Nonrepetitive coloring

Louis Esperet (CNRS, Grenoble)

(joint work with V. Dujmović, G. Joret, B. Walczak, and D. Wood)
Product Structure Workshop, Banff 2021
November 22, 2021

Square-free words

The square of a word w is the word $w^{2}=w w$. For instance $(a b)^{2}=a b a b$.
A word is square-free, or non-repetitive if it contains no square.

Square-free words

The square of a word w is the word $w^{2}=w w$. For instance $(a b)^{2}=a b a b$.
A word is square-free, or non-repetitive if it contains no square.
Examples. square is square-free, but repetition is not.

SQuARE-FREE WORDS

The square of a word w is the word $w^{2}=w w$. For instance $(a b)^{2}=a b a b$.
A word is square-free, or non-repetitive if it contains no square.
Examples. square is square-free, but repetition is not.

Question

What is the smallest size of an alphabet for which we can find arbitrarily large square-free words?

SQUARE-FREE WORDS

The square of a word w is the word $w^{2}=w w$. For instance $(a b)^{2}=a b a b$.
A word is square-free, or non-repetitive if it contains no square.
Examples. square is square-free, but repetition is not.

Question

What is the smallest size of an alphabet for which we can find arbitrarily large square-free words?

Theorem (Thue 1906)
There is an infinite square-free word on 3 letters.

SQUARE-FREE WORDS

The square of a word w is the word $w^{2}=w w$. For instance $(a b)^{2}=a b a b$.
A word is square-free, or non-repetitive if it contains no square.
Examples. square is square-free, but repetition is not.

Question

What is the smallest size of an alphabet for which we can find arbitrarily large square-free words?

Theorem (Thue 1906)

There is an infinite square-free word on 3 letters.
abcabacabcbacbcacbabcabacabcb...

Nonrepetitive coloring

A coloring of the vertices of a graph is nonrepetitive if for any path P, the colors on P form a square-free word.

Nonrepetitive coloring

A coloring of the vertices of a graph is nonrepetitive if for any path P, the colors on P form a square-free word.
Let $\pi(G)$ be the minimum number of colors in a nonrepetitive coloring of $G(\pi(G)$ is called the nonrepetitive chromatic number of $G)$.

Nonrepetitive coloring

A coloring of the vertices of a graph is nonrepetitive if for any path P, the colors on P form a square-free word.
Let $\pi(G)$ be the minimum number of colors in a nonrepetitive coloring of $G(\pi(G)$ is called the nonrepetitive chromatic number of $G)$.

Theorem (Thue 1906)
If G is a path, then $\pi(G) \leq 3$.

Nonrepetitive coloring

A coloring of the vertices of a graph is nonrepetitive if for any path P, the colors on P form a square-free word.
Let $\pi(G)$ be the minimum number of colors in a nonrepetitive coloring of $G(\pi(G)$ is called the nonrepetitive chromatic number of $G)$.

Theorem (Thue 1906)
If G is a path, then $\pi(G) \leq 3$.

Observation (Alon, Grytczuk, Haluszczak, Riordan 2002)
If G is a tree, then $\pi(G) \leq 4$.

TREES

A walk $v_{1}, \ldots, v_{2 t}$ is boring if $v_{i}=v_{i+t}$ for any $1 \leq i \leq t$.

TREES

A walk $v_{1}, \ldots, v_{2 t}$ is boring if $v_{i}=v_{i+t}$ for any $1 \leq i \leq t$. A walk $v_{1}, \ldots, v_{2 t}$ is repetitive if $c\left(v_{i}\right)=c\left(v_{i+t}\right)$ for any $1 \leq i \leq t$.

TREES

A walk $v_{1}, \ldots, v_{2 t}$ is boring if $v_{i}=v_{i+t}$ for any $1 \leq i \leq t$.
A walk $v_{1}, \ldots, v_{2 t}$ is repetitive if $c\left(v_{i}\right)=c\left(v_{i+t}\right)$ for any $1 \leq i \leq t$.

Observation (Folklore)

Any path has a 4-coloring such that every repetitive walk is boring.

TREES

A walk $v_{1}, \ldots, v_{2 t}$ is boring if $v_{i}=v_{i+t}$ for any $1 \leq i \leq t$. A walk $v_{1}, \ldots, v_{2 t}$ is repetitive if $c\left(v_{i}\right)=c\left(v_{i+t}\right)$ for any $1 \leq i \leq t$.

Observation (Folklore)

Any path has a 4-coloring such that every repetitive walk is boring.

Non-REPETITIVE COLORING

A coloring of the vertices of a graph is nonrepetitive if for any path P, the colors on P form a square-free word.
Let $\pi(G)$ be the minimum number of colors in a nonrepetitive coloring of $G(\pi(G)$ is called the nonrepetitive chromatic number of $G)$.

Theorem (Thue 1906)
If G is a path, then $\pi(G) \leq 3$.

Observation (Alon, Grytczuk, Haluszczak, Riordan 2002)
If G is a tree, then $\pi(G) \leq 4$.

Non-REPETITIVE COLORING

A coloring of the vertices of a graph is nonrepetitive if for any path P, the colors on P form a square-free word.
Let $\pi(G)$ be the minimum number of colors in a nonrepetitive coloring of $G(\pi(G)$ is called the nonrepetitive chromatic number of $G)$.

Theorem (Thue 1906)
If G is a path, then $\pi(G) \leq 3$.

Observation (Alon, Grytczuk, Haluszczak, Riordan 2002)
If G is a tree, then $\pi(G) \leq 4$.

Question (Alon, Grytczuk, Haluszczak, Riordan 2002)

Do planar graphs have bounded nonrepetitive chromatic number?

A product structure in planar graphs

 denoted by $A \boxtimes B$, is the graph with vertex set $V(A) \times V(B)$, where distinct vertices $(v, x),(w, y) \in V(A) \times V(B)$ are adjacent if- $v=w$ and $x y \in E(B)$, or
- $x=y$ and $v w \in E(A)$, or
- $v w \in E(A)$ and $x y \in E(B)$.

\boxtimes

Theorem (Dujmović, Joret, Micek, Morin, Ueckerdt, Wood 2019)
Every planar graph is a subgraph of $H \boxtimes P$ for some graph H with treewidth at most 8 and some path P.

Strongly NONREPETITIVE COLORING

A coloring is strongly nonrepetitive if for any repetitive walk $v_{1}, \ldots, v_{2 t}$, there exist $1 \leq i \leq t$ such that $v_{i}=v_{i+t}$.

Strongly nonrepetitive coloring

A coloring is strongly nonrepetitive if for any repetitive walk $v_{1}, \ldots, v_{2 t}$, there exist $1 \leq i \leq t$ such that $v_{i}=v_{i+t}$.
Let $\pi^{*}(G)$ be the least number of colors in a strongly nonrepetitive coloring of G. Clearly $\pi(G) \leq \pi^{*}(G)$.

Strongly nonrepetitive coloring

A coloring is strongly nonrepetitive if for any repetitive walk $v_{1}, \ldots, v_{2 t}$, there exist $1 \leq i \leq t$ such that $v_{i}=v_{i+t}$.
Let $\pi^{*}(G)$ be the least number of colors in a strongly nonrepetitive coloring of G. Clearly $\pi(G) \leq \pi^{*}(G)$.

Theorem (Kündgen, Pelsmajer 2008)
If G has treewidth k, then $\pi^{*}(G) \leq 4^{k}$.

Strongly nonrepetitive coloring

A coloring is strongly nonrepetitive if for any repetitive walk $v_{1}, \ldots, v_{2 t}$, there exist $1 \leq i \leq t$ such that $v_{i}=v_{i+t}$.
Let $\pi^{*}(G)$ be the least number of colors in a strongly nonrepetitive coloring of G. Clearly $\pi(G) \leq \pi^{*}(G)$.

Theorem (Kündgen, Pelsmajer 2008)
If G has treewidth k, then $\pi^{*}(G) \leq 4^{k}$.

Application to nonrepetitive coloring

Lemma (Dujmović, Esperet, Joret, Walczak, Wood 2019)
For every graph H and every path P, we have $\pi^{*}(H \boxtimes P) \leq 4 \pi^{*}(H)$.

Application to nonrepetitive coloring

Lemma (Dujmović, Esperet, Joret, Walczak, Wood 2019)
For every graph H and every path P, we have $\pi^{*}(H \boxtimes P) \leq 4 \pi^{*}(H)$.

Application to nonrepetitive coloring

Lemma (Dujmović, Esperet, Joret, Walczak, Wood 2019)
For every graph H and every path P, we have $\pi^{*}(H \boxtimes P) \leq 4 \pi^{*}(H)$.

Application to nonrepetitive coloring

Lemma (Dujmović, Esperet, Joret, Walczak, Wood 2019)
For every graph H and every path P, we have $\pi^{*}(H \boxtimes P) \leq 4 \pi^{*}(H)$.

Application to nonrepetitive coloring

Lemma (Dujmović, Esperet, Joret, Walczak, Wood 2019)
For every graph H and every path P, we have $\pi^{*}(H \boxtimes P) \leq 4 \pi^{*}(H)$.

Application to nonrepetitive coloring

Lemma (Dujmović, Esperet, Joret, Walczak, Wood 2019)
For every graph H and every path P, we have $\pi^{*}(H \boxtimes P) \leq 4 \pi^{*}(H)$.

Application to nonrepetitive coloring

Lemma (Dujmović, Esperet, Joret, Walczak, Wood 2019)
For every graph H and every path P, we have $\pi^{*}(H \boxtimes P) \leq 4 \pi^{*}(H)$.

Application to nonrepetitive coloring

Lemma (Dujmović, Esperet, Joret, Walczak, Wood 2019)
For every graph H and every path P, we have $\pi^{*}(H \boxtimes P) \leq 4 \pi^{*}(H)$.
Every planar G is a subgraph of $H \boxtimes P$ with H of treewidth at most 8 .

Application to nonrepetitive coloring

Lemma (Dujmović, Esperet, Joret, Walczak, Wood 2019)
For every graph H and every path P, we have $\pi^{*}(H \boxtimes P) \leq 4 \pi^{*}(H)$.
Every planar G is a subgraph of $H \boxtimes P$ with H of treewidth at most 8 .

$$
\pi^{*}(G) \leq \pi^{*}(H \boxtimes P) \leq 4 \pi^{*}(H) \leq 4 \cdot 4^{8}=4^{9}
$$

Application to nonrepetitive coloring

Lemma (Dujmović, Esperet, Joret, Walczak, Wood 2019)
For every graph H and every path P, we have $\pi^{*}(H \boxtimes P) \leq 4 \pi^{*}(H)$.
Every planar G is a subgraph of $H \boxtimes P$ with H of treewidth at most 8 .

$$
\pi^{*}(G) \leq \pi^{*}(H \boxtimes P) \leq 4 \pi^{*}(H) \leq 4 \cdot 4^{8}=4^{9}
$$

Theorem (Dujmović, Esperet, Joret, Walczak, Wood 2019)
Planar graphs have nonrepetitive chromatic number at most 768.

Application to nonrepetitive coloring

Lemma (Dujmović, Esperet, Joret, Walczak, Wood 2019)
For every graph H and every path P, we have $\pi^{*}(H \boxtimes P) \leq 4 \pi^{*}(H)$.
Every planar G is a subgraph of $H \boxtimes P$ with H of treewidth at most 8 .

$$
\pi^{*}(G) \leq \pi^{*}(H \boxtimes P) \leq 4 \pi^{*}(H) \leq 4 \cdot 4^{8}=4^{9}
$$

Theorem (Dujmović, Esperet, Joret, Walczak, Wood 2019)
Planar graphs have nonrepetitive chromatic number at most 768.

Theorem (Dujmović, Esperet, Joret, Walczak, Wood 2019)

Graphs of Euler genus g have nonrepetitive chromatic number at most $256 \cdot \max (3,2 g)$.

BEYOND PLANAR GRAPHS

- The product structure theorem actually holds for graphs embeddable on a fixed surface plus a bounded number of vortices.

BEYOND PLANAR GRAPHS

- The product structure theorem actually holds for graphs embeddable on a fixed surface plus a bounded number of vortices.
- Adding a constant number of universal vertices (= apices) only increases π by a constant.

BEYOND PLANAR GRAPHS

- The product structure theorem actually holds for graphs embeddable on a fixed surface plus a bounded number of vortices.
- Adding a constant number of universal vertices (= apices) only increases π by a constant.
- Using the graph minor structure theorem of Robertson and Seymour we can extend the result to any proper minor-closed class.

BEyond Planar graphs

- The product structure theorem actually holds for graphs embeddable on a fixed surface plus a bounded number of vortices.
- Adding a constant number of universal vertices (= apices) only increases π by a constant.
- Using the graph minor structure theorem of Robertson and Seymour we can extend the result to any proper minor-closed class.
- Graphs of bounded degree have bounded π.

BEyond Planar graphs

- The product structure theorem actually holds for graphs embeddable on a fixed surface plus a bounded number of vortices.
- Adding a constant number of universal vertices (= apices) only increases π by a constant.
- Using the graph minor structure theorem of Robertson and Seymour we can extend the result to any proper minor-closed class.
- Graphs of bounded degree have bounded π.
- Using the structure theorem for graphs avoiding a fixed topological minor of Grohe and Marx, we can extend the result to any proper topologically minor-closed class.

Beyond planar graphs

- The product structure theorem actually holds for graphs embeddable on a fixed surface plus a bounded number of vortices.
- Adding a constant number of universal vertices (= apices) only increases π by a constant.
- Using the graph minor structure theorem of Robertson and Seymour we can extend the result to any proper minor-closed class.
- Graphs of bounded degree have bounded π.
- Using the structure theorem for graphs avoiding a fixed topological minor of Grohe and Marx, we can extend the result to any proper topologically minor-closed class.

Theorem (Dujmović, Esperet, Joret, Walczak, Wood 2019)

Graphs avoiding a fixed minor or topological minor have bounded nonrepetitive chromatic number.

Open problems

- What is the maximum nonrepetitive chromatic number of graphs of genus g ? Is it $o(g)$? (It is $\Omega\left(g^{2 / 3}\right)$ and $O(g)$).

Open problems

- What is the maximum nonrepetitive chromatic number of graphs of genus g ? Is it $o(g)$? (It is $\Omega\left(g^{2 / 3}\right)$ and $O(g)$).
- Is there a constant c such that every locally planar graph (i.e. graph with an embedded on a surface of genus g with sufficiently large facewidth, as a function of g), has nonrepetitive chromatic number at most c ?

Open problems

- What is the maximum nonrepetitive chromatic number of graphs of genus g ? Is it $o(g)$? (It is $\Omega\left(g^{2 / 3}\right)$ and $O(g)$).
- Is there a constant c such that every locally planar graph (i.e. graph with an embedded on a surface of genus g with sufficiently large facewidth, as a function of g), has nonrepetitive chromatic number at most c ?
- + Several questions of Gwen and David about the connections between bounded expansion and nonrepetitive chromatic number.

