive chromatic number at most
256 - max(3, 2g).
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@ The product structure theorem actually holds for graphs embeddable
on a fixed surface plus a bounded number of vortices.

@ Adding a constant number of universal vertices (= apices) only
increases m by a constant.

@ Using the graph minor structure theorem of Robertson and Seymour
we can extend the result to any proper minor-closed class.

@ Graphs of bounded degree have bounded 7.

@ Using the structure theorem for graphs avoiding a fixed topological
minor of Grohe and Marx, we can extend the result to any proper
topologically minor-closed class.

Theorem (Dujmovié, Esperet, Joret, Walczak, Wood 2019)

Graphs avoiding a fixed minor or topological minor have bounded non-
repetitive chromatic number.
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@ What is the maximum nonrepetitive chromatic number of graphs of
genus g7 Is it o(g) ? (It is Q(g%/?) and O(g)).

@ Is there a constant c¢ such that every locally planar graph (i.e. graph
with an embedded on a surface of genus g with sufficiently large
facewidth, as a function of g), has nonrepetitive chromatic number at
most ¢ ?

@ + Several questions of Gwen and David about the connections
between bounded expansion and nonrepetitive chromatic number.
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